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ABSTRACT
Recent work in statistical mechanics has developed new analytical and numerical techniques to solve
coupled stochastic equations. This paper applies the very fast simulated re-annealing and path-integral
methodologies to the estimation of the Brennan and Schwartz two-factor term structure model. It is
shown that these methodologies can be utilized to estimate more complicatedn-factor nonlinear models.

1. CURRENT MODELS OF TERM STRUCTURE
The modern theory of term structure of interest rates is based on equilibrium and arbitrage models in
which bond prices are determined in terms of a few state variables. The one-factor models of Cox,
Ingersoll and Ross (CIR) [1-4], and the two-factor models of Brennan and Schwartz (BS) [5-9] have been
instrumental in the development of the valuation of interest dependent securities. The assumptions of
these models include:

• Bond prices are functions of a number of state variables, one to several, that follow Markov
processes.

• Inv estors are rational and prefer more wealth to less wealth.

• Inv estors have homogeneous expectations.

• No one investor is big enough to affect market prices.

• Taxes and transaction costs are not modeled.

• Information is costless and available to all.

• Assets are traded continuously at equilibrium prices.

However, it should be noted that the ‘‘efficient market’’ hypothesis is not quite universally
accepted [10-12].

For one-factor models, the state variable is assumed to be the short-term interest rate which is
assumed to follow a diffusion process or a continuous Markov process defined as follows:

dr = a(r , t)dt + b(r , t)dz ,

r = short-term rate,
t = calendar time,
a(r , t) = expected instantaneous change in the short-term rate,
b(r , t) = instantaneous volatility of the process,
dz is a Wiener process.

(1)

Bond prices are assumed to be a function of time and a proxy variable, the short-term rate.

Vasicek [4] assumes that

dr = K (θ − r )dr + σ rdz . (2)

CIR assume

dr = K (θ − r )dr + σ r 1/2dz . (3)

In both models, short-term rates are assumed to follow a mean-reverting process; in other words, the
short-term rates have a mean ofθ , K being the speed of adjustment.σ r and σ r 1/2 are the standard
deviations of the random component of the process for Vasicek and CIR models, respectively.

BS [5] extended the one factor model. They dev eloped an arbitrage model of equilibrium interest
rates based on the assumptions that the entire term structure at any point in time can be expressed as a
function of two factors, being the short- and long-term rates of default free instruments. These interest
rates are further assumed to follow a joint Wiener stochastic process. This process is of the form:

dr = β1(r , l , t)dt + η1(r , l , t)dz1 ,
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dl = β2(r , l , t)dt + η2(r , l , t)dz2 , (4)

wherer and l are the short- and long-term rates, respectively.β1 and β2 are the expected instantaneous
rates of change in the short-term and long-term rates respectively.η1 and η2 are the instantaneous
standard deviations of the processes.dz1 anddz2 are Wiener processes, with expected values of zero and
variance ofdt with correlation coefficientρ. That is,

E[dz1] = E[dz2] = 0 ,

E[dz2
1] = E[dz2

2] = dt , E[dz1dz2] = ρdt , (5)

whereE[. ] ≡ < . > is the expectation with respect to the joint Wiener process.

For estimation purposes, BS simplified and reduced this system to

dr = ((a1 + b1(l − r )))dt + rσ1dz1 ,

dl = l (a2 + b2r + c2l )dt + lσ2dz2 , (6)

where{ a1, b1, a2, b2, c2} are parameters to be estimated.

These equations imply that the short-term rate converges towards a long-term rate (b1 > 0). A
result found in part of the BS study isa1 < 0, i.e., the short-term rate could be negative. This is a
potentially serious problem for this model.

The BS discrete-time representation is

r t+1 − r t

r t
=

a1

r t
+ b1(

l t

r t
− 1) + e1t ,

l t+1 − l t

l t
= a2 + b2r t + c2l t + e2t , (7)

wheree1t ande2t are normally-distributed bivariate random variables with standard deviations ofσ1 and
σ2 respectively with a correlation coefficient ofρ. As discussed below, the above continuous model is
only well defined in the differential limit of these discrete equations.

These equations imply that the short-term rate converges towards the long-term rate (b1 > 0). A
result found in part of the BS study is thata1 < 0. i.e., the short-term rate could be negative if not subject
to an additional external boundary condition. This is a potentially serious problem for this model. BS
used the iterative Aitken procedure [13] to estimate the parameters of the model. They founda1 to be
negative (the long-term rate has to be larger than 2% to avoid negative short-term rates). The correlation
coefficient ρ, and the coefficientsa1 and b1 were unstable. In addition, BS found a negative serial
correlation in the error termse1t ande2t , which led them to believe that additional state variables should
be added to the model.

Using methods of stochastic calculus [5], BS further derived a partial differential equation for bond
prices as the maturity date is approached.

∂
∂τ

B = ((−r + f r ∂
∂r

+ f l ∂
∂l

+ grr ∂
∂r 2

+ grl ∂
∂r∂l

+ gll ∂
∂l2

))B

= AB , (8)

where the coefficients{ f , g} depend onr and l , τ = T − t for t calendar time andT the time of maturity,
andA can be considered as a differential operator onB.

It may help to appreciate the importance of the BS methodology by discretizing the above partial
differential equation forB, in a ‘‘mean-value’’ limit. That is, at a given calendar timet indexed bys,
noting that∂/∂τ = −∂/∂t, take

0 = f r ∂Bs

∂r
= f l ∂Bs

∂l
,
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0 = grr ∂Bs

∂r 2
= grl ∂Bs

∂r∂l
= gll ∂Bs

∂l2
,

Bs − Bs+1 = −r sBs . (9)

This yields the popular expectations-hypothesis spot-interest estimate of bond prices, working backwards
from maturity,

Bs = (1 + r s)
−1Bs+1 . (10)

The important generalization afforded by BS is to include information aboutr and l and treat them
as stochastic variables with drifts and diffusions. Then, this discretized treatment yields

Bs rl = (1 − As rlr ′ l ′)
−1Bs+1 r ′ l ′ , (11)

where the operator inverse of the differential operatorA has been formally written, and its dependence on
intermediate values ofr ′ andl ′ has been explicitly portrayed. Their discretized calculation of their partial
differential equation, and our discretized calculation of the path-integral representation of this model,
essentially are mathematical and numerical methods of calculating this evolution ofBs.

In this paper we present an alternative methodology of very fast simulated re-annealing
(VFSR) [14] to compute the parameters of the BS model. It is also shown that the VFSR methodology is
capable of handling more complicatedn-factor non- linear models.

The advantages of using the simulated annealing methodology are: (1) Global minima in parameter
space are relatively more certain than with regression fitting. (2) All parameters, including parameters in
the noise, are simultaneously and equally treated in the fits, i.e., different statistical methods are not being
used to estimate the deterministic parameters, then to go on to estimate noise parameters. (3) Boundary
conditions on the variables can be explicitly included in the fitting process, a process not included in
standard regression fits. (4) We can efficiently extend our methodology to develop 3-state and higher
models, including higher order nonlinearities.

