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One-meson-exchange Feynman diagrams are nonrelativistically reduced and unitarized via ~chrodinger's 
equation. Properties of nucleon-nucleon scattering are calculated at incident laboratory energ1~s of 25-310 
MeV. Bound-state properties of the deuteron and of nuclear matter are also calcu.lated. _M:esons mcluded are 
the 7r, ri, <T, p, w, and 'P· Very good over-all agreement with the experimental data rs obtamed._Im~ortant fea­
tures of this "potential" include its momentum dependence, prop~rly treated, and th~ contnbut10n of t~e <T 

"meson," which qualitatively changes the central/tensor force rat10 from that of prev10us phenomenolog1cal 
potentials. 

I. INTRODUCTION 

PREVIOUS theoretical and experimental studies 
demonstrate that forces between two nucleons arise 

from their mutual interaction via mesons. Because of 
theoretical difficulties, however, it has been traditional 
to describe this interaction by an arbitrary function 
with parameters fitted to experimental data. The prob­
lem to date has been to maximally utilize the basic 
theory of meson exchanges to develop a consistent for­
malism to deal with nuclear forces in a variety of physi­
cal situations including scattering and bound-states 
problems. 

In the elastic scattering region below inelastic thresh­
olds about 350-MeV incident lab energy, important 
pro~ress has been made by Scotti and Wong.1 They 
postulated forces due to meson exchange via a Lagran­
gian interaction, and (essentially) unitarized this in­
teraction Lagrangian via methods of dispersion rela­
tions. Despite some uncertainties associated with de­
scriptions of the mesons (Regge cutoffs, etc.) and with 
dispersion theory itself (subtraction, unitarization, etc.), 
a good fit to the experimental data was achieved within 
the elastic scattering region (0-400-MeV incident lab 
energy). 

Within this energy region, it may be possible to de­
scribe an interacting system of nucleons (scattering and 
bound states) with a formalism consistent with Schro­
dinger's equation. This would enable this interaction _to 
be used with more confidence in other nuclear-physics 
calculations, especially in those problems like nuclear 
matter, which are constructed within a Schrodinger 
framework. Besides introducing a new functional form 
of the nucleon-nucleon interaction, maximally utilizing 
meson-exchange information, this momentum-depen­
dent potential can be used more consistently than previ­
ous potentials to describe the basic nucleon-nucleon 
interaction in different physics problems: Other poten-

* Submitted in partial fulfillment for Ph.D. requirements at 
University of California, San Diego. 

t Supported by the U. S. Atomic Energy Commission. 
t Present address: Lawrence Radiation Laboratory, University 

of California, Berkeley, Calif. 
1 A. Scotti and D. Wong, Phys. Rev. 138, B145 (1965), referred 

to as SW in the text. 
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tials are "fit" to the scattering data using different func­
tional forms in different partial waves. As the nucleons 
really interact via the entire interaction simultaneously 
present in all partial waves, it seems to be more con­
sistent to use, in other physics problems like nuclear 
matter, an interaction with parameters common to the 
entire interaction (like coupling constants and meson 
masses) rather than parameters defined only in indi­
vidual ~artial waves. It should be noted that investiga­
tors working with other potentials have consistently 
expressed concern when applying their potentials to 
nuclear matter. 2 

The method is straightforward: A nonrelativistic re­
duction of Lagrangian field equations describing free 
nucleons yields the Schrodinger equation upon minimi­
zation of the action. It is now proposed to make a similar 
nonrelativistic reduction of the total Lagrangian (in­
cluding interactions via meson exchange) to the sam_e 
"order" (nonrelativistic reduction of Feynman ampli­
tudes) and attempt to "correctly" solve the resulting 
equations. Some deficiencies of the theory are ignored, 
such as those associated with divergences of the p vector 
meson; higher nonrelativistic corrections are also not 
considered. In fact, no attempt has been made to show 
that this theory is a proper nonrelativistic reduction of 
any relativistic theory. 

For the nuclear-matter calculation, the Brueckner­
Masterson formalism (many-body Schrodinger theory) 
is used.3 

II. POTENTIALS DERIVED FROM LAGRANGIAN 

The following Lagrangians representing the interac­
tion of nucleons with other particles or resonances will 
be considered: 

7r meson (pseudoscalar in coordinate space and iso­
vector in charge space): 

£, = (47r) 1
'
2g .. ifrt5~· '!' .. if;' (2.1) 

where g .. is the coupling stre~gth of the meson field 
"' .. to the nucleon fields if; and If. 

2 K. Lassila, M. Hull, Jr., H. M. Ruppel, F. A. McDonald, and 
G. Breit Phys. Rev. 126, 881 (1962). 

• K. s'. Masterson, thesis, University of California, San Diego, 
1963 (unpublished). 
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'Y/ meson (pseudoscalar in coordinate space and iso­
scalar in charge space) : 

(2.2) 

u meson (scalar in both coordinate and charge 
spaces): The u is not established to be a bona fide 
meson. 4 It will be used here to approximately represent 
a strong 71'-71' S-wave resonance. 1 The "parameters" ga 
andµ. (mass) will hopefully simulate two-pion-exchange 
effects: 

FIG. 1. Feynman diagram of 
one-meson-exchange contribu­
tion to nuclear-nuclear scatter­
ing. 

I , q 

I, q 

I 

2,-q 
I 

2,-q 

(2.3) (2.7) designates the spin states: 

p meson (vector in both coordinate and charge 
spaces): 

£p = i( 47r)1i2(gp1+ gp2)f'Yv't' 'P/1/1 
-(47r) 1 i 2(gp2/2mp)(q+q')vtf't · 'P/1/1 · (2.4) 

The tensor coupling constant (or anomalous mag­
netic-current term) gp2 is also included as suggested by 
the experimentally determined magnetic moment form 
factor of the nucleon. 1 

w and 'P mesons (vectors in coordinate space and 
scalars in charge space): 

£w(<p) = i(47r) 112gw(<PJ1f'Yv'Pw(<P)'1/; · (2.5) 

[These five mesons (including the tensor coupling of 
the p) also exhaust the five possibilities of Dirac 'Y ma­
trices that can describe the various meson exchanges.] 

A spinor representation5 for 1/; is then picked: 

(2.6) 

where A takes the value + 1 or -1 corresponding to 
a positive or negative energy state, respectively, and 1 or 
2 designates positive or negative helicity, i.e., 

UA 1(q) = (E+m)
1
'
2 I G) 

2E ~(1) 
E+m 0 

G) 
(2.7) 

f=AE=A(p2+m2) 1t2, and m designates the rest mass 
of the nucleon, taken to be the same for protons and 
neutrons, and p2 = h2q2 =q2(h= 1) is the square of the 
three-momentum (p will be the operator V in Schro­
dinger's equation). The inner column matrices in Eq. 

4 W. D. Walker, Rev. Mod. Phys. 39, 693 (1967). 
'S. S. Schweber, Introduction to Relativistic Quantum Field 

Theory (Row, Peterson and Co., New York, 1961). 

G) 
has just a positive helicity component. 

