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Abstract
Real Options for Project Schedules (ROPS) has three recursive sampling/optimization shells.An outer
Adaptive Simulated Annealing (ASA) optimization shell optimizes parameters of strategic Plans
containing multiple Projects containing ordered Tasks. Amiddle shell samples probability distributions
of durations of Tasks. Aninner shell samples probability distributions of costs of Tasks. PATHTREE is
used to develop options on schedules. Algorithms used for Trading in Risk Dimensions (TRD) are
applied to develop a relative risk analysis among projects.
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1. Intr oduction
This paper is a brief description of a methodology of developing options (in the sense of financial options,
e.g., with all Greeks defined below) to schedule complex projects, e.g., such as the massive US Army
project Future Combat Systems (FCS).

The major focus is to develop Real Options for non-financial projects, as discussed in other earlier
papers [3,5,19].Data and some guidance on its use has been reported in a previous study of FCS[2,6].
The need for tools for fairly scheduling and pricing such a complex project has been emphasized in
Recommendations for Executive Action in a report by the U.S. General Accounting Office (GAO) on
FCS [21], and they also emphasize the need for management of FCS business plans [20,22].

The concept of Real Options is the subject of many papers. Somepapers give good advice on how to
apply these tools[4,23,24]. Someauthors also note potential dangers in not taking into account
unintended consequences of using Real Options in corporate strategies [1]. The approach given is this
paper includes important optimization and options algorithms not present in previous papers, and a
process of aggregating tasks to permit top-level control of projects, which enables development of more
real Real Options.

2. Goals
A giv en Plan results inS(t), money allocated by the client/government is defined in terms of Projects
Si(t),

S(t) =
i
Σ Si(t) (1)

whereai(t) may be some scheduled constraints.PATHTREE processes a probability tree developed over
the life of the planT , divided intoN nodes at times{tn}, each with mean epoch lengthdt [17]. Options,
including all Greeks defined below, familiar to financial markets, are calculated for quite arbitrary
nonlinear means and variances of multiplicative noise [7,11]. Options are calculated as expected values
along stochastic paths of their underlying markets, and the Greeks are functional derivatives of these
options. Thisenables fair pricing of expected values of a market over extended periods and including
changes to underlying variables that can occur along these stochastic paths. The ability to process
nonlinear functions defining probability distributions is essential for real-world applications.

Each Task has a range of durations, with nonzeroAi, with a disbursement of funds used, defining Si(tn).
Any Task dependent on a Task completion is slaved to its precursor(s).

We dev elop the Plan conditional probability density (CPD) in terms of differenced costs,dS,

P(S ± dS; tn + dt|S; tn)

P is modeled/cast/fit into the functional form

P(S ± dS; tn + dt|S; tn) = (2π g2dt)
−

1

2 exp(−Ldt)

L =
(dS − fdt)2

(2g2dt2)
(2)

where f andg are nonlinear function of costS and timet. The g2 variance function absorbs the multiple
Task cost and schedule statistical spreads, to determineP(dS, t), giving rise to the stochastic nature of
dollars spent on the Plan.

A giv en Project i with Taskk has a mean durationiik , with a a mean costSik . The spread indS has two
components arising from: (1) a stochastic duration around the mean duration, and (2) a stochastic spread
of mean dollars around a deterministic disbursement at a given time. Different finite-width asymmetric
distributions are used for durations and costs.For example, the distribution created for Adaptive
Simulated Annealing (ASA) [9], originally called Very Fast Simulated Re-annealing [8], is a finite-ranged
distribution with shape determined by a parameter “temperature”q.
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ASA(x; q) =
1

2(|x| + q) ln(1+
1

q
)

(3)

For each state (whether duration or cost): (a) A random binary choice can be made to be higher or lower
than the mean, using any ratio of probabilities selected by the client. (b) Then, an ASA distribution is
used on the chosen side.Each side has a differentq, each falling off f rom the mean. This is illustrated
and further described in Fig. 1.
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Fig. 1. The ASA distribution can be used to develop finite-range asymmetric distributions
from which a value can be chosen for a given state of duration or cost.(a) A random binary
distribution is selected for a lower-than or higher-than mean, using any ratio of probabilities
selected by the client.Each side of the mean has its own temperatureq. Here ASA distribu-
tions are given for q = {0.01, 0.1, 1.0}. The range can be scaled to any finite interval and the
mean placed within this range.(b) A uniform random distribution selects a value from
[-1,1], and a normalized ASA value is read off for the given state.

At the end of the tree at a timeT (T also can be a parameter), there is a total cost at each nodeS(T ),
called a final “strike” in financial language. (A final strike might also appear at any node before T due to
cancellation ofthe Project using a particular kind of schedule alternative.) Working backwards, options
are calculated at timet0. Greeks defined below assess sensitivity to various variables, e.g., like those
discussed in previous papers [19], but here we deliver precise numbers based on as much real-world
information as is available.

3. Data
The following data are used to develop Plan CPD. Each Taski has

(a) a Projected allocated cost,Ci
(b) a Projected time schedule,Ti
(c) a CPD with a statistical width of funds spent,SWSi
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(d) a distribution with a statistical width of duration,SWTi

(e) a range of durations,RTi

(f) a range of costs,RSi

Expert guesses need to be provided for (c)-(f) for the prototype study.

A giv en Plan must be constructed among all Tasks, specified the ordering of Tasks, e.g., obeying any
sequential constraints among Tasks.

4. Three Recursive Shells

4.1. OuterShell
There may be several parameters in the Project, e.g., as coefficients of variables in means and variances of
different CPD. These are optimized in an outer shell using ASA[9]. This end product, including
MULTI_MIN states returned by ASA, gives the client flexibility to apply during a full Project[19]. We
may wish to minimize Cost/T , or (CostOverrun - CostInitial)/T , etc.