We also present an alternative method of calculating the evolution of bond prices. Our particular
non-Monte Carlo path-integral technique has proven to be extremely accurate and efficient for a variety of
nonlinear systems [15,16]. The method of path integration is more accurate and efficient for calculating
the evolution ofB as a function of the stochastic variablesr and l . To mention a few advantages: (1) A
variable mesh is calculated in terms of the underlying nonlinearities. (2) Initial conditions and boundary
conditions typically are more easily implemented with integral, rather that with differential, equations,
e.g., by using the method of images. (3) Integration is inherently a ‘‘smoothing’’ process, whereas
differentiation is a ‘‘sharpening’’ process. This means that we can handle ‘‘stiff’’ and nonlinear problems
with more ease.

We also comment below on how our methodology can be applied to other future-price models
under development [17-19].

In Section 2, we give a brief theoretical description of mathematically equivalent representations of
multivariate stochastic systems. These methods, just recently developed by mathematical physicists in the
last decade in the context of ‘‘statistical mechanics,’’ permit the introduction of even more recently
developed numerical algorithms. They were proposed for financial systems in a previous paper [20].

In Section 3, we apply this formalism to specific computations of the BS model. Section 4 gives
our numerical results. Section 5 presents our conclusions. Appendix A gives a derivation of the
stochastic calculus used.

2. DEVELOPMENT OF MATHEMATICAL METHODOLOGY

2.1. Background
Aggregation problems in nonlinear nonequilibrium systems typically are ‘‘solved’’

(accommodated) by having new entities/languages developed at these disparate scales in order to
efficiently pass information back and forth [21,22]. This is quite different from the nature of quasi-
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equilibrium quasi-linear systems, where thermodynamic or cybernetic approaches are possible. These
approaches typically fail for nonequilibrium nonlinear systems.

In the late 1970’s, mathematical physicists discovered that they could develop statistical mechanical
theories from algebraic functional forms

dr/dt = fr (r , l ) +
i
Σ ĝi

r (r , l )η i ,

dl/dt = fl (r , l ) +
i
Σ ĝi

l (r , l )η i , (12)

where the ˆg’s and f ’s are general nonlinear algebraic functions of the variablesr and l . These equations
represent differential limits of discretized stochastic difference equations, e.g., Wiener noise
dW → η dt [23]. The resulting stochastic differential equations (s.d.e.’s) are referred to as Langevin
equations [23-28]. Thef ’s are referred to as the (deterministic) drifts, and the square of the ˆg’s are
related to the diffusions (fluctuations or volatilities). In fact, the statistical mechanics can be developed
for any number of variables, not just two. Theη ’s are sources of Gaussian-Markovian noise, often
referred to as ‘‘white noise.’’ The inclusion of the ˆg’s, called ‘‘multiplicative’’ noise, recently has been
shown to very well mathematically and physically model other forms of noise, e.g., shot noise, colored
noise, dichotomic noise [29-32]. Finite-jumps diffusions also can be included [33].

These new methods of nonlinear statistical mechanics only recently have been applied to complex
large-scale physical problems, demonstrating that observed data can be described by the use of these
algebraic functional forms. Success was gained for large-scale systems in neuroscience, in a series of
papers on statistical mechanics of neocortical interactions [34-38], and in nuclear physics [39,40]. This
methodology has been used for problems in combat analyses [16,22,41,42]. These methods were
suggested for financial markets [20], and this paper is an application of that approach to estimating term
structure models.

Thus, now we can investigate various choices off ’s and ĝ’s to test algebraic functional forms. In
science, this is a standard phenomenological approach to discovering and encoding knowledge and
observed data, i.e., fitting algebraic functional forms which lend themselves to empirical interpretation.
This gives more confidence when extrapolating to new scenarios, exactly the issue in building confidence
in financial models.

The utility of these algebraic functional forms goes further beyond their being able to fit sets of
data. There is an equivalent representation to the Langevin equations, called a ‘‘path-integral’’
representation for the long-time probability distribution of the variables. This short-time probability
distribution is driven by a ‘‘Lagrangian,’’ which can be thought of as a dynamic algebraic ‘‘cost’’
function. The path-integral representation for the long-time distribution possesses a variational principle,
which means that simple graphs of the algebraic cost-function give a correct intuitive view of the most
likely states of the variables, and of their statistical moments, e.g., heights being first moments (likely
states) and widths being second moments (uncertainties). Like a ball bouncing about a terrain of hills and
valleys, one can quickly visualize the nature of dynamically unfoldingr andl states.

Especially because we are trying to mathematically model sparse and poor data, different drift and
diffusion algebraic functions can give approximately the same algebraic cost-function when fitting short-
time probability distributions to data. The calculation of long-time distributions permits a clear choice of
the best algebraic functions, i.e., those which best follow the data through a predetermined long epoch of
trading. Afterwards, if there are closely competitive algebraic functions, they can be more precisely
assessed by calculating higher algebraic correlation functions from the probability distribution.

As discussed previously, the mathematical representation most familiar to other modelers is a
system of stochastic rate equations, often referred to as Langevin equations. From the Langevin
equations, other models may be derived, such as the times-series model and the Kalman filter method of
control theory. Howev er, in the process of this transformation, the Markovian description typically is lost
by projection onto a smaller state space [43,44].
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2.2. Fitting Parameters
For example, forΘ variables, these coupled stochastic differential equations can be represented

equivalently by a short-time conditional probability distribution,P, in terms of the Lagrangian,L:

P = det(σ )−1/2(2π∆t)−Θ/2 exp(−L∆t) .  (13)

The form for the Lagrangian,L, and the determinant of the metric,σ , is

L =
G
Σ

G′
Σ (dMG/dt − gG)(dMG′ /dt − gG′)

2gGG′ ,

σ = det(gGG′) , (gGG′) = (gGG′)−1 ,

gGG′ =
i
Σ ĝG

i ĝG′
i , (14)

where G and G′ run over allΘ variables. Here, the prepoint discretization is used, which hides the
Riemannian corrections explicit in the midpoint discretized Feynman Lagrangian; only the latter
representation possesses a variational principle useful for arbitrary noise [20,24].

This defines a scalar ‘‘dynamic cost function,’’C, in terms of parameters, e.g., generically
represented asC(α̃ ),

C(α̃ ) = L∆t +
Θ

2
ln(2π∆t) +

1

2
ln σ , (15)

which can be used with the VFSR algorithm, discussed below [14], to find the (statistically) best fit of
parameters , e.g., identified by{ α̃ } , to the data. The cost function for a given system is obtained by the
product of P’s over all data epochs, i.e., a sum ofC’s is obtained. In the actual VFSR code,C is
‘‘normalized’’ by dividing by the number of epochs. Then, since we essentially are performing a
maximum likelihood fit, the cost functions obtained from somewhat different theories or data can provide
a relative statistical measure of their likelihood, e.g.,P12∼ exp(C2 − C1).

If there are competing mathematical forms, then it is advantageous to utilize the path-integral to
calculate the long-time evolution ofP [16,22]. Experience has demonstrated that the long-time
correlations derived from theory, measured against the observed data, is a viable and expedient way of
rejecting models not in accord with observed evidence.

Note that the use of the path integral isa posteriori to and independent of the short-time fitting
process, and is a subsidiary physical constraint on the mathematical models to judge their internal
soundness and suitability for attempts to extrapolate to other trading scenarios.

2.3. Algebraic Complexity Yields Simple Intuitive Results
Consider a multivariate system with variance a general nonlinear function of the variables. The

Einstein summation convention helps to compact the equations, whereby repeated indices in factors are to
be summed over.