For example, the "potential," before a nonrelativistic 
reduction, for the 7f' meson (with massµ) is (see Fig. 1) 

(E'+m)(E+m) 
M(q,q')"'- ul' (q'-q) 

4EE' 

where L\2 = (q-q') 2 is the square of the momentum 
transferred via the 7f' meson. [For inelastic scattering, 
the "propagator" is 

For nuclear matter, where inelastic scattering can take 
place, one can only hope that /E'-E/«µ 2• Also, see 
the comment about u1 · (p1- p;)u2 · (p1- p;)/m2 made at 
Eq. (4.10) in the section on nuclear matter.] 

There are five independent amplitudes for each 
meson exchanged, depending on the final and initial 
z components of the total spin of the nucleons: 

Partial-wave 
amplitude 

singlet l=L 

triplet l=L 

coupled l=L±l 

(triplet) 

(1) 

(2) 

(3) 

(4) 

(5) 

Corresponding helicity 
amplitude 

In Out 

1 1 
-(il-li) 
v2 

-(il-li) 
v2 

1 1 
-cu+rn 
v2 

-(fl+li) 
v2 

H ll 
n n 
H n 

(6) (II Jl) 
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[amplitude (6) is equal to the amplitude for elastic scat­
tering, (5) due to invariance under time reversal]. 

For elastic scattering, there are conveniently also 
five independent "Wigner amplitudes"6 in coordinate 
space that can be constructed out of bilinear combina­
tions of the spin and momenta (to order p2). It is "wise" 
to pick 

1, a1·a2, (rXp)·S, (3a1·fo2·f-a1·a2)=S12; 

a1 ·pa2·p/m2, 
(2.9) 

where p= V r/i. Thus, the potential in coordinate space 
can be obtained from the amplitude in momentum 
space, Eq. (2.8): 

W= W1+W.1• 2a1·a2+ W s 12S12 
+WLsL·S+a1·pW.p112·P, (2.10) 

defined by 

(2.10') 

To facilitate the calculation, an intermediate set of 
amplitudes in momentum space is picked: 

f1..(A,p 2)= L a8A)M;(A,p2), (2.11) 
i=l,0"11n,S121 

LS.trP 

where f1.. is, for example, one of the five invariant helicity 
amplitudes which have been found from the amplitudes 
for meson exchange. These five equations are then in­
verted to find 

(2.12) 

Any five independent amplitudes could be picked for 
the j-,... Wong7 chose these helicity amplitudes because 
of their nice analyticity properties. For example, for 
fi. one could pick in momentum space 

1, 111·0"2, (a1+0'2)·(qXq1
); 

-!i0"1 · (q-q1)0"2"(q-q1
)' (2.9') 

-!i0"1 · (q+q1)0"2· (q+q'). 

This set of projection amplitudes lends itself quite easily 
to reduction of the Feynman amplitudes with the nu­
cleon spinors expressed in the helicity representation. 5 

They also have the advantage that the corresponding 
"a" matrix in Eq. (2.12) is quite easy to calculate, and 
so are their Fourier transforms, Eq. (2.10'). 

Finally, one takes spherical Bessel transforms, which 
arise from the angular reduction of the Fourier trans­
forms, to find W;(r,p2). The five Wigner operators are 
eigenoperators of eigenfunctions of the total angular 
momentum (L+S= 1), and by expressing the potential 
by means of this set, the W; lend themselves, trivially, 
to a partial-wave reduction. For this purpose a1 · p0"2 • p 

6 J. L. Gammel and R. M. Thaler, Progr. Elem. Particle Cosmic 
Ray Phys. 5, 99 (1960). 

7 D. Wong, Nucl. Phys. 55, 212 (1963). 

is given in a more useful form in Appendix B. 

M<1;•1·•2;•·p)=-m f W<i;··->jo(Ar)r 2dr, (2.13) 

jo being the spherical Bessel function of zeroth order. 

sin& f 
MLs=S·nip2-(-m) WLs(r);"1(Ar)r3dr 

2A ' 
where 

n=qXq'/lqXq'I 
and 

/qXq'f =P2 sin&, p2 cos&=q·q'. 

(2.15) 

The nonrelativistic reduction of W (r,p2), to get a 
potential V(r,p2

), is done by expanding all powers of 

E (p2+m2)1t2 p2 p4 ps 
--~'-'l+-+-+-+··. 

2m2 6m4 24m6 M 
(2.16) 

m 

and by keeping factors like cos&= 1-A2/2p2 and 1;p2 
which occur in the a-,..i. A phase-space factor of m/(m2 
+p2)1t.2 is also expanded to 1-p2/2m2, allowing local 
potentials to be defined.7 Then all powers higher than 
p2/m2 are dropped. This reduction is thus valid for 
p2/m2«1. The velocity dependence is seen to arise from 
factors of (p2+m2

) 
1t2 and products of O" • q (combinations 

of which are determined by the type of meson being 
exchanged) from the nucleon spinors. 

To remove the a-function singularities at r= O due to 
infinities in momentum-transfer space ' 

cutoffs in the form of products of propagators 
[Il;(A;2-µ2)/(A;2+A2), reexpressed as sums of propa­
gators after partial fractionation] multiplying the inte­
grands of integrals over momentum-transfer space were 
introduced. Il;(A;2-µ2) was chosen as a factor to enable 
g2 for eac~ meson to have the usual meaning [V ,.._,g2 
Xe-µr/r] m the asymptotic region. Four A/s were 
needed to take care of the highest power of A found in 
the "induced-tensor" term of the p meson. (All ampli­
tudes were consistently multiplied by the same cutoff 
factor.) 

Inspection of the various Lagrangians and of the nu­
cleon spinors reveals that, because the spinors are well­
behaved functions of q and q', only the p-meson deriva­
tive coupling term should have any momentum diver­
gences. However, when expanding the spinor normal­
ization factors, 

A2 A2[ p2 
p2+m2"' m2 1-m2]' (2.17) 
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such divergences "appear." The "masses" used to regu­
larize these divergences were, however, larger than the 
nucleon mass which imposed the harshest cutoff restric­
tions as explained below. 

It should be clear that these cutoffs do nothing more 
than mask a complete ignorance of the potential region 
within r~ 1/m. Any reasonable cutoff which will ensure 
an analytic form of the potential throughout coordinate 
space will serve this purpose. This analytic behavior of 
the potential is necessary to correctly carry out the 
simple mathematics performed later in connection with 
the momentum-dependent potential. These cutoffs are 
physically justified only if the contribution to matrix 
elements from regions within r~ 1/m are independent 
of the form of the cutoff. Therefore, it is of interest to do 
more calculations with other soft-core and/or momen­
tun-dependent potentials. 8 

To decrease the singular nature of the potential at 
small distances of r, especially the 1/r3 behavior of the 
L· S and S12 terms, all potentials in coordinate space 
were multiplied by (1-e-rm) 3• As these momentum­
dependent potentials are expansions in p2 /m2, and as 
the highest mass of mesons considered is on the order of 
1 BeV /c2 [cp meson], they should not be considered as 
having any meaning within a distance of "'1/m, or 
0.2 F. Also, the potential within r< 1/m was set equal 
to its value at r= 1/m to aid the numerical solution of 
the phase shifts. For the same "physical" reasons, the 
cutoffs used in the integrals over momentum transfer 
should be on the order of 1 BeV /c2 (but greater than the 
mass of the cp meson). This also influenced the choice 
of meshes which was determined by ensuring that, 
within each interval at least several points spanned both 
the Compton wavelength of the most predominant 
meson in that interval, as well as the conjugate variable 
tor in the Green's functions of Eqs. (3.7'), (4.6), and 
(5.1'). 

