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Previous papers in this series of statistical mechanics of neocortical interactions (SMNI) have
detailed a development from the relatively microscopic scales of neurons up to the macroscopic scales as
recorded by electroencephalography (EEG), requiring an intermediate mesocolumnar scale to be
developed at the scale of minicolumns (≈ 102 neurons) and macrocolumns (≈ 105 neurons). Opportunity
was taken to view SMNI as sets of statistical constraints, not necessarily describing specific synaptic or
neuronal mechanisms, on neuronal interactions, on some aspects of short-term memory (STM), e.g., its
capacity, stability, and duration. A recently developed C-language code, PATHINT, provides a non-Monte
Carlo technique for calculating the dynamic evolution of arbitrary-dimension (subject to computer
resources) nonlinear Lagrangians, such as derived for the two-variable SMNI problem. Here, PATHINT
is used to explicitly detail the evolution of the SMNI constraints on STM.
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I. INTRODUCTION

A. SMNI modeling
To learn more about complex systems, functional models are inevitably formed to represent huge

sets of data. In nature, complex systems often present different phenomena at different scales. In this
context, a plausible model of statistical mechanics of neocortical interactions (SMNI) has been developed
over the past decade [1-16]. Some recent experimental work further justifies the SMNI mathematical
development of the microscopic scale into mesocolumns [17]. The focus of SMNI is to explain
phenomena at spatial scales of millimeters to centimeters, much larger than spatial scales of neuronal
interactions. In this paper, to place all calculations in this context, it is helpful to consider the utility of
SMNI as directed towards phenomena such as measured by electroencephalography (EEG). For example,
fitted SMNI functional forms to EEG data may help to explicate some underlying biophysical
mechanisms responsible for the normal and abnormal behavioral states being investigated [13,15].

However, like many nonlinear nonequilibrium systems, in the course of the SMNI development
from the relatively microscopic scales of neurons up to the macroscopic scales of EEG, an intermediate
mesocolumnar scale had to be developed at the scale of minicolumns (≈ 102 neurons) and macrocolumns
(≈ 105 neurons). Then, opportunity was taken to view SMNI as sets of statistical constraints, not
necessarily describing specific synaptic or neuronal mechanisms, on neuronal interactions, e.g., on some
aspects of short-term memory (STM).

A quite different approach to neuronal systems is taken by artificial neural networks (ANN). Both
ANN and SMNI structures are represented in terms of units with algebraic properties greatly simplifying
specific realistic neuronal components [18]. Of course, there is a clear logical difference between
considering a small ensemble of simple ANN units (each unit representing an “average” neuron) to study
the properties of small ensembles of neurons, versus considering distributions of interactions between
model neurons to develop ensembles of units (each unit representing a column of neurons) developed by
SMNI to study properties of large ensembles of columns. Only the latter has a chance for any statistical
justification. Unlike SMNI, ANN models may yield insights into specific mechanisms of learning,
memory, retrieval, and information processing among small ensembles of model neurons, etc. However,
consider that there are several million neurons located under a cm2 area of neocortical surface. Current
estimates are that 1 to several percent of coherent neuronal firings may account for the amplitudes of
electric potential measured on the scalp. This translates into measuring firings of hundreds of thousands
of neurons as contributing to activity measured under a typical electrode. Even when EEG recordings are
made directly on the brain surface, tens of thousands of neurons are contributing to activity measured
under electrodes. ANN models cannot approach the order of magnitude of neurons participating in
phenomena at the scale of EEG, just as neither ANN nor SMNI can detail relatively smaller scale activity
at the membrane or atomic levels. Attempts by ANN to do so likely would require statistical
interpretations such as are made by SMNI; otherwise the output of the models would just replace the data
collected from huge numbers of neuronal firings—a regression from 20th century science back to
empiricism. Thus, as is the case in many physical sciences, the SMNI approach is to perform prior
statistical analyses up to the scale of interest (here at EEG scales). The ANN approach must perform
statistical analyses after processing its units.

