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Abstract—An approach to understanding the nature of markets is modelled using methods of
modern nonlinear nonequilibrium statistical mechanics. This permits examination of the
premise that markets can be described by nonlinear nonequilibrium Markovian distributions.
Corrections to previous nonlinear continuous time models are explicitly presented. A quite gen-
eral microscopic model is presented of individual agents operating on a market, and explicit
relationships are derived between variables describing these agents and the macroscopic market.
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1. INTRODUCTION

Several studies imply that changing prices of many markets do not follow a random walk, that they
may have long-term dependences in price correlations, and that they may not be efficient in
quickly arbitraging new information [1-5]. However, these and other studies have at least several
shortcomings, some of which are pointed out by their authors:

(A) A random walk for returns, rate of change of prices over prices, is described by a
Langevin equation with simple additive noiseη, typically representing the continual random influx
of information into the market.

Γ̇ = −γ1 + γ2η , (1)

Γ̇ = dΓ/dt ,

< η(t) >η= 0 ,

< η(t),η(t′) >η= δ (t − t′) ,

whereγ1 andγ2 are constants, andΓ is the logarithm of (scaled) price. From this equation, other
models may be derived, such as the times-series model and the Kalman filter method of control
theory [6]. However, in the process of this transformation, the Markovian description typically is
lost by projection onto a smaller state space [7]. In this context, price, although the most dramatic
observable, may not be the only appropriate dependent variable or order parameter for the system
of markets [8]. This possibility has also been called the ‘‘semistrong form of the efficient market
hypothesis’’ [3].

This paper only considers Gaussian noise, ‘‘white’’ or ‘‘colored’’ (e.g.,γ2 not constant,
also called ‘‘multiplicative’’ noise). These methods are not conveniently used for other sources of
noise also currently considered by economists, e.g., Poisson processes [9] or Bernoulli
processes [10,11]. It remains to be seen if colored noise can emulate these processes in the empir-
ical ranges of interest, in some reasonable limits [12]. For example, within limited ranges, log-
normal distributions can approximate 1/f distributions, and Pareto-L ́evy tails may be modelled as
subordinated log-normal distribtutions with amplification mechanisms [13].

(B) It is also necessary to explore the possibilities that a given market evolves in nonequi-
librium, e.g., evolving irreversibly, as well as nonlinearly, e.g.,γ1,2 may be functions ofΓ. Irre-
versibility, e.g., causality [14] and nonlinearity [15], have been suggested as processes necessary to
take into account in order to understand markets, but modern methods of statistical mechanics now
provide a more explicit paradigm to consistently include these processes inbona fide probability
distributions. Reservations have been expressed about these earlier models at the time of their
presentation [16]. It should also be noted that considerations of general Martingale processes,
which conclude that markets behave nonrandomly, typically have been restricted to additive ran-
dom processes [4].

(C) Besides assuming a rather specialized form for a Markovian process, Eq. (1) also
assumes that real time is the proper independent variable. This is true for physical and most bio-
physical processes that have relatively continuous interactions [17-20], but for social and eco-
nomic systems, some other density of relevant events might better describe the temporal evolution
of the system.

For example, typically,t is measured by a small time unitt̂ that averages over a chosen
number of ticks/trades andt is a macroscopic epoch. Reasonable values oft̂ andt are on the order
of minutes and days, respectively. A mesoscopic time scaleτ , t > τ > t̂ , and a ‘‘smoothness’’
parameterΓγ , a fraction ofΓ(t), are chosen to search and fitΓ(t) to local minima and maxima.
Thus a sequence of trades is taken to measure the independent temporal parameter of marketT ,
and is mapped onto the variableΘ, defined by integersρ: Θρ = ρτ + Θ0.

Another reasonable scaling oft onto a mesoscopicΘ′ would be to scalet inversely to vol-
umeV being traded, and to perform trades over a uniform mesh ofΘ′. This would be one way of
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simulating an ‘‘average’’ trader.
(D) Price correlation studies imply that day trading as a speculative strategy is doomed to

failure [3,21]. Some trends in markets no doubt exist, if only as partially self-fulfilling prophecies
of regularly published forecast trends, albeit their net effect may also be to randomize the system
aw ay from these deterministic trends [22]. However, new unpredictable events and reactions to
them, of course characteristic of the future, cause fluctuations to the extent that, in the absence of
privileged information, losses and commissions usually take their final toll. The compelling con-
clusion is that, even with some trends present in markets, reactions to random events typically
wipe out any correlations that might be used for successful day trading speculation. Therefore,
perhaps if a sufficient set of variables directly related to variables actually used by traders are cho-
sen to model these markets, then an underlying Markovian process, albeit highly nonlinear and
nonequilibrium, would become apparent.

(E) Several pricing models have examined effects of nonlinear means and nonconstant
variances, and have also attempted to understand how macroscopic markets interact with their
microscopic agents [23,24]. However, after formulating their systems via continuous time gener-
alizations to Eq. (1), errors are made in subsequent development of these equations to Fokker-
Planck or Lagrangian formulations, especially in developing variational principles. An important
issue concerns how or when to transform between the Ito and the Stratonovich representations of
stochastic equations [25]. One main purpose of this paper is to point out the correct development,
aided with the hindsight of similar developments in statistical mechanics within the past several
years. A true Lagrangian is derived that replaces the ‘‘ ‘derived’ utility of wealth function’’ [24].

(F) Quite recent developments in nonlinear nonequilibrium statistical mechanics and their
application to a variety of testable physical phenomena illustrate the importance of properly treat-
ing nonlinearities and nonequilibrium in systems where simpler analyses prototypical of linear
equilibrium Brownian motion do not suffice [17-20]. It seems appropriate to at least give a fair
test of these modern methods to the study of markets to address the previous features (A), (B), (C),
(D), and (E).