Mention should be made that the cutoffs recom­
mended in Ref. 7 

give rise to unphysical oscillatory potentials dying off 
as inverse powers of r, for large values of r. 

A natural way to symmetrize the momentum­
dependent p2 terms arising from the energy expansion is 

Symm (p2i1) = !(p2v+vp2). (2.18) 

However, the u1·pu2·P terms could be written as 

(2.19a) 

a Many other investigators have worked on the problem of 
finding suitable potentials to describe both the scattering and 
nuclear-matter problems. For other approaches, see J. Goto and 
S. Machida, Progr. Theoret. Phys. (Kyoto) 25, 64 (1960); N. 
Hoshizaki and S. Machida, ibid. 24, 1325 (1960); N. Hoshizaki, I. 
Lin, and S. Machida, ibid. 26, 680 (1961). 

(again symmetrical in spins 1 and 2) or as 

!( 0"1 · pvu2 • P+ 0"2 · pvu1 · p). (2.19b) 

Form (b) was chosen, but since a complete set of am­
plitudes is used, either form may be used. 

The 1/r3 singularities are quite unphysical. The at­
tractive tensor potential used without a cutoff would 
predict no lowest eigenvalue for the two-nucleon system 
(i.e., a 3P1 bound state with infinite binding energy) 
which, of course, can exist as a deuteron. This cutoff 
in a purely mechanical problem was first noticed by 
Hans Bethe9 in 1940 as being necessary to calculate 
properties of the deuteron with the two-Yukawa poten­
tials used at that time. 

III. SCATTERING MATRIX 

Schrodinger's equation 

((-h2/m)v2+v(r))if;E+(r)=Eif;E+(r), E=k2/m (3.1) 

can be recast into an integral equation 

if;+(r)= cp(r)+(m/h2) f c+(r-r')v(r')if;+(r')dr'' (3.2) 

where cp= eik·r is a plane wave and G+= -(1/47rl r-r' !) 
X eik· <r-r') is the Green's function for the problem as­
suming outgoing spherical waves as a boundary condi­
tion. (k2 is the total-energy eigenvalue and should not 
be confused -with q2 in Sec. II. The origins of the coor­
dinate-space momentum dependence in the potential, 
as deduced from the total Lagrangian, clearly dictate 
that p2= - ~72, and not p2= k2.) 

The procedure to solve Schrodinger's equation witl;i 
a potential v(r), 

(V2+ k2)if;+(kr) = mv(r)if;+(kr) , (3.3) 

is to first solve the homogeneous problem 

(v2+k2) cp(kr) = 0, 

then to solve for the Green's function 

(3.4) 

where Gkt is determined by a sum over the eigenfunc­
tions determined by the solution of the homogeneous 
equation. This procedure leads to the wave equation 

if;+(kr)= cp(kr)+m f dr'Gk+(r,r')v(r')if;+(kr'), (3.6) 

which expresses if;+ as a sum of the homogeneous and 
inhomogeneous solutions of the differential equation. 

For v(r) rotationally invariant, a partial-wave reduc-

9 H. A. Bethe, Phys. Rev. 57, 260 (1940). 
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tion may be made to find oz; 

f1+(r)= }z(r)+m f G1+(r,r')vz(r')if;1+(r')dr', 

(y;+(kr) = L,(2z+ 1)(i)1P1(k· f)if;z+(kr)), 
l 

giving Oz(k), the phase shift, determined by 

ei0' sinoz= -m f jz(r)v1(r)f 1+(r)dr. 

Similarly, 

i/;z(r)= }z+m f Gz(r,r')vz(r')if;z(r')dr' 

gives 

tanoz= -m f }zvzi/;zdr, 

(3.7) 

(3.8) 

(3.7') 

(3.8') 

and some have rewritten Eq. (3.12), disregarding the 
possibility of division by zero, first as 

and finally as 

v2+ 2 +k2 i/l=O, ( 
k2z-x-1.z" ) 

1-z 

giving an "energy-dependent" potential, 
= (x+tz"-k2z)/(1-z). 

It is felt that a better procedure to solve 

(v2+k2)i/;(kr) = m V(r, V)i/;(kr), 

(3.13) 

(3.14) 

v(r,k2) 

(3.15) 

without modifying the simple boundary conditions of 
Eq. (3.17), is to first solve 

where G1 is the Green's function with standing-wave then solve 
boundary conditions. Neglecting spin, for readability, (V r+ k2)Gk(r,r') = o(r-r'). 

(3.16) 

(3.17) 

the standing-wave solution is One thereby obtains 

limi/;z(kr)= j 1(kr)-'YJz(kr) tanOz(k). (3.9) 
r---ol>OO 

}z and 'Y/z are spherical Bessel and Neumann functions,10 
respectively. This is the result obtained with Gz(r',r) 
"'}z(r dm(r», r <and r> being the lesser and greater of 
rand r', respectively. 

However, the potential derived in Sec. II is momen­
tum-dependent, 

(3.10) 

and to be useful for nuclear-matter calculations a correct 
integral-equation representation must be found. 

If one "retransforms" the differential equation to 
resemble Schrodinger's equation with a pure radial 
function as a potential, the potential becomes a function 
of k, 11 thereby destroying the eigenvalue properties of 
the integral equation. Alternative forms leave the homo­
geneous equation and the Green's-function equation 
with a complicated function multiplying the Laplacian 
operator which destroys the usefulness of the simple 
Green's-function solutions and physical intuition gained 
when using a static potential. For example, the differ~ 
ential equation 

['V2+k2-(x(r)+y(r)d/dr+z(r)d2 /dr2)]i/;= 0 (3.11) 

can certainly be solved by numerical means (for x, y, 
and z well behaved). However, previous authors have, 
by setting y= 0, recast this equation into the form 

(3.12) 

10 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., 
New York, 1955). 

11 A. N. Green, Nucl. Phys. 33, 218 (1961). In this paper the 
potential was used incorrectly in an integral equation to discuss 
nuclear matter. 

i/;(kr)=X(kr)+m f dr'Gk(r,r'){V(r',\7r,)i/;(kr')}, (3.18) 

the arrow over 'Y indicating the direction of operation. 
After a partial-wave reduction, 

(r< is the lesser of rand r', and r> the greater), which 
gives a formula for the phase shift, 

tanoz(k) = -mfdr }z(kr){V z(r, V)i/;z(kr)} , 
(3.20) 

m Vz(r, ~) = xz(r)+yz(r)d/ dr+zz(r)d2/dr 2 

for the potential forms derived in Sec. II. Similar 
coupled equations hold for the triplet J=L±1 partial 
waves [see Eq. (4.6)]. 

Integration by parts, for a potential well-behaved at 
the origin (say, as a constant), and decreasing expo­
nentially at infinity, yields 

and 
(3.21) 

tanoz= - f dr i/;z{Xz+ Yzd/dr+Z1d2/dr2}j1 , 

(3.22) 
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The singularity from d2G / dr2 has been explicitly taken 
out and added to the left-hand side of Eq. (3.21). 