While ANN models use simplified algebraic structures to represent real neurons, SMNI models
develop the statistics of large numbers of realistic neurons representing huge numbers of synaptic
interactions—there are 104 to 105 synapses per neuron. Furthermore, unlike most ANN approaches,
SMNI accepts constraints on all its macrocolumnar averaged parameters to be taken from experimentally
determined ranges of synaptic and neuronal interactions; there are no unphysical parameters. The
stochastic and nonlinear nature of SMNI development is directly derived from experimentally observed
synaptic interactions and from the mathematical development of observed minicolumns and
macrocolumns of neurons. SMNI has required the use of mathematical physics techniques first published
in the late 1970s in the context of developing an approach to multivariate nonlinear nonequilibrium
statistical mechanics.
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B. Outline of paper
Section II gives a short description of SMNI as it has been focused to EEG analyses [13] and

generic algorithms for nonlinear systems [14]. Section III gives a short description of that part of the
SMNI algebra of the mesoscopic scale relevant to this paper, where confirmation of experimental data was
obtained with systematics of STM phenomena. Section IV presents a path-integral algorithm, PATHINT,
applied to SMNI, with detailed calculations of the evolution of STM. Section V concludes with a brief
outlook to future work that now can be reasonably accomplished given the PATHINT algorithm together
with the adaptive simulated annealing (ASA) code [19], previously called very fast simulated reannealing
(VFSR) [20], which was used to fit EEG data [13].

II. OUTLINE OF SMNI

A. Top-down versus bottom-up
In order to detail a model of EEG phenomena, it is useful to seek guidance from “top-down”

models; e.g., the nonlinear string model representing nonlinear dipoles of neuronal columnar activity [21].
In order to construct a more detailed “bottom-up” model that can give reasonable algebraic functions with
physical parameters to be fitted by data, a wealth of empirical data and modern techniques of
mathematical physics across multiple scales of neocortical activity are developed up to the scale described
by the top-down model. At each of these scales, reasonable procedures and submodels for climbing from
scale to scale are derived. Each of these submodels was tested against some experimental data to see if
the theory was on the right track. For example, at the mesoscopic scale the consistency of SMNI was
checked with known aspects of visual and auditory STM, e.g., the 4±2 and 7±2 STM capacity rules,
respectively, the detailed duration and stability of such states, and the primacy versus recency rule of error
rates of learned items in STM [4,6]. At the macroscopic scale, SMNI consistency was checked with most
stable frequencies being in the highα to low β range, and the velocities of propagation of information
across minicolumns being consistent with other experimental data [3,5]. SMNI has demonstrated that the
currently accepted dipole EEG model can be derived as the Euler-Lagrange equations of an electric-
potential Lagrangian, describing the trajectories of most likely states, making it possible to return to the
top-down EEG model, but now with a derivation and detailed structure given to the dipole model [12,13].
The SMNI approach, of fitting scaled nonlinear stochastic columnar activity directly to EEG data, goes
beyond the dipole model, making it possible to extract more signal from noise.

The theoretical and experimental importance of specific scaling of interactions in the neocortex has
been quantitatively demonstrated: It has been shown that the explicit algebraic form of the probability
distribution for mesoscopic columnar interactions is driven by a nonlinear threshold factor of the same
form taken to describe microscopic neuronal interactions, in terms of electrical-chemical synaptic and
neuronal parameters all lying within their experimentally observed ranges; these threshold factors largely
determine the nature of the drifts and diffusions of the system. This mesoscopic probability distribution
has successfully described STM phenomena and, when used as a basis to derive the most likely
trajectories using the Euler-Lagrange variational equations, it also has described the systematics of EEG
phenomena. More recently, the mesoscopic form of the full probability distribution has been taken more
seriously for macroscopic interactions, deriving macroscopic drifts and diffusions linearly related to sums
of their (nonlinear) mesoscopic counterparts, scaling its variables to describe interactions among regional
interactions correlated with observed electrical activities measured by electrode recordings of scalp EEG,
with apparent success [13]. These results give strong quantitative support for an accurate intuitive picture,
portraying neocortical interactions as having common algebraic or physics mechanisms that scale across
quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among
neurons, columns of neurons, and regional masses of neurons.