Section 2 develops the formalism satisfying the requirements of feature (F). Section 3
develops a specific microscopic model of individual agents operating on a market. This example
serves to explicitly demonstrate how the path integral formalism developed in Section 2 and in the
Appendix can be identified with its underlying microscopic dynamics, especially in the ‘‘thermo-
dynamic’’ limit. This formalism has not been previously used in the financial and economics liter-
ature, and only recently has it been applied to specific physical systems [18-20,26,27].

2. STATISTICAL DEVELOPMENT

When other order parameters in addition to price are included to study markets, Eq. (1) is
accordingly generalized to a set of Stratonovich Langevin equations.

Ṁ
G = f G + ĝG

j η j , (2)

(G = 1,. . . , Λ) ,

( j = 1,. . . , N ) ,

Ṁ
G = dMG /dΘ ,

< η j(Θ) >η= 0 ,

< η j(Θ),η j′(Θ′) >η= δ jj′δ (Θ − Θ′) ,

where f G and ĝG
j are generally nonlinear functions of mesoscopic order parametersMG , j is a

microscopic index indicating the source of fluctuations, andN ≥ Λ. [See the Appendix for further



-4-

specification of Eq. (2).] The Einstein convention of summing over repeated indices is used. Ver-
tical bars on an index, e.g., |j|, imply no sum is to be taken on repeated indices. For example, con-
sider mesoscopic market variableM1 to be the published price at any time, and ˆg1

| j|η
| j| to be the

stochastic driving influence onM1 from a given traderj; this is derived from Eq. (1) by the simple
change of variablesΓ = log(M1/M1). Alternately, one could consider thatM1 represents the
attempted behavior/goal of agentj to follow the market price in the presence of all agents
j′ = 1,. . . , N .

Via a somewhat lengthy, albeit instructive calculation, outlined in the Appendix, involving
an intermediate derivation of a corresponding Fokker-Planck or Schr¨odinger-type equation for the
conditional probability distributionP[M(Θ)|M(Θ0)], the Langevin rate Eq. (2) is developed into
the more useful probability distribution forMG at long-time macroscopic time event
Θ = (u + 1)θ + Θ0, in terms of a Stratonovich path-integral over mesoscopic Gaussian conditional
probabilities [28-32]. Here, macroscopic variables are defined as the long-time limit of the evolv-
ing mesoscopic system.

The corresponding Schr¨odinger-type equation is [30,31]

∂P/∂Θ =
1

2
(gGG′P),GG′ − (gG P),G + V , (3)

gGG′ = kT δ jk ĝG
j ĝG′

k ,

gG = f G +
1

2
δ jk ĝG′

j ĝG
k,G′ ,

[. . .],G = ∂[. . .]/∂MG .

This is properly referred to as a Fokker-Planck equation whenV ≡ 0. Note that although the par-
tial differential Eq. (3) contains equivalent information regardingMG as in the stochastic differen-
tial Eq. (2), all references toj have been properly averaged over. I.e., ˆgG

j in Eq. (2) is an entity
with parameters in both microscopic and mesoscopic spaces, butM is a purely mesoscopic vari-
able, and this is more clearly reflected in Eq. (3).

In the context of option pricing, several approaches [11,24,33,34] have derived a univari-
ate Schr¨odinger-type equation with form similar to Eq. (3): Formally takeM1 = price, P = the
rational call price,g11 = (σ M1)2, g1 = (2σ 2 − r)M1, V = (σ 2 − 2r), whereσ and r are empirical
constants related to the variance ofṀ

1
/M1 and the short-term interest rate (equivalent to the risk

in an efficient market).
The path integral representation is given in terms of the LagrangianL.

P[MΘ|MΘ0
]dM(Θ) = ∫ . . . ∫ DM exp(−S)δ [M(Θ0) = M0]δ [M(Θ) = MΘ] ,  (4)

S = k−1
T min

Θ

Θ0

∫ dΘ′L ,

DM =
u→∞
lim

u+1

ρ=1
Π g1/2

G
Π (2πθ )−1/2dMG

ρ ,

L(Ṁ
G

, MG , Θ) =
1

2
(Ṁ

G − hG)gGG′(Ṁ
G′ − hG′) +

1

2
hG

;G + R/6 − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,
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gGG′ = (gGG′)−1 ,

g = det(gGG′) ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) .

Mesoscopic variables have been defined asMG in the Langevin and Fokker-Planck representa-
tions, in terms of their development from the microscopic system labeled byj. The Riemannian
curvature termR arises from nonlineargGG′, which is a bona fide metric of this parameter
space [30]. Even if a stationary solution, i.e.,Ṁ

G = 0, is ultimately sought, a necessarily prior
stochastic treatment oḟM

G
terms gives rise to these Riemannian ‘‘corrections.’’ Even for a con-

stant metric, the termhG
;G contributes toL for a nonlinear meanhG . V may include terms such as

T ′
Σ JT ′G MG , where the Lagrange multipliersJT ′G are constraints onMG , e.g., from other markets

T ′, which are advantageously modelled as extrinsic sources in this representation; they too may be
time-dependent. Using the variational principle below,JTG may also be used to constrainMG to
regions where they are empirically bound. More complicated constraints may be affixed toL
using methods of optimal control theory [35].

With respect to a steady stateP, when it exists, the information gain in stateP is defined
by

ϒ[P] = ∫ . . . ∫ DM ′ P ln (P/P) ,  (5)

DM ′ = DM /dMu+1 .