Y1 contains ad/ dr term from the o" p amplitude which 
previously could not be properly used in calculations 
using the "transformed equations" [Eq. (3.13)] which 
is the probable reason many previous calculations just 
used four of the five possible independent potential 
forms. Since Gz(r,r') and j 1(r), and their derivatives, are 
simple functions of sines and cosines, these equations are 
no harder to solve than those using a potential depend­
ing solely on a radial parameter. 

This was checked numerically by solving the 1So­
state equation at 95-MeV incident lab energy, first by 
a Runge-Kutta method for the differential equation, 
and then by using matrix inversion for the integral 
equation. Only the potential used as defined here gave 
the correct wave function and phase shifts when com­
parison between the two solutions were made. Com­
parisons were made with the formulation of Green11 

in the energy range of 25-310-MeV incident lab energy. 
Disagreements of 1-123 were found, the larger occur­
ring at higher energies. This served as both a check on 
the accuracy of the integral equation (meshes, etc.) 
and also as a verification of the importance of solving 
the correct eigenvalue problem presented above. In light 
of this, previous calculations involving energy-depend­
ent potentials and/or energy-dependent boundary con­
ditions should be reexamined as to their regions of 
validity. 

The integrals were done using three regions of 10-
point Gaussian quadratures: 

(1) r= 0-3 (BeV / lic)-1 , 

(2) r= 3-12 (BeV/lic)-1 , 

(3) r=12-30 (BeV/lic)-1 • 

The conversion factor from fermis to (BeV /lic)- 1 is 
1 F= 5.0686 (BeV / lic)-1• The mass of the nucleon, m, 
is taken to be the averaged masses of the proton and 
neutron: 

m=0.93886 BeV/c2
• 

To solve 

lf,=X,+ f dr'Kr,r.lfr'~X, 
+ L Kr,r'lfr'=Xr+(Klf)r, (3.23) 

r' 

matrix inversion was performed: 

(3.24) 

IV. NUCLEAR MATTER 

The two properties sought in a nuclear-matter calcu­
lation are the volume term of the Bethe-Weizaacker 
semiempirical mass formula, and the uniform saturation 
density of large nuclei. 3 The experimental binding en­
ergy is taken to be -15.5± 2.0 MeV. The mean spacing 

between nuclei in a saturated large nucleus is taken to 
be 1.12±0.02 F. 

The calculations of nuclear matter, as performed by 
BM, 12 were done for various potentials. It therefore 
seemed more fruitful to do a similar many-body calcu­
lation in order to directly compare the effects of the 
functional forms of those potentials to this work. 8 It 
was also hoped that the well-behaved potentials used 
would make the approximations used in BM more 
palatable. 

The theory developed by Brueckner12 describes the 
interactions of nucleons with energies below the surface 
of the Fermi sea. The surface, or boundary, of a Fermi 
sea of fermions (kF, in terms of the momentum) is de­
fined as the highest occupied energy level at zero tem­
perature. The Brueckner theory describes these inter­
actions via "particles" above the Fermi sea, corre­
sponding to repeated interactions ("ladder sum") of 
each pair; and the theory also takes into account the 
forward scattering ("self-energy") of the excited "par­
ticles" with the unexcited "holes" of the nuclear me­
dium, to infinite order. 

Since BM did not calculate the correct observed bind­
ing energy of nuclear matter, continuing research has 
been concerned both with the examination of Brueckner 
theory itself, as well as with the "input" to the theory, 
which is the nucleon-nucleon interaction. The former 
avenue of research has led to the approximate summing 
of three-body scattering corrections. As calculated by 
Bethe and by Day, these corrections turn out to be 
rather small. 12 The latter avenue of research has led to 
the present work. 

First to be calculated are Green's functions 

, 11"" k112dk"j1(k"r)j1(k"r1)f(P,k") 
G1(r,r )=-

Jr o [E(k)-E*(k")J 
(4.1) 

for on-energy shell propagation, and with E(k)-E*(k") 
- f.E as a denominator for off-energy shell propagation 
(see Eq. 4.8b); E(k)=E(kF) for k?.kF due to averaging 
of the center-of-mass momenta. This last approximation 
adds about 1-MeV binding to the binding energy.12 
t.E is an approximate mean excitation energy=E(kF) 
-E(O). Pis an average total momentum 

P 2=Pav2= 
12kF2(1-!:__)(1+~+~)/(1+!:__), 
5 kF 2h 6kF2 kF 

for k<kF (4.2) 

12 K. A. Brueckner and K. S. Masterson, Phys. Rev. 128, 2267 
(1962), referred to as BM in the text. This paper contains refer­
ences to previous preliminary works on "Brueckner" theory. For 
a current analysis of Brueckner-Goldstone theory and associated 
problems in nuclear matter, see the articles by B. D. Day [Rev. 
Mod. Phys. 39, 719 (1967)], R. Rajaraman and H. A. Bethe 
[ibid. 39, 745 (1967)], and B. H. Brandow [ibid. 39, 771 (1967)]. 
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J(P,k") is the angular average of the Pauli exclusion­
principle projection operator: 

f(P,k")=O, (k"+P 2/4) 112 <kp 

= 1, (k"-P/2) 

k"+P2/4-kF2 

k"P 
otherwise. (4.3) 

The integral from zero to infinity was calculated as13 

112.6kF 
- dk"k"2j 1(k"r)ji(k"r') 
7f 0 

f(P,k") 1 } 

X {E(k)-E*(k") [E(k)-k"2/2m] 

11"' dk"k" 2j 1(k"r)j1(k"r') 
+- ' 

7f o [E(k)-k"2/2m] 
(4.4) 

because E*(k") was set equal to k" /2m for k"> 2.6kF. 
The last integral can be analytically evaluated; 

11"' k2j1(kr)j1(kr') 
- dk mah1(iar>)j,(iar<), 
7f 0 z-k2/2m 

(4.5) 

where a=[ -2mz]1' 2 (z is always <O); j1 and h1 are 
lth-order spherical Bessel and Hankel functions, re­
spectively, with r> designating the greater value of r 
and r', and r< designating the lesser. 

Wave functions: 

1f;i./8(kr)= j 1(kr)o1,1+m 1"' dr'r' 2Gl'(r,r') 

J+l 
X L: Vz,uJ 8 (r',V)t/;1u1J 8 (kr'), (4.6) 

l''=J-1 

here written for both coupled and uncoupled (L:z" -t 

LI" 01"1' and 1/;1,1-t 01'11/;1) partial waves. 

K matrices: 

J+l 1"' Kkk=hL: L: Cns r2dr jz(kr) 
JS l=J-1 o 

J+l 
X L: VuJ 8 (r,V)tf;uJ 8 (r). (4.7) 

l'=J-1 

Cns, the appropriate statistical weight, is given by 

t[(2T+ 1)(2J+ 1)]( = 1 for S states), 

T being the isospin, and J being the total angular mo­
mentum of the state in question. 

1• S. Coon and J. Dabrowski, Phys. Rev. 140, B287 (1965). 