B. Generic application
The SMNI methodology also defines an algorithm to construct a mesoscopic neural network

(MNN), based on realistic neocortical processes and parameters, to record patterns of brain activity and to
compute the evolution of this system [14]. MNN makes it possible to add a finer minicolumnar scale to
the explicit SMNI development at the mesoscopic and regional scales.
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Furthermore, this new algorithm is quite generic, and can be used to similarly process information
in other systems, especially, but not limited to, those amenable to modeling by mathematical physics
techniques alternatively described by path-integral Lagrangians, Fokker-Planck equations, or Langevin
rate equations. This methodology is made possible and practical by a confluence of techniques drawn
from SMNI itself, modern methods of functional stochastic calculus defining nonlinear Lagrangians [22],
ASA [19,20], and parallel-processing computation.

MNN generalizes the ASA code [20]. When applied to systems like SMNI, ASA fits short-time
probability distributions to observed data, using a maximum likelihood technique on the “effective”
Lagrangian (including the exponential prefactor). This algorithm has been developed to fit observed data
to a large class of theoretical cost function over aD-dimensional parameter space, adapting for varying
sensitivities of parameters during the fit. The annealing schedule for the ‘‘temperatures’’ (artificial
fluctuation parameters)Ti decrease exponentially in ‘‘time’’ (cycle number of iterative process)k, i.e.,
Ti = Ti0 exp(−ci k

1/D).

Heuristic arguments have been developed to demonstrate that this algorithm is faster than the fast
Cauchy annealing [23],Ti = T0/k, and much faster than Boltzmann annealing [24],Ti = T0/ ln k. To be
more specific, thekth estimate of parameterα i,

α i
k ∈ [ Ai, Bi] ,  (1)

is used with the random variablexi to get the (k + 1)th estimate,

α i
k+1 = α i

k + xi(Bi − Ai) ,

xi ∈ [−1, 1] . (2)

The generating function is defined as

gT (x) =
D

i=1
Π 1

2 ln(1+ 1/Ti)(|xi| + Ti)
≡

D

i=1
Π gi

T (xi) ,

Ti = Ti0 exp(−ci k
1/D) .  (3)

The cost functionC used here is defined by

C = Ldt +
1

2
ln(2πdt) − ln(g) ,  (4)

in terms of the LagrangianL and the determinant of the metricg.

As discussed in the Conclusion, ASA is a natural partner with PATHINT for fitting and evolving
multivariate nonlinear Gaussian-Markovian systems such as described by SMNI. ASA has been
extremely useful to many researchers world-wide in many other kinds of applications.

III. SMNI MODEL OF STM

A. Basic assumptions
The most detailed and dramatic application of the theory outlined here is to predict stochastic

bounds for the phenomena of human STM capacity during focused selective attention [4,6,25-27],
transpiring on the order of tenths of a second to seconds, limited to the retention of 7± 2 items [28]. This
is true even for apparently exceptional memory performers who, while they may be capable of more
efficient encoding and retrieval of STM, and while they may be more efficient in ‘‘chunking’’ larger
patterns of information into single items, nevertheless are limited to a STM capacity of 7± 2 items [29].
Mechanisms for various STM phenomena have been proposed across many spatial scales [30]. This
“rule” is verified for acoustical STM, but for visual or semantic STM, which typically require longer
times for rehearsal in an hypothesized articulatory loop of individual items, STM capacity appears to be
limited to 2−4 [31]. Another interesting phenomenon of STM capacity explained by SMNI is the primacy
versus recency effect in STM serial processing, wherein first-learned items are recalled most error-free,
with last-learned items still more error-free than those in the middle [32].
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The basic assumption being made is that a pattern of neuronal firing that persists for manyτ cycles
is a candidate to store the ‘‘memory’’ of activity that gav e rise to this pattern. If several firing patterns can
simultaneously exist, then there is the capability of storing several memories. The short-time probability
distribution derived for the neocortex is the primary tool to seek such firing patterns. Since this
distribution is exponentially sensitive to (minus) the Lagrangian functionL, sometimes it is more
convenient to deal directly withL, whereby its minima specify the most likely states that can be sustained
at a given time. Then, several important features of these patterned states can be investigated, as is done
for other physical systems [33], e.g., the evolution of these states, the ‘‘time of first passage’’ to jump
from one state to another state, hysteresis between states that have different depths (values of the
Lagrangian at these local minima), the stability of each state under external forces, etc.