In the economics literature, there appears to be sentiment to define Eq. (2) by the Ito,
rather than the Stratonovich prescription. It should be noted that virtually all investigations of
other physical systems, which are also continuous time models of discrete processes, conclude that
the Stratonovich interpretation coincides with reality, when multiplicative noise with zero correla-
tion time, modelled in terms of white noiseη j , is properly considered as the limit of real noise
with finite correlation time [36]. The path integral succinctly demonstrates the difference between
the two: The Ito prescription corresponds to the prepoint discretization ofL, wherein
θ Ṁ(Θ) → Mρ+1 − Mρ and M(Θ) → Mρ . The Stratonovich prescription corresponds to the mid-

point discretization ofL, whereinθ Ṁ(Θ) → Mρ+1 − Mρ and M(Θ) →
1

2
(Mρ+1 + Mρ ). In terms

of the functions appearing in the Fokker-Planck Eq. (3), the Ito prescription of the prepoint dis-
cretized Lagrangian,LI , is relatively simple, albeit deceptively so because of its nonstandard cal-
culus.

LI (Ṁ
G

, MG , Θ) =
1

2
(Ṁ

G − gG)gGG′(Ṁ
G′ − gG′) − V . (6)

In the absence of a nonphenomenological microscopic theory, if the Ito prescription is proposed
rather than the Stratonovich prescription, then this choice must be justified by numerical fits to
data for each case considered. Differences betweenL and LI have been found to be important in
at least two physical systems investigated with these methods [18-20,26,27,37,38].

There are several other advantages to Eq. (4) over Eq. (2). Extrema and most probable
states ofMG , << MG >>, are simply derived by a variational principle, similar to conditions sought
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in previous studies [24]. In the Stratonovich prescription, necessary, albeit not sufficient, condi-
tions are given by

δG L = L,G − L,Ġ:Θ = 0 ,  (7)

L,Ġ:Θ = L,ĠG′ Ṁ
G′ + L,ĠĠ′ M̈

G′
.

For stationary states,̇M
G = 0, and∂L/∂MG = 0 defines << MG >>, where the bars identify station-

ary variables; in this case, the macroscopic variables are equal to their mesoscopic counterparts.
[Note thatL is not the stationary solution of the system, e.g., to Eq. (3) with∂P/∂Θ = 0. However,
in some cases[37], L is a definite aid to finding such stationary states.] Typically, in other finan-
cial studies, only properties of stationary states are examined, but here a temporal dependence is
included. E.g., theṀ

G
terms inL permit steady states and their fluctuations to be investigated in a

nonequilibrium context. Note that Eq. (7) must be derived from the path integral, Eq. (4), which is
at least one reason to justify its development.

In the language of nonlinear nonequilibrium thermodynamics [39], the thermodynamic
forces areχG = S,G , whereS is the entropy, and the thermodynamic fluxes areṀ

G = gGG′ χG′.
Although the fluxes are defined to be linearly related to the forces,gGG′ may be highly nonlinear in
the state-variablesMG . The short-time Feynman LagrangianL can be expressed as the sum of the

dissipation functionφ (MG , Ṁ
G

) =
1

2
gGG′ Ṁ

G
Ṁ

G′
, the force functionΨ(MG , χG) =

1

2
gGG′ χG χG′,

the potential term−V , and the (negative) rate of change of entropy−Ṡ(MG) = −χG Ṁ
G

: Then
L = φ + Ψ − Ṡ − V is the nonlinear nonequilibrium generalization of the Onsager-Machlup
Lagrangian [40]. The variational equations insure that the equilibrium entropy is maximal, not
necessarily a static equilibrium. Fluctuations over short time periods are introduced via variables

ηG = ∂L/∂Ṁ
G

canonical toMG , ηG = gGG′(Ṁ
G′ − gG′) ≡ gGG′ Ṁ

G′ − χG , interpreted as resulting
from the nonequilibrium competition between the thermodynamic forces and fluxes. In the con-
text of multiplicative Gaussian noise, the conditional probability of making the state-transition
from MG

Θ = MG(Θ) to MG
Θ+θ = MG(Θ + θ ) is then hypothesized to beP[MG

Θ+θ |MG
Θ ] ∝

exp(−
1

2kT
∫

Θ+θ

Θ
dΘ′L)dη. This machinery suffices to determine the macroscopic probability

distribution [39]. For nonconstantgGG′ whenR ≠ 0, it should be noted that the Lagrangian corre-
sponding to the most-probable path is not derived from the variational principle, but is directly
related toL [41].

To begin introducing economic theory, variables such as (logarithm) price can be postu-
lated to be the basic state-variables. However, it is not clear how to precisely relateL to classical
economic equilibrium utility functions. It seems more reasonable to take economic microscopic
models, usually formulated by differential equations of the state-variables, find regions ofMG

wherein multiplicative Gaussian noise modelling is appropriate, directly calculateL as outlined in
the Appendix, and then to make the identification with thermodynamic forces, fluxes and entropy,
if this is desired. It is argued here that, although the thermodynamic interpretation perhaps has
aesthetic value, the prime utility of the statistical mechanical formulation of probability densities
in terms of generalized Lagrangians is that detailed calculations can be performed of macroscopic
ev olutions of microscopic and mesoscopic mechanisms, even in highly nonlinear and nonequilib-
rium contexts. The next Section 3 presents a microscopic model formulated such that the
Lagrangian can be calculated directly from microscopic transition probabilities.

In spite of the difficulties just previously discussed, in relatingL to classical economic
equilibrium functions, it is appealing to consider thatL represents relative gains in assets due to
trading on the empirical data, similar to arguments invoked to establish the ‘‘derived’’ utility of
wealth function [24]. E.g., the minima ofL could be considered to correspond to maxima of
demand functions (in terms of observable goods, prices and wealth) derived from utility functions
(preference orderings) of individuals: Over short intervals of time, efficient adjustments between
buyers and sellers should give rise to maximally rational actions of traders which should be
reflected in most probable market variables. Then, the fit to empirical data could be achieved by
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fitting coefficients of polynomial expansions about <<MG >>.

hG = XG + XG
G′ M

G′ + XG
G′G′′ M

G′ MG′′ + . . . , (8)

gGG′ = YGG′ + YGG′G′′ M
G′′ + YGG′G′′G′′′ M

G′′ MG′′′ + . . . ,

MG = MG− << MG >> .