The Itô(prepoint) discretization for a system of stochastic differential equations is defined by

ts∈ [ts, ts + ∆t] ≡ [ts, ts+1] ,

M(ts) = M(ts) ,

dM(ts)/dt = M(ts+1) − M(ts) .  (16)

The stochastic equations are then written as

dMG/dt = f G + ĝG
i η i ,

i = 1,. . . , Ξ ,
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G = 1,. . . , Θ . (17)

The operator ordering (of the∂/∂MG operators) in the Fokker-Planck equation corresponding to this
discretization is

∂P

∂t
= VP +

∂(−gGP)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ ,

gG = f G +
1

2
ĝG′

i
∂ĝG

i

∂MG′ ,

gGG′ = ĝG
i ĝG′

i . (18)

where a ‘‘potential’’V is present in some systems.

The Lagrangian corresponding to this Fokker-Planck and set of Langevin equations may be written
in the Stratonovich (midpoint) representation, corresponding to

M(ts) =
1

2
[M(ts+1) + M(ts)] . (19)

This discretization can be used to define a Feynman LagrangianL which possesses a variational principle,
and which explicitly portrays the underlying Riemannian geometry induced by the metric tensorgGG′ ,
calculated to be the inverse of the covariance matrix [20]. More details are given in Appendix A and in
another paper on this subject [45].

P = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLs) ,

DM = g1/2
0+

(2π∆t)−Θ/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

ι =1
Σ ∆MG

ι s , MG
0 = MG

t0 , MG
u+1 = MG

t ,

L =
1

2
(dMG/dt − hG)gGG′(dMG′ /dt − hG′) +

1

2
hG

;G + R/6 − V ,

[. . .],G =
∂[. . .]

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[M
G(ts), ts] = det(gGG′)s , gs+ = gs[M

G
s+1, ts] ,

hG
;G = hG

,G + ΓF
GFhG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK, L] = gLF (gJL,K + gKL,J − gJK,L) ,

R = gJLRJL = gJLgJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK,FL − gFL,JK + gJL,FK ) + gMN(ΓM

FK ΓN
JL − ΓM

FLΓN
JK) ,  (20)

whereR is the Riemannian curvature, and we also have explicitly noted the discretization in the mesh of
MG

ι s by ι , to be discussed further below.
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A prepoint discretization for the same probability distributionP, giv es a much simpler algebraic
form,

M(ts) = M(ts) ,

L′ =
1

2
(dMG/dt − gG)gGG′(dMG′ /dt − gG′) − V , (21)

but the LagrangianL′ so specified does not satisfy a variational principle useful for moderate to large
noise. Still, this prepoint-discretized form has been quite useful in all systems examined thus far, simply
requiring a somewhat finer numerical mesh.

It must be emphasized that the output need not be confined to complex algebraic forms or tables of
numbers. BecauseL possesses a variational principle, sets of contour graphs, at different long-time
epochs of the path-integral ofP over its variables at all intermediate times, give a visually intuitive and
accurate decision-aid to view the dynamic evolution of the scenario. For example, this Lagrangian
approach permits a quantitative assessment of concepts usually only loosely defined.

‘‘Momentum′′ = ΠG =
∂L

∂(∂MG/∂t)
,

‘‘Mass′′ = gGG′ =
∂L

∂(∂MG/∂t)∂(∂MG′ /∂t)
,

‘‘Force′′ =
∂L

∂MG
,

‘‘ F = ma′′ : δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG/∂t)
, (22)

where MG are the variables andL is the Lagrangian. These physical entities provide another form of
intuitive, but quantitatively precise, presentation of these analyses. For example, daily newspapers use
this terminology to discuss the movement of security prices.

2.4. Numerical Methodology
Recently, two major computer codes have been developed, which are key tools for the use of this

approach to estimate model parameters and price bonds.

The first code, very fast simulated re-annealing (VFSR) [14], fits short-time probability
distributions to observed data, using a maximum likelihood technique on the Lagrangian. An algorithm
of very fast simulated re-annealing has been developed to fit observed data to a theoretical cost function
over aD-dimensional parameter space [14], adapting for varying sensitivities of parameters during the fit.
The annealing schedule for the ‘‘temperatures’’ (artificial fluctuation parameters)Ti decrease
exponentially in ‘‘time’’ (cycle-number of iterative process)k, i.e.,Ti = Ti0 exp(−ci k

1/D).

Heuristic arguments have been developed to demonstrate that this algorithm is faster than the fast
Cauchy annealing [46],Ti = T0/k, and much faster than Boltzmann annealing [47],Ti = T0/ ln k. To be
more specific, thekth estimate of parameterα i ,

α i
k ∈ [ Ai , Bi ] ,  (23)

is used with the random variablexi to get thek + 1th estimate,

α i
k+1 = α i

k + xi (Bi − Ai ) ,

xi ∈ [−1, 1] . (24)

The generating function is defined as

gT (x) =
D

i=1
Π 1

2 ln(1+ 1/Ti )(|xi | + Ti )
≡

D

i=1
Π gi

T (xi ) ,
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Ti = Ti0 exp(−ci k
1/D) .  (25)

Note that the use ofC, the cost function given above, isnot equivalent to doing a simple least squares fit
on M(t + ∆t).

The second code develops the long-time probability distribution from the Lagrangian fit by the first
code. A robust and accurate histogram-based (non-Monte Carlo) path-integral algorithm to calculate the
long-time probability distribution has been developed to handle nonlinear Lagrangians [15,16,48,49],
including a two-variable code for additive and multiplicative cases.

The histogram procedure recognizes that the distribution can be numerically approximated to a high
degree of accuracy as sum of rectangles at pointsMi of heightPi and width∆Mi . For convenience, just
consider a one-dimensional system. The above path-integral representation can be rewritten, for each of
its intermediate integrals, as

P(M ; t + ∆t) = ∫ dM′[g1/2
s (2π∆t)−1/2 exp(−Ls∆t)]P(M ′; t)

= ∫ dM′G(M , M ′; ∆t)P(M ′; t) ,

P(M ; t) =
N

i=1
Σ π(M − Mi )Pi (t)

π(M − Mi ) =







0 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi ) ,

1 ,  otherwise ,
(26)

which yields

Pi (t + ∆t) = Tij (∆t)Pj (t) ,

Tij (∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi /2

Mi−∆Mi−1/2
dM ∫ M j +∆M j /2

M j −∆M j−1/2
dM′G(M , M ′; ∆t) .  (27)

Tij is a banded matrix representing the Gaussian nature of the short-time probability centered about the
(varying) drift.

This histogram procedure has been extended to two dimensions, i.e., using a matrixTijkl [16], e.g.,
essentially similar to the use of theA matrix in the previous section. Explicit dependence ofL on timet
also can be included without complications. We see no problems in extending it to other dimensions,
other than care must be used in developing the mesh in∆M , which is dependent on the diffusion matrix.

Fitting data with the short-time probability distribution, effectively using an integral over this
epoch, permits the use of coarser meshes than the corresponding stochastic differential equation. The
coarser resolution is appropriate, typically required, for numerical solution of the time-dependent path-
integral: By considering the contributions to the first and second moments of∆MG for small time slicesθ ,
conditions on the time and variable meshes can be derived [48]. The time slice essentially is determined
by θ ≤ L−1, whereL is the ‘‘static’’ Lagrangian withdMG/dt = 0, throughout the ranges ofMG giving the
most important contributions to the probability distributionP. The variable mesh, a function ofMG, is
optimally chosen such that∆MG is measured by the covariancegGG′ , or ∆MG∼ (gGGθ )1/2.