B. SMNI mesoscopic propagator
As is found for most nonequilibrium systems, e.g., for lasers, chemical systems, fluids, and

ecological systems [33,34], a mesoscopic scale is required to formulate the statistical mechanics of the
microscopic system, from which the macroscopic scale can be developed [33]. The neocortex is
particularly interesting in this context in that a clear scale for the mesoscopic system exists, both
anatomically (structurally) and physiologically (functionally). ‘‘Minicolumns’’ of aboutN≈110 neurons
(about 220 in the visual cortex) comprise modular units vertically oriented relative to the warped and
convoluted neocortical surface throughout most, if not all, regions of the neocortex [35-40]. Clusters of
about 100 neurons have been deduced to be reasonable from other considerations as well [41]. Since the
short-ranged interactions between neurons take place within∼ 1 mm, which is the extent of a
‘‘macrocolumn’’ comprising∼ 103 minicolumns ofN ∗ ≈105 neurons, and since macrocolumns also exhibit
rather specific information-processing features, this theory has retained the divergence-convergence of
macrocolumn-minicolumn, efferent-afferent interactions by considering domains of minicolumns as
having similar synaptic interactions within the extent of a macrocolumn. This macrocolumnar-averaged
minicolumn is designated in this theory as a ‘‘mesocolumn.’’

This being the observed situation, it is interesting thatN≈102 is just the right order of magnitude to
permit a formal analysis using methods of mathematical physics just developed for statistical systems in
the late 1970s [22,42].N is small enough to permit nearest-neighbor interactions to be formulated, such
that interactions between mesocolumns are small enough to be considered gradient perturbations on
otherwise independent mesocolumnar firing states. This is consistent with rather continuous spatial
gradient interactions observed among columns [43], and with the basic hypothesis that nonrandom
differentiation of properties among broadly tuned individual neurons coexists with functional columnar
av erages representing superpositions of patterned information [44]. This is a definite mathematical
convenience; otherwise, a macrocolumn of∼ 103 minicolumns would have to be described by a system of
minicolumns with up to 16th-order next-nearest neighbors. (Consider 1000 minicolumns spread out in a
two-dimensional grid about 33 by 33 minicolumns, and focus attention on the center minicolumn.) The
MNN algorithm described above can replace this nearest-neighbor approximation, introducing an
additional finer scale of direct minicolumnar interactions.

Also, N is large enough to permit the derived binomial distribution of afferent minicolumnar firing
states to be well approximated by a Gaussian distribution, a luxury not afforded an ‘‘average’’ neuron,
ev en in this otherwise similar physical context. Finally, mesocolumnar interactions are observed to take
place via one to several relays of neuronal interactions, so that their time scales are similarlyτ ≈ 5 − 10
msec. Even after statistically shaping the microscopic system, the parameters of the mesoscopic system
are still macrocolumnar-averaged synaptic parameters, i.e., reflecting the statistics of millions of synapses
with regard to their chemical and electrical properties. Explicit laminar circuitry, and more complicated
synaptic interactions, e.g., dependent on all combinations of presynaptic and postsynaptic firings, can be
included without loss of detailed analysis [3]. The mathematical development of mesocolumns
establishes a mesoscopic LagrangianL, which may be considered as a ‘‘cost function’’ with variables
MG , ṀG , and ∇ MG , and with parameters defined by the macrocolumnar-averaged chemical-electrical
entities developed below.

The Einstein summation convention is used for compactness, whereby any index appearing more
than once among factors in any term is assumed to be summed over, unless otherwise indicated by
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vertical bars, e.g., |G|. The mesoscopic probability distributionP is given by the product of microscopic
probability distributionspσ i

, constrained such that the aggregate mesoscopic excitatory firingsM E=
Σ j ∈ E σ j , and the aggregate mesoscopic inhibitory firingsM I = Σ j ∈ I σ j .