All contributions toL in Eq. (4) are expressed in terms ofhG , gGG′ andMG , and their derivatives.
Determination of extrema that are minima or maxima are most conveniently ascertained numeri-
cally during the fitting process. Higher order terms in the series in Eq. (8) must be examined to
determine their regions of convergence relative to the region of convergence ofL as a series in
MG . Howev er, since the Lagrangian now appears as a Pade rational function, its region of conver-
gence is expected to be at least as large as the regions of convergence of the means and variances.

Admittedly, the argument relatingL to changes in assets is weak, here as well as in other
studies without a rigorous development of a variational principle. I.e., the scale of derivation of
utility functions and the scale of equilibrium description of means and variances of market vari-
ables are, respectively, comparable to thermodynamically comparing average molecular kinetic
energies of a microscopic ensemble and the macroscopic temperature (times Boltzmann’s con-
stant) of a large sample. In nonequilibrium nonlinear dynamical systems, a mesoscopic level of
description is necessary to accurately describe more realistic complex behavior, the subject of
nonequilibrium nonlinear statistical mechanics.

A direct method of fitting parameters inL is to extract cumulative moments of the empiri-
cal data and to fit these to the (first several) cumulative moments ofMG , using Monte Carlo
calculations [19] of the path integral. A simpler, cruder fit also could be done by fitting the most
probable path to the stochastic data, i.e., minimizing the Lagrangian, evaluated at the empirical
data, as a function of the expansion coefficients of Eq. (8). In addition to fitting the multivariate
means, this method could still determine the multivariate covariances up to a constant factor. At
least, this approach more accurately describes the empirical data, thereby establishing realistic
functions for future theoretic models to derive. IfV ≡ 0, then the corresponding Langevin Eq. (2)
can be used to fit the parameters of Eq. (8), calculating ensemble averages of sets of stochastic tra-
jectories forMG .

As real systems are typically nonlinear, this procedure most likely yields sets of extrema
{ << MG >> }, i.e., L is at least quadratic in some of its variables. This must be viewed as a practi-
cal optimistic first step in mapping out the more general functional behavior ofL(Ṁ

G
, MG , Θ).

Changing constraintsJT ′G in V can drive a marketT to different local minima, and competition
and fluctuation between minima having varying degrees of local stability can give rise to phenom-
ena typically found in other nonlinear nonequilibrium systems, e.g. bifurcation, hysteresis,
etc. [17-20,37].

This process, of essentially fitting empirical data to the specific functional form ofL,
insures the conceptual Markov interpretation most popularly understood via Eq. (2). Another
interesting aspect of Eq. (4) applied to sets of markets, is that some sets may exhibit similar func-
tional dependencies inhG and gGG′. Then, their relative scalings,{kT }, giv e a measure of their
relative volatilities.

3. MICROSCOPIC MODEL

BecauseP represents abona fide conditional probability distribution, the path integral
representation suggests an approach to a microscopic theory of market behavior. This also permits
acquisition of the functionsf G and ĝG

j in Eq. (2), or ofgG andgGG′ in Eqs. (3) and (4).
Consider the conditional probability distribution,p j , of an agentj operating on a given

market. For simplicity, assume that at timet + τ , j must decide whether to buy or sell a standard
increment of the market, based only on the information of the total number of buyers,M B, and
sellers,M S , at timet. For example, take
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pσ j
=

exp(−σ j F j)

[exp(F j) + exp(−F j)]
(9)

≈
1

2
[1 − erf(σ j F j√ π /2)] ,

σ j =




+1

−1

buy (j ∈B) or sell (j ∈S)

do not act ,

p+ + p− = 1 ,

F j = F j(MG) ,

G = {B, S} .

F j may be any reasonably well-behaved function ofM B andM S , different for buyers,F j ∈B ≡ F B,
or sellers,F j ∈S ≡ F S . For simplicity, no otherj dependence is considered in this model, andF j is
considered to represent a ‘‘decision factor’’ representing a ‘‘typical’’ rational agent in the market.
Note that the probability distribution selected forpσ j

closely approximates the cumulative distri-
bution of a normal random variable, i.e., the ‘‘erf ’’ function [18]. A mathematically (only) similar
model has been developed for a different physical problem, which also demonstrates how to
develop a field theory ifMG is homogeneously distributed in other variables [18-20].

A simple example ofF j for agents following market trends is obtained from

FG
ex1 = aG M−/N , (10)

M− = M B − M S ,

whereaG are constants,aB < 0  andaS > 0, for agents following the trends of the market. I.e.,
agent j acts according to a sigmoid distribution with respect to market trends:pσ j

is concave with
respect to gains, and convex with respect to losses [42], but note that this simplified assumption of
decision under risk is undergoing revision [43]. For convenience, assume that the total numbers of
potential buyers and sellers are each constants,

jS = 1,. . . , N S , (11)

jB = 1,. . . , N B ,

N = N B + N S .

At any giv en time, any agent may belong to either pool ofS or B. Alternatively, permitting long
and short trading, each agent could always be both a potential seller and a potential buyer, albeit
with different decision factorsFG consistent with a desired net expected gain; then
N S = N B = N /2. If each agent is considering one unit of a market’s assets, then the following
development becomes a microscopic model of the dynamics of the market’s volume.

Note that ideal equilibrium, presumably fixed by arbitrage in an efficient market, is deter-
mined byN S /N B such that the total value of assets sold equals the total value of assets bought.
I.e., this simple illustrative model is one in which price arbitrage interactions are emulated by
quantity or supply interactions. However, in nonequilibrium, the appropriate order parameters are
M S and M B, and a multistable or metastable market may prevail. This model may also be con-
strued as the construction of microscopic probability distributions for agents, whose means repre-
sent individual utility functions, modelled in terms of microscopic variablesσ , which subse-
quently are statistically aggregated into a mesoscopic LagrangianL expressed in terms of
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mesoscopic variables, simple sums ofσ j . This is accomplished in this simple model without hav-
ing to resort to the thermodynamic (static and equilibrium) limit, as discussed previously after Eq.
(7).