2.5. Chaos or Noise?
Given the context of current studies in complex nonlinear systems [50,51], the question can be

asked: What if markets have chaotic mechanisms that overshadow the above stochastic considerations?
The real issue is whether the scatter in data can be distinguished between being due to noise or chaos.
Several studies have been proposed with regard to comparing chaos to simple filtered (colored) noise [J.
Theiler, private communication] [51-53].
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The previous references must be generalized, such that we must investigate whether scatter in
markets’ data can be distinguished from multiplicative noise. A previous application of this methodology
follows:

One of us (LI) was principal investigator of a US Army Models Committee project, working with a
team of Army and Lawrence Livermore National Laboratory personnel to compare, for the first time,
large-scale high-fidelity combat computer-model data to exercise data [16,41]. The combat analysis was
possible only because now we had recent data on combat exercises from the National Training Center
(NTC) of sufficient temporal density to attempt dynamical mathematical modeling. The criteria used to
(not) determine chaos in this dynamical system is the nature of propagation of uncertainty, i.e., the
variance. For example, following by-now standard arguments [J. Yorke, seminar and private
communication], propagation of uncertainty may be considered as (a) diminishing, (b) increasing
additively, (c) or increasing multiplicatively. An example of (a) is the evolution of a system to an
attractor, e.g., a book dropped onto the floor from various heights reaches the same point no matter what
the spread in initial conditions. An example of (b) is the propagation of error in a clock, a cyclic system.
Examples of (c) are chaotic systems, of which very few real systems have been shown to belong. An
example of (c) is the scattering of a particle in a box whose center contains a sphere boundary: When a
spread of initial conditions is considered for the particle to scatter from the sphere, when its trajectories
are aligned to strike the sphere at a distance from its center greater that the diameter, the spread in
scattering is a factor of about three greater than the initial spread.

In our analysis of NTC data, we were able to fit the short-time attrition epochs (determined to be
about 5 minutes from mesh considerations determined by the nature of the Lagrangian) with short-time
nonlinear Gaussian-Markovian probability distributions with a resolution comparable to the spread in
data. When we did the long-time path-integral from some point at the beginning of the battle, we found
that we could readily find a form of the Lagrangian that made physical sense and that also fit the
multivariate variances as well as the means at each point in time of the rest of the combat interval. I.e.,
there was not any degree of hyper-sensitivity to initial conditions that prevented us from ‘‘predicting’’ the
long time means and variances of the system. Since the system is dissipative, there is a strong tendency
for all moments to diminish in time, but in fact this combat is of sufficiently modest duration (typically 1
to 2 hours) that variances do increase somewhat during the middle of the battle. In summary, this
battalion-regiment scale of this particular battle did not seem to possess chaos.

Similar considerations and calculations are planned for these studies of financial markets.

3. BRENNAN-SCHWARTZ MODELS

3.1. Interest Rates
The pioneering Brennan-Schwartz (BS) model [5,7] can be used to illustrate how this methodology

is to be implemented numerically.

The BS model is summarized by:

dr = [a1 + b1(l − r )]dt + rσ1dz1 ,

dl = [l (a2 + b2r + c2l )]dt + lσ2dz2 ,

< dzi >= 0 , i = {1, 2} ,

< dzi (t)dzj (t ′) >= dtδ (t − t ′) , i = j ,

< dzi (t)dzj (t ′) >= ρdtδ (t − t ′) , i ≠ j ,

δ (t − t ′) =




0 , ,

1 ,

t ≠ t ′ ,

t = t ′ ,
(28)

where < . >  denotes expectations.



Statistical Mechanics Methodology - 11 -  Ingber, Wehner, Jabbour, Barnhill

These can be rewritten as Langevin equations (in the Itoˆ prepoint discretization)

dr/dt = a1 + b1(l − r ) + σ1r (γ +n1 + sgnρ γ −n2) ,

dl/dt = l (a2 + b2r + c2l ) + σ2l (sgnρ γ −n1 + γ +n2) ,

γ ± =
1

√ 2
[1 ± (1 − ρ2)1/2]1/2 ,

ni = (dt)1/2pi , (29)

wherep1 and p2 are independent [0,1] Gaussian distributions.

The cost functionC is defined from the equivalent short-time probability distribution,P, for the
above set of equations.

P = g1/2(2πdt)−1/2 exp(−Ldt)

= exp(−C) ,

C = Ldt +
1

2
ln(2πdt) − ln(g) ,

L =
1

2
F†gF ,

F = 


dr/dt − ((a1 + b1(l − r )))

dl/dt − l (a2 + b2r + c2l )



,

g = det(g) ,

k = 1 − ρ2 . (30)

g, the metric in{ r , l } -space, is the inverse of the covariance matrix,

g−1 =




(rσ1)2

ρrlσ1σ2

ρrlσ1σ2

(lσ2)2





. (31)

As discussed above, the correct mesh for time,dt, in order thatP represent the Langevin equations (to
orderdt3/2) is

dt ≤ 1/L , (32)

whereL is L evaluated withds/dt = dl/dt = 0. If dt is greater than 1/L, then it is inappropriate to useP,
and instead the path integral over intermediate states of folded short-time distributions must be calculated.
In this context, it should be noted that the correct time mesh for the corresponding differential equations
must be at least as small, since typically differentiation is a ‘‘sharpening’’ process. This will be noted in
any discipline requiring numerical calculation, when comparing differential and integral representations
of the same system.

The VFSR code was checked out with a rather stringent test: Data was ‘‘generated’’ using the BS
equations above as asimulation, using a set of parameters given in the 1982 BS paper. Then, the
Lagrangian was used as a cost function to search for the parameters used in the generation of the data. A
time mesh was established at each point in time using the criteria given above, which turns out to be
dt ∼ 1 day. The code converged to within the statistical accuracy of the generated data. When a time
mesh ofdt = 1 month was used, as did BS, the results did not match the simulated data.

In light of the above, it should not be surprising that computer runs with real Treasury bills and
bonds over the same epochs as BS, using end-of-month data, did not agree precisely with BS or with
similar runs using daily data. Note we are not using the exact data as BS. However, should we be
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concerned about the lack of excellent convergence with BS? As determined fromC′ above, thedt ∼ 1
day, possibly 1 week, is appropriate to use to define the short-time probability distribution, data not
available in the 1982 BS study.

However,dt ∼ 1 day, not available for the BS work, shows marked deviations in the development of
interest variables for selected trajectories using the BS equations as a simulation of data. This suggests
that a two-state model is insufficient to capture faster movements in rates at the daily scale.

When the s.d.e. were permitted to evolve, trajectories developed increasing interest rates. It was
noted that when the rates approached 100%, there suddenly was extremely wild growth of these variables.
In the context of chaos discussed above, this region will be further investigated.

3.2. Security Prices
BS [5] present arguments recognizing that the stochastic price of a discount bond for a given

maturity dateT can utilize straightforward stochastic calculus to derive a form in terms of coefficients
appearing in theirr − l coupled stochastic equations. They use arbitrage arguments on portfolios of bonds
with different maturity dates to derive zero risk conditions for the market prices of risks,λ 1 andλ 2, for
short-term and long-term interest rates, respectively. By consideringl as related to a bond’s price, they
straightforwardly derive an arbitrage expression forλ 2. Their resulting partial differential equation
(p.d.e.) is an equilibrium (mean value) equation for a pure discount-bond priceB, at a giv en time until
maturityτ = T − t and ‘‘continuous’’ coupon payment ofc.