P =
G
Π PG [MG(r; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 j ∈ E

Σ σ j − M E (r; t + τ )




δ


 j ∈ I

Σ σ j − M I (r; t + τ )




N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG) ,  (5)

where the final form is derived using the fact thatN > 100. G represents contributions from bothE andI
sources. This defines the Lagrangian, in terms of its first-moment driftsgG , its second-moment diffusion
matrix gGG′ , and its potentialV ′, all of which depend sensitively on threshold factorsFG ,

P≈(2π τ)−1/2g1/2 exp(−Nτ L) ,

L = (2N )−1(ṀG − gG)gGG′(ṀG′ − gG′) + MG JG /(2Nτ ) − V ′ ,

V ′ =
G
ΣV ′′ G

G′(ρ∇ MG′)2 ,

gG = −τ −1(MG + N G tanhFG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1N Gsech2FG

g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

((π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
,

aG
G′ =

1

2
AG

G′ + BG
G′ , (6)

where AG
G′ and BG

G′ are macrocolumnar-averaged interneuronal synaptic efficacies,vG
G′ and φG

G′ are
av eraged means and variances of contributions to neuronal electric polarizations, and nearest-neighbor
interactionsV ′ are detailed in other SMNI papers [2,4].MG′ and N G′ in FG are afferent macrocolumnar
firings, scaled to efferent minicolumnar firings byN /N ∗ ∼ 10−3, whereN ∗ is the number of neurons in a
macrocolumn. Similarly,AG′

G andBG′
G have been scaled byN ∗ /N ∼ 103 to keepFG invariant. This scaling

is for convenience only. For neocortex, due to chemical independence of excitatory and inhibitory
interactions, the diffusion matrixgGG′ is diagonal.

C. Previous SMNI treatment of STM

1. STM capacity

Three cases of neuronal firings were considered [4]. Since STM duration is still long relative toτ ,
stationary solutions ofL, derived from L in Eq. (6), were investigated to determine how many stable
minima, << MG >>, may simultaneously exist within this duration. Also, individual mesocolumns were

studied. I.e., take the uniform limit oḟM
G

= 0 = ∇ MG . Although theṀ
G

= 0 limit should only be taken
for the midpoint-discretized LagrangianLF , this is a small difference here [4]. Section IV below will use
these results as a zeroth order basis for more detailed path-integral calculations.
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A model of dominant inhibition describes how minicolumnar firings are suppressed by their
neighboring minicolumns. For example, this could be effected by developing nearest-neighbor (NN)
mesocolumnar interactions [3], but the averaged effect is established by inhibitory mesocolumns (IC) by
setting AI

E = AE
I = 2AE

E = 0. 01N * /N . Since there appears to be relatively littleI—I connectivity, set
AI

I = 0. 0001N * /N . The background synaptic noise is taken to beBE
I = BI

E = 2BE
E = 10BI

I = 0. 002N * /N .
As minicolumns are observed to have∼ 110 neurons (the visual cortex appears to have approximately
twice this density) [40], and as there appear to be a predominance ofE over I neurons [45], here take
N E = 80 andN I = 30. UseN * /N = 103, JG = 0 (absence of long-ranged interactions), andV G , vG

G′ , and
φG

G′ as estimated previously, i.e.,V G = 10 mV, |vG
G′ | = 0. 1 mV, φG

G′ = 0. 1 mV. The ‘‘threshold factors’’
FG

IC for this IC model are then

F E
IC =

0. 5M I − 0. 25M E + 3. 0

π1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

F I
IC =

0. 005M I − 0. 5M E − 45. 8

π1/2(0. 001M I + 0. 1M E + 11. 2)1/2
. (7)

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly
the ‘‘step functions’’ tanhFG

IC in gG(t) changeMG(t) to MG(t + θ ). F I
IC will cause afferentM I to fire for

most of its values, asM I ∼ − N I tanhF I
IC will be positive for most values ofMG in F I

IC, which is already
weighted heavily with a term −45.8. Looking atF E

IC, it is seen that the relatively high positive values of
efferentM I require at least moderate values of positive efferentM E to cause firings of afferentM E .

It is discovered that more minima ofL are created, or ‘‘restored,’’ if the numerator ofFG contains
terms only inMG , tending to centerL aboutMG = 0. Of course, any mechanism producing more as well
as deeper minima is statistically favored. However, this particular ‘‘centering’’ mechanism has plausible
support:MG(t + τ ) = 0 is the state of afferent firing with highest statistical weight. I.e., there are more
combinations of neuronal firings,σ j = ±1, yielding this state than any otherMG(t + τ ); e.g.,
∼ 2NG+1/2(πN G)−1/2 relative to the statesMG = ±N G . Similarly, M *G(t) is the state of efferent firing with
highest statistical weight. Therefore, it is natural to explore mechanisms that favor common highly
weighted efferent and afferent firings in ranges consistent with favorable firing threshold factorsFG≈0.