Single-particle potential: 

6

1
(kF-k)/2 

'O(k)=- k'2dk'(k'/K/k') 
7f2 0 

3 (kF+k)/2 

+--; f k' 2dk' (k' I KI k') 
7f lkF-kl/2 

for k<kF. For k'?_kp, the first integral vanishes. 
The self-consistent energy is 

E(k) =k2/2m+1J(k), 

and the binding energy per particle 

(F ( k2 ) (F 
= J 

0 
dk 

2
m +t'O(k) / J 

0 
die 

(4.Sa) 

(4.Sb) 

(4.9) 

The arrows on top of Vl'l" and Vil' in the wave­
function and K-matrix equations mean V', in V(r,Vr) 
operates on G1, and j1, respectively, according to the 
index of V',. This is consistent with the treatment of the 
momentum-dependent potential as used in Sec. III. 

At this point mention should be made that when cal­
culating off the energy shell (inelastic scattering), a new, 
sixth, invariant potential form (in coordinate space) can 
arise: 

( 4.10) 

Pi and P1 being the initial and final scattering mo­
mentum operators, respectively. Since we wish to com­
pare calculations made here with those of BM, 12 this 
sixth form will not be included. Moreover, since it is 
proportional to p;,//m2, its effects will not be noticed 
until high momenta, where the scattering process is as­
sumed to be elastic and p;-P1=0. 

Again 10-point Gaussian quadratures were used, this 
time in four regions: 

r= (0-2), (2-10), (10-21), (21-41) (BeV/hc)- 1 • 

In the last region, tf;ll' was set equal to j 1oll'. The mo­
mentum mesh used was the same as in BM12 : 

k = (0.1,0.3,0.5,0. 7,0.9, 1, 1.4, 1.8)kF. 

The Fermi momentum is given, in (BeV /c), as 
kp= 1.524/ro, if ro is in (BeV /hc)-1 or kF=0.3006/ro, if 
ro is in fermis: 

2X2X!dF3 

(!7rro3)-1 = p= N /V =----­
(hh ) 3 

The computation for each value of the Fermi momen­
tum (including the exclusion-principle integral) took 
about 7.5 sec (30 points of r mesh), and one major itera­
tion took about 12 min (2 min of which were used to 
tabulate Bessel functions, potentials, etc.). The calcu-
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lations were performed on the CDC 3600 computer at 
the University of California, San Diego. 

The equations actually solved (as in the scattering 
problem) were for the radial wave functions u(kr) 
= kn/;(kr) because of the resulting simplification of the 
functional form of the kernel of the integral equations. 

V. CONCLUSIONS 

A. Phase-Shift Analysis and the Deuteron 

The experimental data for the phase shifts to be fit 
was obtained from analyses at 25-, SO-, 95-, 142-, 210-, 
and 310-MeV lab incident kinetic energy compiled by 
Noyes et al. 14 A fit of the 351, 1So, 3Po, 3P1, and 3P2 was 
done at the six energies mentioned above. 

{
O;(calc)-oi(expt)} 2 

X2 = L 
i~expt data Aoi(expt error) 

=446.S (30 pieces of data) 

was obtained for the following data: Taken as fixed, 
were the pion (g,,.2= 14, µ,,.=0.135) (BeV/c2), the ri 
(g~2 = 14, µ~= 0.548) and the masses of the w and cp 

(µ.,= 0. 78, µ"'= 1.02). These were picked for comparisons 
to SW1• 

The parameters were the O" (ga2= 3.036, µa= 0.461), 
the p (gp 1

2= 1.1, gp2
2= 21.9, µp=0.531), the w and cp 

couplings (g.,2= g "'2 = 3.03), and the cutoffs [A1 = 2.32, 
AA= -0.156 is the increment of Ai determining the 
other three cutoffs, An=A1+ (n-l)AA]. 

This fit was achieved by varying each parameter until 
a local minimum in X2 was reached and then this 
over-all fit was checked by redoing the fit with each 
parameter. 

A true X2 should reflect the correlation between errors 
contained in the associated "error matrix." However, 
the "uncorrelated X2" calculated here is so large that it 
loses any real statistical meaning, and just serves as a 
rough comparative check between different potentials. 
Calculations employing fits to the phase shifts instead 
of directly fitting primary data (cross sections, polariza­
tions, etc.) were done because of the ease of calculations 
and because it was felt the S states should be strongly 
weighted in the scattering analysis since this potential 
was going to be used for nuclear-matter calculations. 

In order to understand the meaning of this fit-since 
other phase-shift analyses either use different data 
and/or rely on more primary experimental data (polari­
zation and cross-section data)-it proves enlightening 
to do the same calculation with two other potentials 
widely in use, the Breit potential (81 parameters), more 
commonly referred to as the "Yale" potential, 2 and the 
Brueckner-Gammel-Thaler (BGT) potential, both re-

14 M. H. MacGregor, R. A. Arndt, and A. A. Dubow, Phys. Rev. 
135, B628 (1964); M. H. MacGregor and R. A. Arndt, ibid. 139, 
B362 (1965); H.P. Noyes, D.S. Bailey, R. A. Arndt, and M. H. 
MacGregor, ibid. 139, B380 (1965). 

ported in BM.i2 The fits were done to the same data 
with no attempt to readjust parameters. Therefore, no 
quantitative conclusions should be made about the 
superiority of this potential over others; but one should 
recognize that "reasonable" fits were obtained with few 
parameters. Also, in Sec. V B, the phase shift will help 
to illustrate how this potential gives more binding in 
nuclear matter. 

The BGT potential gave a X2 of 1596.6. The Breit po­
tential, using a core of 0.506 F (isospin T= 0 states 
should have a core of 0.5002 F, and isospin T= 1 states 
should have a core of 0.5116 F), gave a X2 of 497. The 
infinite repulsive core was approximately simulated by 
a potential of 10 000 BeV in the core region. 

However, the D states are rather difficult to fit, and 
without any further adjustment of parameters, a X2 was 
calculated for all S, P, and D waves (66 pieces of 
data): This potential (POT) gave X2= 1483.S, BGT 
gave X2= 2540.4, Breit (using the proper cores) gave 
X2 =513.0. 

To solve the deuteron problem, the following pro­
cedure was used: The deuteron Schrodinger's equation 
can be recast into a set of coupled integral equations 
(with no inhomogeneous terms), and with the Green's 
function being the same function as the asymptotic 
Green's function for the nuclear-matter problem, Eq. 
(4.5) [the conjugate variable being 7= (-mE)1'2, 
where E is the binding energy of the deuteron]. The 
bound-state problem can then be written as 

(u) f (Gs 0) =mr dr' 
W -yr 0 GD 7r,7r' 

(Vs Vr)(u) 1 
X Vr VD W "Yr'-;; 

(S.la) 

or as 
(S.lb) 

where u and w are the coupled S- and D-state wave 
functions [see Eq. (5.4)], respectively, and where K 1 
and K2 are matrices achieved by numerically approxi­
mating all integrals by finite sums. The condition for 
solubility of the ensuing set of linear equations repre­
sented by Eq. (5.1) is 

det!Ki(e) I =0, (5.2) 

independent of the eigenfunctions u and w. 
A "search" was done to find the value of E satisfying 

the condition Eq. (5.2), thus giving the NXN matrix 
Ki, N being the number of mesh points. The homo­
geneous problem, expressed as N linear equations, (5.1) 
is solved by using the determinental condition, Eq. (5.2), 
to set one of the u(r;), i= 1, · · ·, N, equal to a constant 
(say 1). Then, (N-1) entries of one column of the 
NXN matrix Ki can be used as an inhomogeneous 
vector V(Ki) for the set of (N-l)X(N-1) equations: 

(5.3) 
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which is solved for u' [a vector with (N-1) entries] 
directly by matrix inversion, after which the eigen­
vector w can be calculated by Eq. (5.1). 