The ‘‘joint’’ probability distribution P, joint with respect to pools of allS and B agents,
but conditional with respect to time evolution, is

P[M(t + τ )|M(t)] =
B,S

G
Π PG [MG(t + τ )|MG(t)] (12)

=
σ j=±1
Σ δ (

j ∈S
Σ σ j − N S )δ (

j ∈B
Σ σ j − N B )

N

j
Π pσ j

=
G
Π (2π )−1 ∫ dQG exp[iMG(t + τ )QG ]

×
N G

j ∈G
Π cosh{F j [M(t)] + iQG}sech{F j [M(t)]}

=
G
Π (1 + EG)−N G 


N G

λG


(EG)λG

,

EG = exp(−2FG) ,

λG = [[
1

2
(MG(t + τ ) + N G)]] ,

M = {MG} ,

whereMG(t) represents contributions from bothG = S andG = B at timet, andλG is defined as
the greatest integer in the double brackets. For convenience only,σ j F j was defined so that
MG = 0 is arbitrarily selected as a midpoint between agents acting and not acting on the market:
MG = −N G signifies all agents not acting,MG = N G signifies all agents acting.

The mean and variance of this binomial distribution yields

< MG(t + τ ) >= −N G tanhFG , (13)

< MG(t + τ )MG′(t + τ ) > − < MG(t + τ ) >< MG′(t + τ ) >=
1

4
δ GG′

N Gsech2FG .

For large N G and largeN G FG , this binomial distribution is asymptotically Gaussian.
With equal liklihood throughout timeτ , any of theN uncorrelated agentsσ j(t) can contribute to
change the mesoscopic means and fluctuations of uncorrelated agentsσ j(t + τ ). Therefore, for
θ ≤ τ , at least to resolutionθ ≥ τ /N and to orderθ /τ , it is reasonable to assume a change in means
of θ Ṁ

G = MG(t + θ ) − MG(t)≈θ gG with varianceθ gGG . Defining Pθ = P[MG(t + θ )|MG(t)] as a
Gaussian distribution similar toPτ = P[MG(t + τ )|MG(t)], Pθ satisfies the Markovian Chapman-

Kolmogorov equationPθ +θ ′ = ∫ Pθ Pθ ′, consistent with consideringPτ to be Markovian and as

ev olving fromPθ . It is conjectured here that requiringMG to be continuous, albeit not necessarily
differentiable, and pre-point discretizedPτ to be Markovian, suffice to reasonably definePθ at the
mesoscopic scale forθ ≤ τ . E.g., the same result should be obtained if mesoscopic distributions
Pθ of variablesMG were extracted after considering microscopicσ j contributions top to have a
temporal distribution withinτ , e.g., Poisson. FoldingPθ for many time increments ofθ into a
macroscopic long-time distribution, the prepoint discretizedLI of Eq. (6) is naturally and directly
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obtained, with

gG = −τ −1(MG + N G tanhFG) ,  (14)

gGG′ = δ G′
G τ −1N Gsech2FG .

It should be noted that any number of classes of agents may be specified in Eq. (9), e.g.,
to emulate coalitions of agents, as long as the number in each class is sufficient to permit the cen-
tral limit theorem to be applied to obtain the Gaussian statistics definingL. For example,G might
represent two classes of agents with different decision functionsFG , andσ j might represent sell-
ing (σ j = +1) or buying (σ j = −1). Other or additional options could be specified forG, FG and
σ j . Even for |FG(z)| << 1, for largeN G , N G FG will be large enough in some neighborhood ofz
to permit this statistical development.

Examining this derivation ofgGG′, and the derivation of the path integral from the corre-
sponding Langevin equations, it is seen that in Eq. (2) a reasonable choice for ˆgG

j is

ĝG
j =





δ G
G′g

GG′/(N Gτ ) ,

0 ,

j ∈G

j ∈G′ ≠ G ,
(15)

This mesoscopic model is derived from a sigmoid distribution for an individual agent.
However, some new structure typically appears as a result of the collective pool of agents: E.g., for
example 1, it is clear that a stationary state,Ṁ

G = 0, is nearMG = 0. However, forFG more non-
linear, there may be additional roots toN G = − tanhFG , the Riemannian ‘‘corrections’’ may add
significant structure, and competition betweenB and S may produce additional structure. All
these effects are most succinctly understood by examining the Lagrangian. This directly illustrates
the intuitive and analytic utility of the path integral. The existence and location of local extrema
are not as easily found from the corresponding Langevin and Fokker-Planck equations.

Figure 1 presents 3-dimensional and contour plots over MG-space forLex1, where Lex1

represents the stationary Lagrangian of Eq. (4) for the microscopic model in Eq. (10). Arbitrarily,
takeN G = 100,JG = 0, aB = −2 andaS = 1.

For comparison, and to see the size of the approximation made in using the Ito prescrip-
tion, Fig. 2 gives the corresponding plots as in Fig. 1, but analysesLIex1 instead ofLex1. There is
barely a measurable difference, e.g., within 1%, for this simple example, but the multiple station-
ary minima are lost at this scale for the Ito prescription. In general, it may be expected that the
more realistically nonlinear isFG , the larger this difference will be.

As another example, consider in Eq. (9),

FG
ex2 =

aG M−/N + bG

1 + cG [(M B)2 + (M S)2]/N2
, (16)

which represents a modification to the sigmoid distribution of example 1. Arbitrarily,bG = 0 and
cG = 1. In Fig. 3, multiple stationary minima are still seen in the region of MG-space of concern
to this model.

Figure 4 gives plots similar to Fig. 3, but using LIex2 instead ofLex2 to calculate the
behavior induced by the microscopic system of Eq. (16). The structure in Fig. 3 is clearly
changed.