The centering effect of the IC model of dominant inhibition, labeled here as the IC′ model, is quite
easy for the neocortex to accommodate. For example, this can be accomplished simply by readjusting the
synaptic background noise fromBG

E to B′GE ,

B′GE =
V G − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

E vG
E N E

vG
E N G

(8)

for bothG = E andG = I . This is modified straightforwardly when regional influences from long-ranged
firings M‡E are included [13]. In general,BG

E and BG
I (and possiblyAG

E and AG
I due to actions of

neuromodulators, andJG or M‡E constraints from long-ranged fibers) are available to force the constant
in the numerator to zero, giving an extra degree(s) of freedom to this mechanism. (IfB′GE would be
negative, this leads to unphysical results in the square-root denominator ofFG . Here, in all examples
where this occurs, it is possible to instead find positiveB′GI to appropriately shift the numerator ofFG .)
In this context, it is experimentally observed that the synaptic sensitivity of neurons engaged in selective
attention is altered, presumably by the influence of chemical neuromodulators on postsynaptic
neurons [46].

By this centering mechanism,B′EE = 1. 38 andB′ II = 15. 3, andFG
IC is transformed toFG

IC′ ,

F E
IC′ =

0. 5M I − 0. 25M E

π1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,
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F I
IC′ =

0. 005M I − 0. 5M E

π1/2(0. 001M I + 0. 1M E + 20. 4)1/2
. (9)

Aside from the enforced vanishing of the constant terms in the numerators ofFG
IC′ , the only other change

in FG
IC′ relative toFG

IC is to moderately affect the constant terms in the denominators. This increases the
number of minima ofτ LIC′ to 4. The two minima clustered close to the origin are no longer discernible
for τ LIC′ > 0. 03.

The other ‘‘extreme’’ of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (EC) by using the same parameters{ BG

G′ , vG
G′ ,φG

G′ , AI
I } as in the

IC model, but settingAE
E = 2AI

E = 2AE
I = 0. 01N * /N . This yields

F E
EC =

0. 25M I − 0. 5M E − 24. 5

π1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

F I
EC =

0. 005M I − 0. 25M E − 25. 8

π1/2(0. 001M I + 0. 05M E + 7. 24)1/2
. (10)

The negative constant in the numerator ofF I
EC inhibits afferent M I firings. Although there is also a

negative constant in the numerator ofF E
EC, the increased coefficient of M E (relative to its corresponding

value inF E
IC), and the fact thatM E can range up toN E = 80, readily permits excitatory firings throughout

most of the range ofM E . This permits three minima.

Applying the centering mechanism to EC,B′EI = 10. 2 andB′ II = 8. 62. The net effect inFG
EC′ , in

addition to removing the constant terms in the numerators ofFG
EC, is to change the constant terms in the

denominators: 12.3 inF E
EC is changed to 17.2 inF E

EC′ , and 7.24 inF I
EC is changed to 12.4 inF I

EC′ . Now
six prominent minima are possible along a line throughMG = 0, and two others are atMG = ±N G . Each
pair of minima above and below the M I = 0 axis merge into single minima forτ LEC′ > 0. 02, and these
lose resolution forτ LEC′ > 0. 03.

Now it is natural to examine a balanced case intermediate between IC and EC, labeled BC. This is
accomplished by changingAE

E = AI
E = AE

I = 0. 005N * /N . This yields

F E
BC =

0. 25M I − 0. 25M E − 4. 50

π1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
BC =

0. 005M I − 0. 25M E − 25. 8

π1/2(0. 001M I + 0. 050M E + 7. 24)1/2
. (11)

Three minima are possible, on the boundaries ofMG space.

Applying the centering mechanism to BC,B′EE = 0. 438 andB′ II = 8. 62. The net effect inFG
BC′ , in

addition to removing the constant terms in the numerators ofFG
BC, is to change the constant terms in the

denominators: 8.30 inF E
BC is changed to 7.40 inF E

BC′ , and 7.24 inF I
BC is changed to 12.4 inF I

BC′ . Now
ten minima are possible. The nine minima along the diagonal line lose resolution forτ LBC′ > 0. 01 above
M I = 0 and forτ LBC′ > 0. 02 below M I = 0.