At the correct energy eigenvalue, the deuteron wave 
function was used to calculate the electric quadrupole 
moment of the deuteron15 given as 

Q= (<I>Jr2P 2(cos0)<I>)/( <I>,<I>), (5.4) 

<I> being the total 3S1-state wave function-the sum of 
an S-state part and a D-state part, <I>= (u/r)Po(cosO) 
+(w/r)P2(cos0). Q is expressed as 

Q= {-
1
- (' r2uwdr-!_ ["" r2w2dr} / 

(50) 1' 2 Jo 20 Jo 

At a binding energy of -8.09 .MeV, a quadrupole mo­
ment of 0.212 F2 was calculated. (The experimental 
numbers are -2.22 .MeV and 0.274 F2, respectively.) 

It should be understood that the usual procedure in 
fitting the deuteron is to first put in the exact binding 
energy and then treat the central/tensor potential ratio 
as a parameter to be fit to an eigenvalue condition. Thus 
it is not clear just what the error in the binding energy 
is. In work currently being done on this problem, more 
care is being given to properly include the deuteron 
data (binding energy and quadrupole moment) as part 
of the X2 fit to define the interaction potential. 

B. Nuclear Matter 

Nuclear-matter calculations were done at kF= 0.22, 
0.25, 0.275, 0.295 BeV / c, obtaining -14.6-MeV binding 
at kF= 0.26( = > ro= 1.15 F). (See Fig. 2.) 

-12 

1~1i- 1 1 
kr (BeV/cl 

FIG. 2. Binding energy versus kF for POT x'=446. 
[1 F=5.07 (BeV/:hc)-1.] 

16 J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John 
Wiley & Sons, Inc., New York, 1952). 

One check on the calculations was to obtain equal 
phase shifts, for very low energies, between the nuclear 
matter (no exclusion principle and free energy spectrum) 
and the scattering computer codes. The scattering code 
was best checked by obtaining the same solutions by 
also solving the corresponding differential equa­
tion. The Gaussian-quadrature mesh gave at least 
three significant figure accuracy in the wave-function 
calculations. 

As concerns the nuclear-matter calculation, probably 
the most important property of the nucleon-nucleon po­
tential is the central/tensor ratio. This apparently non­
unique ratio to be fit by the scattering data gives quite 
different answers for the binding energy, the larger ratio 
giving the greater binding.12 On Fig. 3 is plotted the 

0.2 

o~ .. ·~;:.;:..:..::..:: 
... ·;/,... 

.· / 
-0.02 ... / 

0.1 

: I 

-0.04/ 

I 
-006 

-- POT 

---- BGT -0.2 /:' 

BREIT 

-2 -0.3 
4 4 8 12 16 20 

[ BeVnc]" 

FIG. 3. Tensor potentials from POT, BGT, and Breit (POT is 
evaluated at 95-MeV lab energy). The "bump" at r~9 is ex­
plained in the caption of Fig. 7. 

diagonal part of the tensor force, 

--
1-(x + Y-~+z~)ccr,r), 

mG(r,r) dr dr2 
(5.6) 

versus the tensor forces of the BGT potential and the 
Breit potential. The large, short-range repulsion of the 
tensor force in the scattering problem was found to be 
unimportant as only slight changes in the scattering 
problem were produced upon erroneous inclusion of the 
hard core in the off-diagonal tensor potential when doing 
the HGT calculations. This is because the large repul­
sion of the central force drives the wave function~ 0 
in this region. The much smaller attractive part of the 
POT tensor force is to be noted. 

Although all three potentials give substantially the 
same nuclear-bar phase shifts for 3S1 and 3D1, it is very 
elucidating to compare the ratio of 

(5.7) 

where Vo and >/;1 are the diagonal potential and wave 
function, respectively, and VT and 1/12 are the associated 
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coupled, off-diagonal potential and wave function (see 
Table I). 

Although POT gives a more "reasonable" ratio for 
the 3S1 matrix elements when compared to the 1So phase 
shifts to which the 3S1 nuclear-bar phase shifts are close, 
this larger central/tensor admixture can be better 
understood as a large central contribution of the u 
meson which is not contained in the other potentials. 
The argument that this contribution is necessary, by 
considering either the u meson or contributions from 
7f-7r exchanges, is well formulated in SW. 1 

The qualitative differences due to this very large 
central/tensor ratio (Rc;r) explains why these calcu­
lations give more binding in nuclear matter. In Table 
II, the :first column gives the ratio of the two 3S1 matrix 
elements (the sum of which contributes to the K ma­
trix). The denominator is the matrix element of the 
tensor potential. The second column gives the contribu­
tion to the K matrix when the tensor potential is set 
identically to zero. The third column gives the fraction 

-16 

> 

~ 
>-
ES -11 
z: 

"' "' z: 
c 
z: 
o; 

kF (BeV/c) 

FIG. 4. Binding energy versus kF for POT x 2 =770. 

of attraction gained with V r= 0 [i.e., (value with V r= 0 
-full value)/(full value)]. 

To measure the sensitivity of the binding energy and 
equilibrium density to these potentials, a calculation 
was done using parameters giving a X2 = 770 for the 
3S1, 1So, 3Po.1,2 states: g"2 =g~2 = 14, gu2 =3.05, gp 1

2 

=1.1, gp 2
2 =21.9, g.,2=g"'2=3, µ"=0.135 (BeV/c2

), 

µu=0.45, µp-0.531, µ"'=0.78, µ"'= 1.02 µ~=0.548, ilA= 
-0.152, A1=2.32. These numbers are, not very differ­
ent from those giving X2 = 446, but a greater Rc;r ratio 
did exist for X2= 770, showing some sensitivity in even 
the scattering problem calculation to the effective cen­
tral-to-tensor ratios. The result of the nuclear-matter 
calculation was 17.8-MeV binding at a density of 
kF= 0.27 Cro= 1.11 F) for this potential (see Fig. 4). 

As the D waves were not carefully :fitted to the scat­
tering data, a comparison of D-wave contributions was 
made to that of the Breit potential which does :fit the 
scattering data rather well. The Breit potential gave a 
D-state contribution of - 7.27 MeV to the binding en­
ergy, while POT gave a D-state contribution of -8.73 

. TABLE I. Rc1T for nucleon scattering. For the scattering data it 
is the sum of the arctangents of the numerator and denominator 
which determine the contribution to the 3S 1 phase shift while for 
nucle~r matter, the "straight" sum is needed. In order t~ examine 
the sign as well as the smaller and larger of these two contribu­
tions, the ratio is so given in this and the following three tables 
instead of just one number. ' 

Lab energy 
(BeV) POT Breit BGT 

0.025 t.44 I 0.254 -1.13 /1.435 1.027 /1.434 
0.095 1.033/-0.576 -0.745 /1.096 0.031 /0.78 
0.21 0.754/-0.664 -0.7366/0.919 -0.197 /0.503 
0.31 0.627 /-0.671 -0.761 /0.835 -0.3161/0.394 

MeV, a difference of 1.46 MeV. Inclusion of the F G 
and H partial waves, obtained directly from the ex~eri~ 
mental phase shifts gave a repulsion of 0.2. If one used 
just Breit's D states, a binding energy of -12.9 is ob­
tained, still 4.6 MeV lower than the Breit potential gave 
for the entire calculation. This result is explained by the 
higher central/tensor ratio, as discussed above. [It 
should be stressed that phenomenological potentials 
which differ-in the sense of different forms of Eq. 
(2.10)-in different angular momentum states have an 
ambiguous "meaning" when applied to different physi­
cal problems, as the nucleons are physically described 
by the total wave function.] 