More complex decision factorsFG must be expected to produce even more structure in
the stationary and dynamic behaviors of the market. Note thatJT ′G constraints, e.g., influences
from other markets, advantageously model restrictions to neighborhoods of particular extrema,
thereby stressing possibilities of interaction between nearby multiple minima.

One approach to bridge microscopic and macroscopic theory is to select a microscopic
function F j , enabling extrema <<MG >> to be solved for as solutions of the variational Eq. (7),
developed from the path integral representation. Then the response of an agent in a neighborhood
of << MG >> can be further explored usingpσ j

in Eq. (9), even to determine a more suitable start-
ing functionF j .
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Alternatively, in an opposite approach, mesoscopic extrema <<MG >> can be found from
empirical fits to the data, as described by Eq. (8). In the neighborhood of <<MG >>, the average
agent’s contribution to the Langevin representation can be calculated by Eq. (15). Furthermore,
Eq. (14) may be solved to findFG , thereby determiningF j in this neighborhood. This method
acts to determine the microscopic distribution from the macroscopic one.

4. DISCUSSION

A nonlinear nonequilibrium statistical mechanics description of markets is presented in a
form immediately operational and calculable. Given are the primary equations necessary to estab-
lish the theoretical context and to perform explicit fits on empirical data. This approach puts the
statistical analysis of markets into a current paradigm being applied to other nonlinear nonequilib-
rium systems.

The Lagrangian derived is a concise fundamental description of empirical data, superior
to mere curve fitting to lay a foundation upon which to further investigate economic mechanisms
responsible for dynamical functional relationships among market variables. The Lagrangian isa
priori constrained to consistently include effects of nonlinearity and nonequilibrium in probability
distributions of several or many variables.

A simple model is presented, by which the derivation of abona fide probability distribu-
tion further enables the development of specific microscopic economic models, themselves
described by probability distributions of operations of individual agents. Although this micro-
scopic model directly leads to the path integral, it has also been demonstrated how these results are
directly translated into Fokker-Planck and Langevin languages typically used by other investiga-
tors. This model shows how a bridge might be made from microscopic to macroscopic theory,
especially in the thermodynamic (static and equilibrium) limit. However, the formalism presented
here is more directly and generally applicable to a realizable mesoscopic dynamical statistical
analysis of macroscopic markets, given the realistic constraints of the probable existence of rather
complex microscopic behavior.

The variational principle possessed by the Lagrangian is an important tool to further study
this interaction. An explicit algorithm is thereby developed to study the interactions between
macroscopic markets and individual agents, but at a mesoscopic scale between the two.

ACKNOWLEDGEMENTS

Plots and calculations were facilitated with the PDP-10 MACSYMA Consortium alge-
braic manipulator at Massachusetts Institute of Technology, supported in part by USERDA
E(11-1)-3070 and NASA NSG 1323. Te xt preparation was facilitated with the CATT UNIX sys-
tem at UC San Diego. I thank Jim Wood for several interesting discussions. This project has been
supported entirely by personal contributions to Physical Studies Institute and to the University of
California at San Diego Physical Studies Institute agency account through the Institute for Pure
and Applied Physical Sciences.

APPENDIX

This Appendix outlines the derivation of the path integral representation of the nonlinear
Langevin equations, via the Fokker-Planck representation. This serves to point out the importance
of properly treating nonlinearities, and to emphasize the deceptive simplicity of the Langevin and
Fokker-Planck representations of stochastic systems. There are a few derivations in the literature,
but the following blend seems to be the most concise. All details may be found in the references
given in this paper [28,31,32,41].

The Stratonovich Langevin equations given in Eq. (2) can be analyzed in terms of the
Wiener process dW i, which can be rewritten in terms of Gaussian noiseη i = dW i/dt if care is
taken in the limit [41].

dMG = f G [t, M(t)]dt + ĝG
i [t, M(t)]dW i , (A1)
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Ṁ
G

(t) = f G [t, M(t)] + ĝG
i [t, M(t)]η i(t) ,

dW i → η idt ,

M = {MG ; G = 1,. . . , Λ} ,

η = {η i; i = 1,. . . , N} .

η i represents Gaussian white noise, and moments of an arbitrary functionF(η) over this stochastic
space are defined by a path-type integral overη i,

< F(η) >η= N −1 ∫ DηF(η) exp(−
1

2

∞

t0

∫ dtη iη i ) ,  (A2)

N = ∫ Dη exp(−
1

2

∞

t0

∫ dtη iη i ) ,

Dη =
v→∞
lim

v+1

α =0
Π

N

j=1
Π (2πθ )−1/2dW j

α ,

tα = t0 + αθ ,

1

2 ∫ dtη iη i =
1

2θ β
Σ

i
Σ (W i

β − W i
β −1)2 ,

< η i >η= 0 ,

< η i(t)η j(t′) >η= δ ijδ (t − t′) ,

wheret → Θ in the text.
Non-Markovian sources,̂η, and their influence throughout this development, can be for-

mally treated by expansions about the Markovian process by defining

< F(η̂) >η= N −1
ξ ∫ Dη̂F exp[−

1

2 ∫ ∫ dtdt′η̂(t)∆−1
ξ (t − t′)η̂(t′)] , (A3)

∫ dt ∆−1
ξ (t − t′)∆ξ (t′ − t′′) = δ (t − t′′) ,

with ξ defined as an interval centered about the argument of∆ξ . Lettingξ → 0 is an unambiguous
procedure to define the Stratonovich prescription used below.