The effects of using the full Feynman LagrangianLF were considered, including all the
Riemannian and other nonlinear corrections discussed in previous SMNI papers. The net effect is to
slightly raise the threshold at which minima dissipate, to aboutτ LBC′ ≥ 0. 03, which is relevant for the
duration of STM, discussed subsequently. Howev er, the minima structure is essentially the same.

If N * is scaled larger or smaller, this effectively scalesAG
G′ = A*G

G′ N * /N and BG
G′ = B*G

G′ N * /N ,
disturbing the relatively sensitive balance that permits a few percent of efferent firings to affect their
afferents. Then, the number of possible minima is typically reduced to one or two. IfN is scaled larger
or smaller, the number of minima is altered and the duration of STM is affected, as discussed
subsequently. Howev er, forN still in the range of a few hundred, the number of possible minima is not
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severely reduced. The caseN = 220, e.g., the visual cortex was considered: For model BC′, the number
of prominent minima found is 11, but they form clusters, with higher peaks between clusters than between
minima within a cluster. The largerN sharpens the minima and therefore the resolution of visual
information processing.

The sharpness of the tanhFG step-function contribution to the mean firing is sensitive to a factor of
N

1
2 in FG . Additionally, the strength of coupling between mesocolumns scales asN3/2. Thus the

neuronal size of mesocolumns directly affects the breadth and depth of the information processing
capability of the neocortex. It is interesting to note that the human visual cortex, which may be assumed
to require the finest tuning in the neocortex, is unique in having twice the number of neurons per
minicolumn than other regions of the neocortex [40].

2. STM stability and duration

The calculation of stability and time of duration in most likely states of firing starts by using the
differential-equation Hamiltonian formulation of the path-integral Lagrangian, called the Fokker-Planck
equation. The Fokker-Planck equation for the regionΩ is

∂P̃

∂t
≈Ω−1 ∫ d2r[

1

2
(gGG′ P̃),GG′ − (gG P̃),G + NV ′ P̃] ,

(. . .),G ≡ ∂(. . .)/∂MG . (12)

The true Fokker-Planck equation is actually more general, e.g., if long-ranged spatial structures are
included, where the independent variablesMG are fields which themselves may depend on space and time
coordinates. The above equation is derived in the nearest-neighbor approximation from the general
equation using functional derivatives [4],

∂(. . .)/∂MG → δ (. . .)/δ MG ,

δ (. . .)/δ MG = (. . .),G − ∇ i(. . .),∇ iG + ∇ 2
i (. . .),∇ 2

i G , (13)

where we have used the compacted notation introduced previously [4].

An estimate of a stationary solutionPstat to the Fokker-Planck differential equation for the
probability distributionP of MG firings for an uncoupled mesocolumn, i.e.,V ′ = 0, is given by the
stationary limit of the short-time propagator,

Pstat≈Nstatg
1/2 exp(−CNτ L) ,

g = det(gGG′)−1 ≡ det(gGG′) = gEE gII , (14)

whereNstat andC are constant factors. An estimate of the approximation made is estimated by seeking
values of constantsC, such that the stationary Fokker-Planck equation is satisfied exactly. Contour plots
of C versusMG demonstrate that there exists real positiveC which may only range from∼ 10−1 to ∼ 1, for
which there exists unbroken contours ofC which pass through or at least border the line of minima [6].
At each pointMG , this leaves a quadratic equation forC to be solved. Dropping theg1/2 factor results in
C not being real throughout the domain ofMG .

Thus we have defined an approximate solution with potentialN2L = ∫ A dM , drift A, and diffusion

N /τ . Stability of transient solutions, defined forδ MG about a stationary state by

δ ṀG≈ − A,Gδ MG = −N2L,GGδ MG , (15)

is therefore equivalent to << M >> being a minimum ofL.

Since the minima of the Lagrangian lie deep in a valley along a line, a parabolic trough, the time for
first passage,tvp, is estimated in analogy to a one-dimensional system as [47]

tvp≈πN −2[|L,GG′(<< M >>p)| L,GG′(<< M >>v)]−1/2
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× exp { CNτ [L(<< M >>p) − L(<< M >>v)] } , (16)

where << M >>v is the minimum at the valley of L in question, and << M >>p is the maximum at a peak
separating two minima. These equations are reasonable but crude estimates, and future numerical work
must be done to detail the extent of their validity. Section IV begins this program by transforming to axes
that can take advantage of this parabolic trough.