Calculations at kp=0.275 of the X2 = 770 potential, 
using the resultant self-consistent spectrums were done 
to test the validity of certain other approximations: 

. (1) The reference spectrum approximation, 16 drop­
pmg 

1
2.6kF { j(P k') 

dk' ' 
o E(k )-E*(k') E(k)-

1

k12/2m} 

Xj1(k'r)j1(k'r1
) (5.8) 

(done for both P and D waves), gave the same K matrix 
as calculations done by including the above integral as 
part of the Green's function to within 0.13. This is seen 
to be due to cancellation of 

dk' .. 1
~kp (-1) 

o E(k)-k'2/2mJiJi, 
(5.9) 

when f(P,k') is =O, with the rest of the integral where 
f(P,k'),..., 1. 

TABLE II. Rc;T for K,matrix [(hc/BeV) 2//ic]. 

POT Breit 
k/kF Full Vr=O % Full Vr=O % 
0.1 -260.0/112.8 -255.6 0.625 5.6/-103.5 -11.7 -0.882 
0.5 -176.3/98.7 -167.9 1.16 43.2/-89.6 25.7 -1.92 
0.9 -91.3/67.3 -84.5 4.63 56.1/-66.5 36.9 -4.55 

16 H. A. Bethe, B. H. Brandow, and A. G. Petschek Phys. Rev. 
129, 225 (1963). ' 



1260 LESTER INGBER 174 

(2) Use of the free-particle energy spectrum for states 
above the Fermi surface instead of the self-consistent 
one in the S-state Green's function gave a binding en­
ergy of -15.47 MeV, or 1.5 MeV less binding, than the 
calculation using the self-consistent particle energies at 
kp=0.275. 

(3) To illustrate the importance or recognizing the 
momentum-dependent nature of POT, a binding-energy 
calculation was done using the self-consistent spectrum 
of POT, X2 =770, letting d/dr-*k (the "elastic" scat­
tering potential) instead of d/dr-7 [2mE(k)J112 when 
operating on the asymptotic Green's functions. The 
result was -39-MeV, instead of -17-MeV, binding due 
to the Green's functions' not "digging" enough into the 
shorter-range repulsive region of the potential because 
[2M E(k) ] 1' 2> k. These potentials, properly treated, are 
also nonlocal; that is, the potential is not a function of 
r, but rather of r and r' when used as 

if;(r) = X(r)+m f dr'V(r,r')G(r',r)if;(r'), 

1 ( d mV(r,r')=-- X(r')+ Y(r')-
G(r,r') dr' 

(5.10) 

d2) 
+Z(r')- G(r,r'). 

dr' 2 

The nonlocality can usually be completely shouldered 
onto the d/dr' term as d2/dr' 2 can be reexpressed as 
(L2/r' 2±a2) operating on simple Green's functions by 
use of the homogeneous Bessel's equation. a corresponds 
to the proper conjugate variable to the radial parameter 
in the Green's function, and the + or - sign is to be 
taken depending on whether a bound-state or scattering 
problem, respectively, is to be done. The d/ dr' term can­
not be so treated: 

The local part of the potential for the 1S0 state is 

X(r')-k2Z(r') (5.11) 

and to this is added the nonlocal part (for the scattering 
calculation) 

d 
Y(r')k--[sin(krd cosU~rd]/ 

d(kr') 
[sin(krd cos(kr>)], (5.12) 

where r< is the lesser of rand r', and r> is the greater. 
On Fig. 5 is plotted the local potential above and Y(r') 
for k2= 0.0445. 

(In the nuclear-matter calculation, there is additional 
nonlocality from the d2/dr2 term operating inside the 
integral on that part of the Green's function containing 
the exclusion-principle correction.) 

Exhibited on Fig. 6 is the diagonal 3S1 potential in 
nuclear matter at a value of k/kp=0.1 (kp=0.275). On 
Fig. 7 is plotted similar data for the off-diagonal tensor 

0.12 

0.08 

0.04 

0 

--

'\ 
\ 

\ 
\ 

\ 

- - - NON LOCAL 
- LOCAL 

'\. 

" -- ----

.002 

.00\ 
\ 
\ 0 ....... __ _ 

-.00\ 

~ a /-- -.002 
1 
I 

-I I 

-20~~-- -0.12~-;-4 ~--:-6 ---:-8-_.,IO­

( seV/~cj·t 

-.003 

-.oo4~15-2~0 -

FIG. 5. Local and nonlocal contributions to the 1S0-state potential, 
k'=0.0445 (corresponds to 95-MeV incident lab energy). 

force. The diagonal part includes local and nonlocal con­
tributions. The 3S1 was calculated with the exclusion­
principle correction. 

That the S states are so sensitive to the shape of this 
potential in the small-r regions is, of course, no less 
physical than the sensitivity of similar calculations to 
the "hard-core" radius, as was demonstrated when using 
the Breit potential. 

As can be seen from Eq. (5.10), the contribution of 
the diagonal nonlocal potential to the local potential is 

Y(r)k cot(2kr), 
(5.13) 

( = Y(r)a coth(2ar) for the bound-state calculation). 

This is obtained from contributions at points r' ap­
proaching r from above and below: 

(kr)if;(kr)= (kr)X(kr)+(m/k) cos(kr) 

X 1r sin(kr')V(r',l\fr,)if;(kr')r'dr'+(m/k) sin(kr) 

X f"' cos(kr')V(r',Vr•)if;(kr')r'dr'. (5.14) 

0.8 0 

0.6 -0.02 

tr '0.1 
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FIG. 6. 3S1 POT~for k/kp=0.1, kp=0.275 BeV /c 
[1 F= 5.07 (BeV /hc)-1]. 
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FrG. 7. Tensor POT for k/kp=0.1, kp=0.275 BeV /c [lF= 5.07 
(BeV /:hc)-1]. Comparison between this figure and Fig. 3 illustrates 
the important, different contributions between the scattering and 
bound-state problems, from the nonlocal potential. [Notice that 
kr=~(0.0445) 112 X9 "explains" the anomalous bump in Fig. 3. 
At this value of kr, however, the contribution of the product of 
the potential and the Green's function is zero.] 