The above formulation of interest rates is used by BS to determine the parameters needed to
calculate their derived p.d.e. for securities, i.e., bond pricesB. Using some notation developed above,
with { MG; G = r , l } , they obtain

∂B

∂τ
= VB+

∂(−gGB)

∂MG
+

1

2

∂2(gGG′ B)

∂MG∂MG′ ,

gr = −(β1 − λ 1η1)

= −a1 − b1(l − r ) + λ 1rσ1 ,

gl = −(β2 − λ 2η2)

= −l (σ 2
2 + l − r ) ,

(gGG′) = (g)−1 ,

V =
c

B
− r , (33)

wherec is the continuous coupon rate for bondB, andλ 1 is an additional parameter to be fit by the data.

The above equation represents a ‘‘truly nonlinear’’ Fokker-Planck equation because of the presence
of B in V. Howev er, ifc/B is a smooth function, such that

V(MG; τ ′) − V(MG; τ )

ε
= ∆τ

∂V

∂τ
+ ∆τ ∫

δV

δ B

∂B(M ′G′)

δ τ
dM′G′

= O(∆τ ν ) ,  (34)

for ν > 1, whereτ ′ = τ + ε∆τ , then our numerical path-integral codes may be used here as well [15].

In this formulation, all the above algebraic and numerical methodology can be utilized to define a
Lagrangian-like function,LB, defining the evolution ofB, subject to whatever initial conditions and
boundary conditions are deemed appropriate, e.g., if considering bonds or options [7,9]. Care must be
taken with the discretization in the forwardτ direction.
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In particular, it was tempting to use our simulated-annealing codes to fitLB; then our path-integral
codes can be used to evolve/predictB for long epochs. The use ofLB as a cost function for fitting data is
still reasonable even thoughB is not abona fideE.g., B is hypothesized to be determined by intense
arbitrage, in the derivation of the p.d.e. This is equivalent to stating that the process is confined, within
statistical fluctuations, to a maximum likelihood path. This is mathematically articulated in our
methodology as stating that the variational principle associated (not independently assumed) withLB,
including the specification of the boundary conditions and initial conditions, implies that we can fit the
variables inLB to data specified by observed values. This is numerically similar to the way we perform a
maximum likelihood fit of the Lagrangian associated with the s.d.e. As we show below, this assumption
appears to be well supported in our fits ofLB to observedr − l data, in that we get a set parameters very
close to those obtained by fitting theL associated with the s.d.e. It should be noted that BS calculated
their λ 1 by interpolating fits to bond prices, thereby incorporating lots of pricing information intoλ 1.

However, independent of such arguments, once the parameters are established, it is mathematically
correct to use our path-integral codes on theB equation, with its initial conditions and boundary
conditions, to calculate the long-time evolution ofB.

We note that our use ofLB to describe the evolution ofB is similar in spirit to recent attempts to
describe the evolution of bond prices as a functional of forward rates, for example by Heath, Jarrow and
Morton (HJM) [18,19]. Our functional corresponding to theirs is simply the LagrangianLB. HJM
develop arbitrage arguments to impose equilibrium evolution by randomly varying their interest-rate
functional, somewhat similar to the numerical importance-sampling methodology employed when
performing numerical Monte Carlo techniques to take advantage of an underlying variational
principle [14,54]. The trade-off in dev eloping a theory of stochastic forward pricing is that parabolic
equations are unstable for the negative diffusion in calendar timet so defined for financial systems, and so
HJM must impose additional constraints to prevent this explosion. The BS technique of developingB as
a function ofτ = T − t avoids these problems. The methodology of HJM does not require the separate
estimation of market risk factors, e.g.,λ 1. Our Lagrangian representation of the BS model, coupled with
our arbitrage arguments, also permits us to fit all parameters directly to interest rate data. The
methodology of HJM permits the introduction of colored (time delayed) noise, which also can be
included in our methodology, albeit with substantial effort. In principle, given a forward rate HJM model
for a Lagrangian, then all our methodology could be used here as well.

In many cases it may be of interest to study the stochastic systems of interest rates, e.g., the coupled
r − l equations above. Howev er, if only the evolution ofB is of interest, then it is more direct, and likely
more numerically accurate, to fit the parameters in the cost functionCB (derived from LB as C was
derived fromL above). I.e., we fit{ a1, b1, ρ,σ2, λ 1} to { r , l , B, c} data. Since, as discussed below, we
will be dealing with portfolios of pure discount bonds to represent coupon bonds, we considerc = 0,
thereby requiring only{ r , l } data. We do not need the parameters{ a2, b2, c2} because of the arbitrage
arguments used to calculateβ2 − λ 2η2 above [3]. This greatly improves the statistical merit of our fits,
requiring two less degrees of freedom for theB equation. This approach also may be viewed as an
empirical test of the consistency of assumptions used to derive the bond equation. Our VFSR
methodology also explicitly include boundary conditions, a very important component of any model even
if only implicitly described, since we use the same cost function, but as a function of its variables instead
of its parameters, to calculate the evolution of bond prices with the path integral.

The ultimate test of any methodology is to compare theoretical predictions/descriptions with
observed data [55]. Assume we already have fit our parameters for the entire epoch of interest. Actual
bond prices with coupons may then be evaluated straightforwardly by considering a portfolio ofn pure
discount bonds with a series of maturity datesTn equivalent to the dates of payment of coupons and the
face value of the actual coupon bond to be modeled. This prescription requires that we integrate back
such a portfolio ofn pure discount bonds with maturityTn, to various timesti < T (including only those
bonds in the portfolio with maturityTn ≥ ti ). At each of these times, we use the observed values ofr (ti )
and l (ti ) to calculate the bond pricesBn(ti ). This portfolio of{ Bn(ti )} is then compared to the observed
coupon bondB(ti ), i.e., for many such times{ ti } . For each zero-coupon bond in this portfolio, we start at
its time of maturityTn, enforcing the initial conditionsBn(r , l ; Tn) = 1, and integrate back to a given time
t < Tn. We then weight each zero coupon bond by the actual coupon or face value paid on the coupon
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bond.

Similarly, for the important purpose of theoretically pricing an actual coupon bond at timet, we use
the same methodology, e.g., using the present day’s best estimate ofr (t) andl (t) to calculateB(r , l ; t).

We are not in complete agreement with BS on their use of boundary conditions and numerical
implementation [5]. Their use of ‘‘natural’’ boundary conditions, actually more general unrestricted or
singular boundary conditions [56], is in part based on their own admittedlyad hocchoice of functional
forms forr andl diffusions, in both their s.d.e. and p.d.e., and in ther drift in their s.d.e. We believe that
the appropriate boundary conditions must be determined by finance considerations as follows:

r → 0 and l → 0 turn out to be natural boundary conditions of their model being inaccessible in
any finite time, and therefore do not require or permit any additional specification. Atr = 0, we should
haveB(t + ∆t) = B(t), i.e., reflecting boundary conditions. This is the regular boundary conditions of the
model only if ther drift is greater than zero [49,56]. Atl = 0, the BS model yields a unrestricted
boundary conditions implyingB = 0, and therefore does not require or permit any additional specification.
Further examination shows thatl = 0 is sometimes an entrance condition, sometimes an exit condition,
depending on the value ofr . Similar analyses show thatr → ∞ and l → ∞ also are unrestricted
boundary conditions.