In terms of a specific stochastic pathη, a solution to Eq. (A1),MG
η (t; M0, t0) with

MG
η (t0; M0, t0) ≡ M0, the initial conditions on the probability distribution ofMη is

Pη [M , t|M0, t0] = δ [M − Mη(t; M0, t0)] . (A4)

Using the conservation of probability condition,

Pη,t + (Ṁ
G

Pη),G = 0 ,  (A5)

[. . .],G = ∂[. . .]/∂MG ,
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[. . .],t = ∂[. . .]/∂t ,

the evolution ofPη is written as

Pη,t [M , t|M0, t0] = {[− f G(t, M) − ĝ(t, M)η i]Pη},G . (A6)

To perform the stochastic average of Eq. (A6), the ‘‘functional integration by parts
lemma’’ [44] is used on an arbitrary functionZ (η) [31],

∫ Dη
δ̂ Z (η)

δ̂ η i
= 0 .  (A7)

Applied toZ = Z ′ exp(−
1

2 ∫
∞

t0

dtη iη i), this yields

< η i Z ′ >η=< δ Z ′/δ η i >η . (A8)

Applying this toF̂ [Mη ] = ∫ dM Pη F(M),

∫ dM
δ̂ Pη

δ̂ η i
F(M) =

∂F̂ [Mη ]

∂MG
η

δ̂ MG
η

δ̂ η i
(A9)

= −
1

2 ∫ dM F(M)( ̂gG
j δ ij Pη),G ,

where δ̂ designates functional differentiation. The last equation has used the Stratonovich pre-
scription,

MG
η (t) = MG

0 + ∫ dt′Ĥ(t − t′)Ĥ(t − t0)( f G + ĝG
i η i) ,  (A10)

t′→t−0
lim

δ̂ MG
η (t)

δ̂ η i(t′)
=

1

2
ĝG

j [t, Mη(t)]δ ij ,

Ĥ(z) =




1, z ≥ 0

0, z < 0 .

Taking the averages <Pη,t >η and <η i Pη >η , the Fokker-Planck is obtained from Eq.
(A9). If some boundary conditions are added as Lagrange multipliers, these enter as a ‘‘potential’’
V , creating the Schr¨odinger-type equation given in Eq. (3) in the text, withΘ → t here.

P,t =
1

2
(gGG′P),GG′ − (gG P),G + VP , (A11)

P =< Pη >η ,

gG = f G +
1

2
ĝG′

i ĝG
i,G′ ,

gGG′ = ĝG
i ĝG′

i .

Note thatgG replacesf G in Eq. (A1) if the Ito calculus is used to define that equation.

To derive the path integral representation of Eq. (A11), define operatorsM̂
G

, p̂G andĤ ,

[M̂
G

, p̂G′] ≡ M̂
G

p̂G′ − p̂G′ M̂
G = iδ G

G′ , (A12)
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[M̂
G

, M̂
G′

] = 0 = [ p̂G , p̂G′] ,

P,t = −iĤ P ,

Ĥ = −
i

2
p̂G p̂G′g

GG′ + p̂G gG + iV ,

and define the evolution operatorU(t, t′) in terms of ‘‘bra’’ and ‘‘ket’’ probability states ofM ,

M̂
G

|MG >= MG |MG > ,  (A13)

p̂G |MG >= −i∂/∂MG |MG > ,

< M ′|M >= δ (M ′ − M) ,

< M |p >= (2π )−1 exp(ip ⋅ M) ,

P[M , t|M0, t0] =< M |U(t, t0)|M0 > ,

Ĥ(t′)U(t′, t) = iU(t′, t),t′ ,

U(t, t) = 1 ,

U(tρ , tρ−1)≈1 − iθ Ĥ(tρ−1) ,

whereρ indexes units ofθ measuring the time evolution. This is formally integrated to give the
path integral in the phase space (p, M),

P[Mt |M0] =
M(t)=Mt

M(t0)=M0

∫ DM Dp exp[
t

t0

∫ dt′(ipG MG −
1

2
pG pG′g

GG′ − ipG gG + V ) ]  ,

DM =
u→∞
lim

G
Π

u

ρ=1
Π dMG

ρ , (A14)

Dp =
u→∞
lim

G
Π

u+1

ρ=1
Π (2π )−1dpG ρ ,

tρ = t0 + ρθ .

The integral over each dpG ρ is a Gaussian and simply calculated. This gives the path
integral in coordinate spaceM , in terms of the prepoint discretized Lagrangian, also defined by
Eq. (6),

P[Mt |M0] = ∫ DM
u

ρ=0
Π (2πθ )−Λ/2g(Mρ , tρ )1/2 (A15)

× exp{ −
1

2
θ gGG′(Mρ , tρ )[∆G

ρ /θ − gG(Mρ , tρ )]

×[∆G′
ρ /θ − gG′(Mρ , tρ )] + θV (Mρ , tρ )} ,
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g = det(gGG′) ,

gGG′ = (gGG′)−1 ,

∆G
ρ = MG

ρ+1 − MG
ρ .

This can be transformed to the Stratonovich representation, in terms of the Feynman
LagrangianL possessing a variational principle,

P[Mt |M0] = ∫ DM
u

ρ=0
Π (2πθ )−Λ/2g(Mρ + ∆ρ , tρ + θ /2)1/2 (A16)

× exp{ − min

tρ +θ

tρ

∫ dt′L[M(t′), Ṁ(t′), t′] } ,

where ‘‘min’’ specifies that Eq. (A11) is obtained by constrainingL to be expanded about that

M(t) which makes the actionS = ∫ dt′L stationary forM(tρ ) = Mρ and M(tρ + θ ) = Mρ+1. One

way of proceeding is to expand Eq. (A15) and compare to Eq. (A16), but it is somewhat easier to
expand Eq. (A16) and compare to Eq. (A15) [32]. It can be shown that expansions to orderθ suf-
fice, and that∆2 = O(θ ). (For convenience, the constantkT appearing in Eq. (4) is set equal to
unity until the end of the derivation. This would appear as ak1/2

T factor of ĝG
i in Eqs. (A1) and

(A11), also yielding akT factor of gGG′ in Eq. (A11), thereby scaling the Lagrangian of the path
integral byk−1