However, as r--+ 0, the first integral in the right-hand 
side of Eq. (5.14) vanishes and in contrast to Eq. (5.13), 
one obtains 

- Y(r)k tan(kr), 

which, for small kr (5.15) 
= -Y(r)k2r, 

( = Y(r)a for the bound-state calculation) and does not 
diverge for small r. This is necessary to satisfy the S­
state boundary conditions. Unlike the "a-function" be­
havior of the d2/dr2 term, this "step-function" behavior 
of the d/dr term cannot be explicitly taken out from the 
integral, and one must include this somewhat discon­
tinuous behavior in order to properly carry out the 
mathematics. As can be seen from Fig. 5, the Y(r) term 
quickly becomes insignificant when compared to the 
local part of the potential, as r increases, so that these 
sensitive, nonlocal effects are only important for the S 
states. (Of course, integration by parts would express 
the nonlocality in terms of the logarithmic derivative 
of the wave function. This might be desirable for some 
other physics calculations.) 

If one treats the momentum dependence correctly, 
there might exist an approximation for obtaining a local 
energy-dependent potential by approximating d / dr--+ a. 
This is seen to be true for both the scattering and the 
nuclear-matter calculations. Only the S states (espe­
cially the 3S1 state) in each case, really suffer from this 
approximation. Of course, the larger a is, the worse the 
approximation. Notice should be taken, however, that 
because of such error in the S states the over-all calcu­
lations are qualitatively quite poor, illustrating the im­
portance of nonlocality in the "core" (small r) region. 
(See T;ables III and IV.) It may be observed that if both 

TABLE IV. Nonlocality in nuclear matter (kp=0.275 BeV /c). 

K matrix [(nc/BeV)2/:hc] 
With 

k/kF WithG' aG[a= (2nzE(k))112J 
1So 0.3 -99.5 -95.9 

0.7 -38.9 -36.8 
'P1 0.3 10.75 10.78 

0.7 15.64 15.74 
•D, 0.3 -4.26 -4.25 

0.7 -17.8 -17.5 
3S1 0.3 -222.8/107.3 -244.3/175.9 
(Rc;T) 0.7 -130.9/88.2 -135.8/124.1 

Binding -14.48 MeV +8.48 
energy 

momentum dependence and nonlocal effects are treated 
"incorrectly," the two deviations from the correct pro­
cedure somewhat cancel each other. This has given hope 
that a more phenomenological set of static potentials 
might be derived, which would be more tractable for 
other nuclear-physics calculations. Such calculations are 
now in progress. 

In summation, one concludes that this one-meson­
exchange potential has consistently, in most cases quan­
titatively, and in all cases qualitatively explained many 
nonrelativistic observables of nuclear physics-with 
only eight parameters, which themselves are reasonable 
physical quantities. 
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APPENDIX A: POTENTIAL (POT) 

For each meson considered,7 five F functions (Fe, 
Fu, FT, FLS, Fup) will be given. For the first four, the 
1/ E phase-space factor is to be later expanded to 
(1/m)(1-p2/2m2 ). The fifth, Fup, is already multiplied 
by (1/m2)ui·pu2 ·p and proportional to p2/m2, so 1/E 
is replaced by 1/m. It is understood the F's are to be 
regularized by the methods given in Sec. II, whereupon 
they are to be used as the M's in Eq. (2.10'), after the 
nonrelativistic reduction, to obtain V(r,p 2). 

Integrals over momentum transfer space for Fe, Fu, 
F.,P give, with 

(Al) 

a term -gµ 2e-w /r. 
Integrals of FLs=+gµ 2/E(i.t2+'12) give a term 

_ gµ
2
e-µ'(-1-+!_)!!_. 

r i.t2r2 i.tr m2 
(A2) 

Integrals of Fp=gµ 2/E(i.t2+'12) give a term 

g
2e-w( 3 3 ) i.t

2 

-- -+-+1 -. 
r i.t2r 2 i.tr m2 

(A3) 

The F's given are the I= 0 (isospin = 0) potentials 
due to the exchange of I= 0 particles. The other three 
possibilities are obtained from the isospin crossing 
matrix: 

(isospin of potential)= (crossing matrix) 
X (isospin of particle), 

or 

Pseudoscalar meson (7r,?J): 

Scalar meson ( u) : 

Fe=O, 

g2 A2 
Fu=---

12E i.t2+A2 

g2 1 
Fp=----, 

12Ei.t2+A2 

Vector meson (p,w, cp) : 

( 1) Vector coupling : 

174 

(AS) 

(A6) 

(A7) 
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(2) Tensor coupling (for the p only): 

, g22 ( A4 AB A4p2 A6p2 ) 

fc= E(µ2+A2) -16m2+ 256m4 - 64m4- 512m6 ' 

(AS) 

(A9) 

gg2 
( A

2

) 

F up= E(µ2+ A2) -z . 
APPENDIX B: 11 · p POTENTIAL 

To express ![111'pv(r)112·P+112·pv(r)111·p] as an 
eigenoperator of J2, L2, S2 write 

p=V/i, (Bl) 

V=f(f· V)-fX(rX V)/r 

=fa/ar-ifXL/r, (B2) 

and 
11· V=11·f(f· V)-i11·rXL/r2 • (B3) 

Using the Dirac identity, 

11· ra· L= r· L+i11· rXL=i11· rXL, (B4) 

Eq. (B3) may be written as 

11· V=11·f[(f· V)-11·L/r]. (BS) 

Then, 

111 · Vv(r)112· V = (J1 · f[f · V-111 · L/r J 
Xvqz·f[f· V-112·L/r] (B6) 

and 

111 · Vv(r)qz· V = v(r)111 · f[f· V-crl' L/r J 
Xcr2·f[f· V-cr2· L/r J+[dv(r)/dr J 

X(J1 · fo2 ·f[f· V-112· L/r]. (B 7) 

The first term on the right-hand side of Eq. (B 7) is 
v(r)cr1 · pcr2 · p, and will be further reduced. Expanding 

111 · V(J2· V = (J1 · f(f · V)cr2 · f(f · V) 

+111 · f(q1 · L/r)cr2· f(cr2· L/r)-q1 · f(f · V)cr2 · f 

X (cr2 · L/r)-0"1 · f(111 · L/r)112 · f(f · V); (BS) 
using 

\lirj=riv'>+o,,h i,j= 1, 2, 3 

(cartesian coordinates) 

1 1 Yi 

\7,-=-\li--' 
r r r 3 (B9) 

ri ri O;j r;ri 
\l;fj=\7;-=-\li+---

r r r ,a 
and 

(J'·L=r·V-q·r(11·V), (BlO) 

the following commutation relations can be easily 
derived: 

[f· V,(J2·f]=O, 

[(J1 · L,112· r] = (J2 · r-(J1·r(J1·112, 

[(J2· L,1/r ]= o, 
[112·Lr·V]=O. 

(Ell) 

Defining 2S=(J1+112 and S12=3q1·fcr2·f-cr1·cr2, and 
using 

111 · Lrr2 · L= 2(S · L) 2 - L2+ S. L, (B 12) 

then t[cr1·Prr2·P+rr2·P(J1·p] can be written as 

t(S12+111·112)P2+[S12+HS12+rr1·112)S· L] 

x(~~-S·L). (B13) 
r dr r 2 

Finally, 

t[ rr1 · pv(r)cr2· p+rr2 · pv(r)111 · p] 

= v(r) { i(S12+(J1 · (J2)p2+ [S12+HS12+(J1 · rr2)S · L] 

x(~~-S·L)} 
r dr r2 

dv(r) (d S·L) 
+--HS12+rr1·rr2) --- . 

dr dr r 
(B14) 