For ther drift in the s.d.e. and in the p.d.e. to be non-negative, it is necessary, not sufficient, that
a1 ≥ 0. We therefore propose thata1 be constrained to achieve only these values in the fit. As mentioned
in the introduction, BS also prefer this constraint ona1. This may be considered a constraint just as is the
functional form of the model. As it turned out, to be discussed below, the value ofa1 we obtained in our
fit was essentially zero.

In setting up the path integral for the BSB p.d.e., we use all natural boundary conditions. This
implies that there is no freedom to choose or to redundantly impose boundary conditions as we believe
did BS. We choose the simple free-space Gaussian short-time propagator, since the evolution ofB cannot
leave the enclosed boundary conditions, since it is the proper solution deep in the interior ofr − l space,
and since the drift is benign to the extent that this also is a good solution at the boundaries to order
∆τ 3/2 [15,48,49].

Since the boundary conditions atr = 0 and l = 0 are mathematically unrestricted if the diffusions
vanish at these boundaries, as they do for the BS model, we therefore also propose that thead hoc
functional form of the diffusions be relaxed to admit additive noise components, e.g.,κ 1 andκ 2. This is
especially important forr = 0. This not only can be tested by so fitting data, but also mathematically
permits the imposition of external boundary conditions more tightly constrained to the financial system
under consideration, not being technically restricted by the actual functional forms chosen for the drifts
and diffusions. Thus we also tested models for which

rσ1 → rσ1 +κ 1 ,

lσ2 → lσ2 +κ 2 , (35)

in the drifts and diffusions of the bond p.d.e. Because of the induced singular behavior in thel -drift, this
transformation still requires unrestricted boundary conditions atl = 0, which turn out to be entrance
boundary conditions.

We believe it is extremely important to gain this freedom over the functional forms of the drifts and
diffusions. For example, our calculations with this model clearly demonstrate that the rather mild
nonlinearities of the BS model only permit inflationary evolution, since those were the periods were fit to
data and since the functional forms likely cannot accommodate many swings and dips, on time scales of
months or years, much longer that of the fluctuations, yet shorter than the period of long-term bonds.
This appears to require a higher degree of nonlinearity and/or an increase in the number of independent
interest-rate variables.

For future calculations, we propose to include some additive components in ther and l diffusions.
We intend to invoke external reflecting boundary conditions forr = 0, using the method of images.
Similar sets of boundary conditions were used in a previous project [16]. We checked the accuracy of the
reflecting boundary conditions using MACSYMA, an algebraic manipulator.
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BS procedures used a discretized form of their p.d.e. They compared their theoretical and observed
values ofB for several values ofλ 1, and interpolated to find the best value ofλ 1 which fit the data. Our
methodology of calculatingλ 1 from LB, simultaneously with the other parameters in the p.d.e., avoids
this additional step in their methodology.

4. NUMERICAL RESULTS

4.1. Fits to Interest Rates
Interest rates were developed from Treasury bill and bond yields during the period October 1974

through December 1979, the same period as one of the sets used by BS [7]. Short-term rates were
determined from Treasury bills with a maturity of three months (BS used 30-day maturities), and long-
term rates were determined from Treasury bonds with a maturity of twenty years (BS used at least 15-year
maturities). For monthly runs, we used 63 points of data between 74-10-31 and 79-12-28. For daily runs,
we used 1283 points of data between 74-10-31 and 79-12-31. We used yearly rates divided by 12 to fit
the parameters.

For daily data, the actual number of days between successive trades was used; i.e., during this time
period we had 1282 pieces of daily data and 62 pieces of end-of-month data. Although a rescaling in time
only simply scales the deterministic parameters linearly, since that is how they appear in this model, this
is not true forρ. Then we did all subsequent runs using the scale of one day. We used yearly rates
divided by 365 to fit the parameters.

The BS parameters also were run through the data, calculating the cost function they giv e. The
single cost function bears the weight of determining all parameters. Typically, three or four significant-
figure stability is required to get even one or two significant-figure stability in the parameters. (All runs
were performed using double precision for all floating-point variables.) The ‘‘cost function’’ calculated is
the sum over all Lagrangians at each short-time epoch (divided by the number of epochs, which doesn’t
affect its minimum, but helps to compare cost functions over different sets of data). I.e., a maximum
probability fit is done by minimizing the cost functions (each the argument of the exponential
representing the probability distribution of the variables) over all time epochs. The BS versus our fitted
parameters are given in Table 1.

Table 1. BS parameters were fit to data using our Lagrangian representation for their coupledr − l
equations, for both end-of-month and daily data between 74-10-31 and 79-12-31. The second column,
designated BS Monthly, giv es their published 1982 results, using somewhat different data during this
period. The third column gives our monthly fits on somewhat different data during this same time period.
The fourth column gives daily fits scaled to daily time.

Parameter BS Monthly L Monthly L Daily

a1 0.0361 3.02 10−5 −6.33 10−9

b1 0.0118 3.89 10−4 0.0902
σ1 0.0777 0.0700 0.0132
ρ 0.442 0.534 0.136
a2 0.169 9.73 10−3 2.43 10−4

b2 0.0089 0.0262 0.0320
c2 −0.271 −0.707 −0.492
σ2 0.0243 0.0278 4.01 10−3

It should be noted that for all periods before October 1974, back through December 1958, using
monthly data, BS founda1 < 0, and for the period April 1964 through June 1969 they foundc2 > 0.

Fits were performed on a Hewlett Packard 9000-835SE, a ‘‘12-MIPS’’ computer. For example, the
fit using the bond Lagrangian took approximately 100 CPU minutes for 1500 acceptance points,
representing about 2000 generated points per 100 acceptance points at each re-annealing cycle, in this six-
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dimensional parameter space. It was found that once the VFSR code repeated the lowest cost function
within two cycles of 100 acceptance points, e.g., typically achieving 3 or 4 significant-figure accuracy in
the global minimum of the cost function, by shunting to a local fitting procedure, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [57], only several hundred acceptance points were required to
achieve 7 or 8 significant-figure accuracy in the cost function. This also provided yet another test of the
VFSR methodology.

4.2. Fits to Bond Lagrangian
We examined differences in fittingLB under varying constraints: In Table 2, we compare theLB

Daily fit with those obtained by admitting some degree of additive noiseκ 1 andκ 2.

Table 2. We compare theLB fit in the second column with those in the third column obtained by
admitting some degree of additive noiseκ 1 andκ 2. (Absolute values ofκ 1,2 were used to constrain them
to positive values in the local fits.) Note that BS obtained −0.216 forλ 1 by interpolating among several
λ 1’s to minimize the deviation of their theoretical bond prices to the observed ones.

Parameter LB κ

a1 −2.02 10−8 −1.01 10−7

b1 3.02 10−4 1.01 10−3

σ1 0.0173 0.0166
ρ 0.673 0.684

σ2 5.36 10−3 3.84 10−3

λ 1 −2.42 10−3 −0.0176
κ 1 - 6.61 10−8

κ 2 - 3.51 10−7

At this time, we are preparing fits to aggregate portfolios of bonds, to average over particulars of
individual bonds, as performed by other investigators. We find that it is quite easy to fitλ 2 to sets of bond
prices, after fitting interest-rate parameters using the BS s.d.e., as done by BS. However, we find it more
difficult to fit λ 2 to these sets after using the bond Lagrangian to fit the interest-rate parameters, as we
have presented here. These results will be reported in a future paper.