T .)
Write L in the general form

L =
1

2
gGG′ Ṁ

G
Ṁ

G′ − hG Ṁ
G + b (A17)

= L0 + ∆L ,

L0 =
1

2
gGG′[M(t), t]Ṁ

G
Ṁ

G′
,

gGG′[M(t), t] = gGG′[M(t), t′] + gGG′,t′[M(t), t′](t − t′) + O[(t − t′)2] ,

wherehG andb must be determined by comparing expansions of Eqs. (A15) and (A16). Only the
L0 term is dependent on the actualM(t) trajectory, and so

tρ +θ

tρ

∫ dt ∆L = (
1

4
gGG′,t∆G∆G′ − hG∆G −

1

2
hG,G′∆G∆G′ + θ b)|(M ,t) , (A18)

where ‘‘ |(M ,t)’’ implies evaluation at (M , t).
The determinantg is expanded as

g(M + ∆, t + θ /2)1/2≈g1/2(M , t) exp[
θ
4g

g,t +
1

2g
∆G g,G (A19)

+
1

4g
∆G∆G′(g,GG′ + g−1g,G g,G′)]|(M ,t) .

The remaining integral overL0 must be performed. This is accomplished using the varia-

tional principle applied to∫ L0 [28],
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gGH M̈
H = −

1

2
(gGH ,K + gGK ,H − gKH ,G)Ṁ

K
Ṁ

H
, (A20)

M̈
F = −ΓF

JK Ṁ
J
Ṁ

K
,

ΓF
JK == gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

(
1

2
gGH Ṁ

G
Ṁ

H
),t = 0 ,

t+θ

t
∫ L0dt≈

θ
2

gGH Ṁ
G

Ṁ
H

|(M ,t+θ ) .

Differentiating the second equation in Eq. (A20) to obtain
...

M , and expandingṀ(t + θ ) to third
order inθ ,

Ṁ(t + θ ) = [
1

θ
∆G −

1

2θ
ΓG

KL∆K ∆L +
1

6θ
(ΓG

KL,N + ΓG
AN ΓA

KL)∆G∆L∆N ]|(M ,t) . (A21)

Now Eq. (A16) can be expanded as

P[Mt |M0]dM(t) = ∫ DM
u

ρ=0
Π exp[−

1

2θ
gGG′(M , t)∆G∆G′ + B] ,  (A22)

DM =
u+1

ρ=1
Π g1/2

ρ
G
Π (2πθ )−1/2dMG

ρ .

Expanding expB to O(θ ) requires keeping terms of order∆, ∆2, ∆3/θ , ∆4/θ , and∆6/θ 2. Under the
path integral, evaluated at (M , t), and using ‘‘=̇’’ to designate the order of terms obtained from

∫ d∆ ∆n exp(−
1

2θ
∆2),

∆G∆H =̇ θ gGH , (A23)

∆G∆H ∆K =̇ θ (∆G gHK + ∆H gGH + ∆K gGH ) ,

∆G∆H ∆A∆B =̇ θ 2(gGH gAB + gGAgHB + gGB gHA) ,

∆A∆B∆C∆D∆E∆F =̇ θ 3(gAB gCD gEF + 14 permutations) .

This expansion of expB is to be compared to Eq. (A15), expanded as

P[Mt |M0]dM(t)≈ ∫ DM
u

ρ=0
Π exp(−

1

2θ
gGG′∆G∆G′) (A24)

×[1 + gGG′g
G∆G′ + θV + O(θ 3/2)] ,

yielding identification ofhG andb in Eq. (A17),

hG = gGG′hG′ = gG −
1

2
g−1/2(g1/2gGG′),G′ , (A25)

b =
1

2
hG hG +

1

2
hG

;G + R/6 − V ,
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hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

R = gJL RJL = gJL gFK RFJKL .

This result gives Eq. (4) in the text, witht → Θ and scalingL with k−1
T .

P[Mt |M0]dM(t) = ∫ . . . ∫ DM exp(−S) ,  (A26)

S = k−1
T min

t

t0

∫ dt′L ,

L(Ṁ
G

, MG , t) =
1

2
(Ṁ

G − hG)gGG′(Ṁ
G′ − hG′) +

1

2
hG

;G + R/6 − V .
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FIGURE CAPTIONS

Fig. 1. ExampleFG
ex1 of Section 3 is analyzed by examining the stationary Lagrangianτ Lex1 as a function of its variables

|MG | ≤ NG . (a) is a 3-dimensional plot of the surface ofτ Lex1 over MG . The perspective is determined by smallest and

largest values ofτ L, τ Lmin andτ Lmax, respectively, at points min= (M B
min, M S

min,τ Lmin) and max= (M B
max, M S

max,τ Lmax).
The plots are projected onto a plane perpendicular to the line running between a point on the line of sight, chosen here to be

(max+ min)/2, and the point from which the projection is made, chosen here to be max+3(max− min). ThehorizontalM S

axis increases to the right, and the slopingM B axis increases towards the left.(b) is a contour plot of (a).M B on the hori-

zontal axis increases to the right, andM S is on the vertical axis increasing upwards. There exists an outermost completely
closed contour at∼0.04. τ Lmin∼ − 2. 5× 10−3 near the zero contours.

Fig. 2. Plots (a) and (b) are similar to Fig. 1, except thatτ LIex1 is analyzed instead ofτ Lex1. In (b), the outermost com-
pletely closed contour is also at∼0.04. τ Lmin∼ − 2. 5× 10−3 near the zero contours.

Fig. 3. Plots (a) and (b) correspond to those in Fig. 1, except thatτ Lex2 for example 2 is analyzed. In (b), the outermost
completely closed contour is at∼0.06.

Fig. 4. Plots (a) and (b) correspond to those in Fig. 3, except thatτ LIex2 is analyzed instead ofτ Lex2. In (b), the outermost
completely closed contour is also at∼0.06.