4.2. Middle Shell
To obtain the Plan CPD, an middle shell of Monte Carlo (MC) states are generated from recursive
calculations. AWeibull or some other asymmetric finite distribution might be used for Task durations.
For a giv en state in the outer middle, a MC state has durations and mean cost disbursements defined for
each Task.

4.3. Inner Shell
At each time, for each Task, the differenced cost ((Sik(t + dt) − Sik(t))) is subjected to a inner shell
stochastic variation, e.g., some asymmetric finite distribution. Thenet costsdSik(t) for each Projecti and
Task k are added to define dS(t) for the Plan.The inner shell cost CPD is re-applied many times to get a
set of{dS} at each time.

5. RealOptions

5.1. PlanOptions
After the Outer MC sampling is completed, there are histograms generated of the Plan’s dS(t) and
dS(t)/S(t − dt) at each timet. The histograms are normalized at each time to give P(dS, t). At each time
t, the data representingP is “curve-fit” to the form of Eq. (2), wheref andg are functions needed to get
good fits, e.g., fitting coefficients of parameters{x}

f = x f 0 + x f 1S + x f 2S2 + . . .

g = xg0 + xg1S + xg2S2 + . . . (4)

At each timet, the functions f and g are fit to the function ln((P(dS, t)), which includes the prefactor
containingg and the functionL which may be viewed as a Pade´ approximate of these polynomials.

Complex constraints as functions ofSik(t) can be easily incorporated in this approach, e.g., due to regular
reviews by funding agencies or executives. TheseP’s are input into PATHTREE to calculate options for a
given strategy or Plan.

5.2. RiskManagement of Project Options
If some measure of risk among Projects is desired, then during the MC calculations developed for the top-
level Plan, sets of differenced costs for each Project,dSi(t) and dSi(t)/Si(t − dt), stored from each of the
Project’s Tasks. Then,histograms and Project CPDs are developed, similar to the development of the
Plan CPD. A copula analysis, coded in TRD for risk management of financial markets, are applied to
develop a relative risk analysis among these projects[12,16]. In such an analysis, the Project marginal
CPDs are all transformed to Gaussian spaces, where it makes sense to calculate covariances and
correlations. Anaudit trail back the original Project spaces permits analysis of risk dependent on the tails
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of the Project CPDs. Some details are given in papers dealing with generic portfolios [13-15].

It is not appropriate to simply use a standard Gaussian second moment of a non-Gaussian distribution
(most common in real-world data) to assess “risk”. It isnot appropriate to simply use standard standard
Gaussian second moments of non-Gaussian distributions (most common in real-world data) to assess
correlations of variables.

5.2.1. Post-Processing of Multiple Optima/“Mutations”
Within a chosen resolution of variables and parameters to be sampled, often the huge numbers of possible
states to be importance-sampled presents multiple optima and sometimes multiple optimal states.It
should be understood that any sampling algorithm processing a huge number of states can find many
multiple optima. As used in TRD, relevant to this ROPS approach, ASA’s MULTI_MIN OPTIONS are
used to save multiple optima during sampling. Some algorithms might label these states as “mutations”
of optimal states.It is important to be able to include them in final decisions, e.g., to apply additional
metrics of performance specific to applications. Experience shows that all criteria are not best considered
by lumping them all into one cost function, but rather good judgment on risk versus benefit should be
applied to multiple stages of pre-processing and post-processing when performing such sampling.

5.3. Greeks
Traders on financial options use “Greeks” to assess value of markets. Considera positionΠ on an option.
The change in value associated with changes in timedt, underlying dS, risk-free interest-rateρ, and
volatility dσ is given by a sum over the “Greeks,” as derived from a Taylor expansion of the differenced
position [11],

dΠ =
∂Π
∂S

dS +
1

2

∂2Π
∂dS2

dS2 +
∂Π
∂σ

dσ +
∂Π
∂t

dt +
∂Π
∂r

dr +
∂2Π

∂S ∂σ
dS dσ +

1

2

∂2Π
∂σ 2

dσ 2 +
1

6

∂3Π
∂S2 ∂σ

dS2 dσ + . . .

dΠ = ∆ dS +
1

2
Γ dS2 + Κ dσ + Θ dt + ρ dr + ∆′ dS dσ +

1

2
Κ′ dσ 2 +

1

6
Γ′ dS2 dσ + . . . (5)

where∆ = Delta,Γ = Gamma,Κ = Kappa (sometimes called the Veg a), Θ = Theta,ρ = Rho. TheGreeks
and the covariance matrix are functions of a strike X at the value the underlying of the option is priced to
be when it is exercised [7,17],The Greeks are calculated using probability-distribution models selected by
traders. They can draw from Black Scholes (most common), Ornstein-Uhlenbeck or more general uni-
variable or multi-variable models (which are more appropriate to real-world data) [10,17,18].

The Greeks are useful numbers to gauge the sensitivity of the price of the option with respect to several of
its underlying variables.

6. GenericApplications
ROPS can be applied to any complex scheduling of tasks similar to the FCS project. The need for
government agencies to plan and monitor such large projects is becoming increasingly difficult and
necessary [25]. Many large businesses have similar projects and similar requirements to manage their
complex projects.

Similarly, large investment funds should at least internally develop estimates of the Real Options “fair
value” of their revenue streams, based on realistic underlying probability distributions of their returns.
They then can use these estimates as complementary measures of risk, and decide on what products they
might invest in as insurance to protect their assets.
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