5. CONCLUSION
We hav e demonstrated how mathematical methodologies and numerical algorithms recently

developed in the field of statistical mechanics can be brought to bear on term structure models.
Specifically, methods of very fast simulated re-annealing can be used to statistically find best global fits of
multivariate nonlinear stochastic term structure models, without requiring approximation of the basic
models.

We also have argued that other numerical techniques, i.e., the path integral, can be brought to bear
to calculate evolution of asset prices, using the term structure models for proxy variables. Another paper
in progress will report on more extensive comparisons with observed bond prices.

This new formalism also permits a fresh look at some of these models and affords comparison with
other nonlinear stochastic systems.
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APPENDIX A: STATISTICAL MECHANICS DERIVATION OF PATH INTEGRAL

This Appendix outlines the derivation of the path integral representation of the nonlinear Langevin
equations, via the Fokker-Planck representation. This serves to point out the importance of properly
treating nonlinearities, and to emphasize the deceptive simplicity of the Langevin and Fokker-Planck
representations of stochastic systems. There are a few derivations in the literature, but the following blend
seems to be the most concise. All details may be found in the references given in this paper [23,58-60].

The Stratonovich (midpoint discretized) Langevin equations can be analyzed in terms of the Wiener
process dWi , which can be rewritten in terms of Gaussian noiseη i = dWi /dt if care is taken in the
limit [23].

dMG = f G[t, M(t)]dt + ĝG
i [t, M(t)]dWi ,

ṀG(t) = f G[t, M(t)] + ĝG
i [t, M(t)]η i (t) ,

dWi → η idt ,

M = { MG; G = 1,. . . , Λ} ,

η = {η i ; i = 1,. . . , N} .

ṀG = dMG/dt ,

< η j (t) >η = 0 ,

< η j (t),η j ′(t ′) >η = δ jj ′δ (t − t ′) ,  (A.1)

η i represents Gaussian white noise, and moments of an arbitrary functionF(η ) over this stochastic space
are defined by a path-type integral overη i ,

< F(η ) >η = N−1 ∫ Dη F(η ) exp(−
1

2

∞

t0
∫ dtη iη i ) ,

N = ∫ Dη exp(−
1

2

∞

t0
∫ dtη iη i ) ,

Dη =
v→∞
lim

v+1

α =0
Π

N

j=1
Π (2πθ)−1/2dW j

α ,

tα = t0 + αθ ,

1

2 ∫ dtη iη i =
1

2θ β
Σ

i
Σ (Wi

β − Wi
β−1)2 ,

< η i >η = 0 ,

< η i (t)η j (t ′) >η = δ ij δ (t − t ′) .  (A.2)

Non-Markovian sources,̂η , and their influence throughout this development, can be formally
treated by expansions about the Markovian process by defining

< F(η̂ ) >η = N−1
ξ ∫ Dη̂ F exp[−

1

2 ∫ ∫ dtdt ′η̂ (t)∆−1
ξ (t − t ′)η̂ (t ′)] ,
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∫ dt ∆−1
ξ (t − t ′)∆ξ (t ′ − t ′′ ) = δ (t − t ′′ ) ,  (A.3)

with ξ defined as an interval centered about the argument of∆ξ . Letting ξ → 0 is an unambiguous
procedure to define the Stratonovich prescription used below.

In terms of a specific stochastic pathη , a solution to Eq. (A.1),MG
η (t; M0, t0) with

MG
η (t0; M0, t0) ≡ M0, the initial conditions on the probability distribution ofMη is

Pη [M , t|M0, t0] = δ [M − Mη (t; M0, t0)] . (A.4)

Using the conservation of probability condition,

Pη ,t + (ṀGPη ),G = 0 ,

[. . .],G = ∂[. . .]/∂MG ,

[. . .],t = ∂[. . .]/∂t , (A.5)

the evolution ofPη is written as

Pη ,t [M , t|M0, t0] = { [− f G(t, M) − ĝ(t, M)η i ]Pη } ,G . (A.6)

To perform the stochastic average of Eq. (A.6), the ‘‘functional integration by parts lemma’’ [28] is
used on an arbitrary functionZ(η ) [59],

∫ Dη
δ̂ Z(η )

δ̂ η i
= 0 .  (A.7)

Applied toZ = Z′ exp(−
1

2 ∫
∞
t0

dtη iη i ), this yields

< η i Z′ >η =< δ Z′/δ η i >η . (A.8)

Applying this toF̂ [Mη ] = ∫ dM Pη F(M),

∫ dM
δ̂ Pη

δ̂ η i
F(M) =

∂F̂ [Mη ]

∂MG
η

δ̂ MG
η

δ̂ η i

= −
1

2 ∫ dM F(M)( ̂gG
j δ ij Pη ),G , (A.9)

whereδ̂ designates functional differentiation. The last equation has used the Stratonovich prescription,

MG
η (t) = MG

0 + ∫ dt ′ Ĥ(t − t ′)Ĥ(t − t0)( f G + ĝG
i η i ) ,

t ′→t−0
lim

δ̂ MG
η (t)

δ̂ η i (t ′)
=

1

2
ĝG

j [t, Mη (t)]δij ,

Ĥ(z) =




1, z ≥ 0

0, z < 0 .
(A.10)

Taking the averages <Pη ,t >η and <η i Pη >η , the Fokker-Planck is obtained from Eq. (A.9). If
some boundary conditions are added as Lagrange multipliers, these enter as a ‘‘potential’’V, creating a
Schrödinger-type equation.

P,t =
1

2
(gGG′ P),GG′ − (gGP),G + VP ,

P =< Pη >η ,
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gG = f G +
1

2
ĝG′

i ĝG
i ,G′ ,

gGG′ = ĝG
i ĝG′

i ,

[. . .],G = ∂[. . .]/∂MG . (A.11)

Note thatgG replaces f G in Eq. (A.1) if the Itô(prepoint discretized) calculus is used to define that
equation.

To derive the path integral representation of Eq. (A.11), define operatorsM̂
G

, p̂G andĤ ,

[M̂
G

, p̂G′ ] ≡ M̂
G

p̂G′ − p̂G′ M̂
G = iδ G

G′ ,

[M̂
G

, M̂
G′

] = 0 = [ p̂G, p̂G′ ] ,

P,t = −i Ĥ P ,

Ĥ = −
i

2
p̂G p̂G′ g

GG′ + p̂GgG + iV , (A.12)

and define the evolution operatorU(t, t ′) in terms of ‘‘bra’’ and ‘‘ket’’ probability states ofM ,

M̂
G

|MG >= MG|MG > ,

p̂G|MG >= −i∂/∂MG|MG > ,

< M ′|M >= δ (M ′ − M) ,

< M |p >= (2π)−1 exp(ip ⋅ M) ,

P[M , t|M0, t0] =< M |U(t, t0)|M0 > ,

Ĥ(t ′)U(t ′, t) = iU (t ′, t),t ′ ,

U(t, t) = 1 ,

U(tρ , tρ−1)≈1 − iθ Ĥ(tρ−1) ,  (A.13)

where ρ indexes units ofθ measuring the time evolution. This is formally integrated to give the path
integral in the phase space (p, M),

P[Mt |M0] =
M(t)=Mt

M(t0)=M0

∫ DM Dp exp[
t

t0
∫ dt ′(ipGMG −

1

2
pG pG′ g

GG′ − ipGgG + V) ]  ,

DM =
u→∞
lim

G
Π

u

ρ=1
Π dMG

ρ ,

Dp =
u→∞
lim

G
Π

u+1

ρ=1
Π (2π)−1dpGρ ,

tρ = t0 + ρθ . (A.14)

The integral over each dpGρ is a Gaussian and simply calculated. This gives the path integral in
coordinate spaceM , in terms of the prepoint discretized Lagrangian,
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P[Mt |M0] = ∫ DM
u

ρ=0
Π (2πθ)−Λ/2g(Mρ , tρ)1/2

×exp{ −
1

2
θ gGG′(Mρ , tρ)[∆G

ρ /θ − gG(Mρ , tρ)]

×[∆G′
ρ /θ − gG′(Mρ , tρ)] + θV(Mρ , tρ)} ,

LI (Ṁ
G, MG, t) =

1

2
(ṀG − gG)gGG′(Ṁ

G′ − gG′) − V ,

g = det(gGG′) ,

gGG′ = (gGG′)−1 ,

∆G
ρ = MG

ρ+1 − MG
ρ . (A.15)

This can be transformed to the Stratonovich representation, in terms of the Feynman LagrangianL
possessing a covariant variational principle,

P[Mt |M0] = ∫ DM
u

ρ=0
Π (2πθ)−Λ/2g(Mρ + ∆ρ , tρ + θ /2)1/2

×exp{ − min

tρ+θ

tρ

∫ dt ′L[M(t ′), Ṁ(t ′), t ′] } , (A.16)

where ‘‘min’’ specifies that Eq. (A.11) is obtained by constrainingL to be expanded about thatM(t)
which makes the actionS = ∫ dt ′L stationary forM(tρ) = Mρ andM(tρ + θ ) = Mρ+1.

One way of proceeding is to expand Eq. (A.15) and compare to Eq. (A.16), but it is somewhat
easier to expand Eq. (A.16) and compare to Eq. (A.15) [60]. It can be shown that expansions to orderθ
suffice, and that∆2 = O(θ ).

Write L in the general form

L =
1

2
gGG′ Ṁ

GṀG′ − hGṀG + b

= L0 + ∆L ,

L0 =
1

2
gGG′ [M(t), t]ṀGṀG′ ,

gGG′ [M(t), t] = gGG′ [M(t), t ′] + gGG′,t ′ [M(t), t ′](t − t ′) + O[(t − t ′)2] ,  (A.17)

wherehG andb must be determined by comparing expansions of Eq. (A.15) and Eq. (A.16). Only theL0

term is dependent on the actualM(t) trajectory, and so
tρ+θ

tρ

∫ dt ∆L = (
1

4
gGG′,t∆G∆G′ − hG∆G −

1

2
hG,G′∆G∆G′ + θ b)|(M ,t) , (A.18)

where ‘‘ |(M ,t)’’ implies evaluation at (M , t).

The determinantg is expanded as

g(M + ∆, t + θ /2)1/2≈g1/2(M , t) exp[
θ
4g

g,t +
1

2g
∆Gg,G
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+
1

4g
∆G∆G′(g,GG′ + g−1g,Gg,G′)]|(M ,t) . (A.19)

The remaining integral overL0 must be performed. This is accomplished using the variational
principle applied to∫ L0 [58],

gGH M̈ H = −
1

2
(gGH,K + gGK,H − gKH ,G)Ṁ K Ṁ H ,

M̈ F = −ΓF
JK Ṁ J Ṁ K ,

ΓF
JK == gLF [JK, L] = gLF (gJL,K + gKL,J − gJK,L) ,

(
1

2
gGH ṀGṀ H ),t = 0 ,

t+θ

t
∫ L0dt≈

θ
2

gGH ṀGṀ H |(M ,t+θ ) . (A.20)

Differentiating the second equation in Eq. (A.20) to obtain
...
M , and expandingṀ(t + θ ) to third order inθ ,

Ṁ(t + θ ) = [
1

θ
∆G −

1

2θ
ΓG

KL∆K ∆L +
1

6θ
(ΓG

KL,N + ΓG
ANΓ A

KL)∆G∆L∆N ]|(M ,t) . (A.21)

Now Eq. (A.16) can be expanded as

P[Mt |M0]dM(t) = ∫ DM
u

ρ=0
Π exp[−

1

2θ
gGG′(M , t)∆G∆G′ + B] ,

DM =
u+1

ρ=1
Π g1/2

ρ
G
Π (2πθ)−1/2dMG

ρ . (A.22)

Expanding expB to O(θ ) requires keeping terms of order∆, ∆2, ∆3/θ , ∆4/θ , and∆6/θ2. Under the path
integral, evaluated at (M , t), and using ‘‘=̇’’ to designate the order of terms obtained from

∫ d∆ ∆n exp(−
1

2θ
∆2),

∆G∆H =̇ θ gGH ,

∆G∆H∆K =̇ θ (∆GgHK + ∆H gGH + ∆K gGH) ,

∆G∆H∆A∆B =̇ θ2(gGH gAB + gGAgHB + gGBgHA) ,

∆A∆B∆C∆D∆E∆F =̇ θ3(gABgCDgEF + 14 permutations) . (A.23)

This expansion of expB is to be compared to Eq. (A.15), expanded as

P[Mt |M0]dM(t)≈ ∫ DM
u

ρ=0
Π exp(−

1

2θ
gGG′∆G∆G′)

×[1 + gGG′ g
G∆G′ + θV + O(θ3/2)] , (A.24)

yielding identification ofhG andb in Eq. (A.16),

hG = gGG′ hG′ = gG −
1

2
g−1/2(g1/2gGG′),G′ ,
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b =
1

2
hGhG +

1

2
hG

;G + R/6 − V ,

hG
;G = hG

,G + ΓF
GFhG = g−1/2(g1/2hG),G ,

R = gJLRJL = gJLgFK RFJKL . (A.25)

The result is

P[Mt |Mt0]dM(t) = ∫ . . . ∫ DM exp(−min
t

t0
∫ dt ′L)δ [M(t0) = M0]δ [M(t) = Mt ] ,

DM =
u→∞
lim

u+1

ρ=1
Π g1/2

G
Π (2πθ)−1/2dMG

ρ ,

L(ṀG, MG, t) =
1

2
(ṀG − hG)gGG′(Ṁ

G′ − hG′) +
1

2
hG

;G + R/6 − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

g = det(gGG′) ,

hG
;G = hG

,G + ΓF
GFhG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK, L] = gLF (gJL,K + gKL,J − gJK,L) ,

R = gJLRJL = gJLgJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK,FL − gFL,JK + gJL,FK ) + gMN(ΓM

FK ΓN
JL − ΓM

FLΓN
JK) .  (A.26)

In summary, because of the presence of multiplicative noise, the Langevin system differs in its Itoˆ
(prepoint) and Stratonovich (midpoint) discretizations. The midpoint-discretized covariant description, in
terms of the Feynman Lagrangian, is defined such that (arbitrary) fluctuations occur about solutions to the
Euler-Lagrange variational equations. In contrast, the usual Itoˆ and corresponding Stratonovich
discretizations are defined such that the path integral reduces to the Fokker-Planck equation in the weak-
noise limit. The termR/6 in the Feynman Lagrangian includes a contribution ofR/12 from the WKB
approximation to the same order of (∆t)3/2 [23].
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