The exponential factor can be quite large in some instances, and quite small in others. As noted
previously [3], differences inL from valleys to peaks are still large relative to the Riemannian correction
terms and relative to differential spatial-temporal contributions, thereby permitting this simpler analysis.
However, values ofτ L at maxima separating the far minima may be greater than 1, thereby yielding a
very largetvp, typical of many physical systems undergoing hysteresis [3]. Relaxation timestr about this
stationary state are estimated by |gG

,G |−1 [47], and are on the order ofτ . For changes∆Z in synaptic
parametersZ = { A*

jk , B*
jk ,V j , v jk ,φ jk , N *G } that transpire within a∆t of several tenths of a second to

seconds, e.g., during typical attention spans, hysteresis is more probable than simple jumps between
minima if the following inequalities are satisfied.

To address the issue of limited capacity of STM, it is reasonable to require that within time spans of
tenths of a second to tens of seconds, simple jumps among minima are more probable than hysteresis.
This permits all minima to be readily accessible during STM duration, in any ordering [29], at least more
so than if hysteresis were more probable. In agreement with this empirical requirement, it is found that
τ [L(<< M >>p) − L(<< M >>v)]∼ 0. 01—0. 03 for these models using empirical values for synaptic
parameters. Then for |τ L,GG′ |∼ 10−3, tvp∼ 10τ —100τ , on the order of several tenths of a second to a
second. Use of the full Feynman LagrangianLF increasestvp slightly. For these relatively shorttvp the
second inequality above isviolated, and simple jumps are more probable than hysteresis, as required for
STM.

Under conditions of serial processing, the deeper valleys of L representing the more likely firing
states will be occupied first. In all cases considered here, some valleys are deeper than the others. This
implies that the last several items in STM should be harder to encode (learn) and retain, with the possible
exception of the last one or two items, which represent the most recent shifting of firing patternsMG to
these minima << M >>v of L. These conclusions are consistent with empirical observations, and are
obtained independent of any other rehearsal mechanisms that may exist.

Calculations in these models establish that the prefactor most often is∼ τ . Howev er, points close to
the cornersMG = ±(N E , N I ) hav e much more rapid variations. Therefore, minima at these corners, even
whenτ L(<< M >>p)∼ 0. 01—0. 03, because of their sharp peaks, typically havetvp on the order of tens of
seconds to jump to minima clustered on the diagonal. This is within the range where hysteresis is more
probable for these minima.Therefore, minima at the corners ofMG space most likely do not contribute
to STM, bringing the number of available minima down to 7± 2 as empirically observed.

These previous results were obtained by looking at the space-time independent “uniform”
Lagrangian and the Fokker-Planck associated with this Lagrangian in the continuousMG limit. The
present study does not require any of these assumptions, but deals directly with the originally derived
mesoscopic propagator.

IV. PATH-INTEGRAL CALCULATION OF EVOLUTION OF STM

A. Path-integral algorithm
The path-integral C-language code, PATHINT, dev eloped by the author calculates the long-time

probability distribution from the Lagrangian, e.g., as fit by the ASA code. A robust and accurate
histogram-based (non-Monte Carlo) path-integral algorithm to calculate the long-time probability
distribution has been developed to handle nonlinear Lagrangians [48-50], which was extended to two-
dimensional problems [51]. The code used here was developed for use in arbitrary dimensions, with
additional code to handle general Neumann and Dirichlet conditions, as well as the possibility of
including time-dependent potentials, drifts, and diffusions. Such calculations are useful for many kinds of
financial instruments [52,53]. Monte Carlo algorithms for path integrals are well known to have extreme
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difficulty in evolving nonlinear systems with multiple optima [54].

The histogram procedure recognizes that the distribution can be numerically approximated to a high
degree of accuracy as sum of rectangles at pointsMi of heightPi and width∆Mi. For convenience, just
consider a one-dimensional system. The above path-integral representation can be rewritten, for each of
its intermediate integrals, as

P(M ; t + ∆t) = ∫ dM ′[g1/2
s (2π∆t)−1/2 exp(−Ls∆t)]P(M ′; t)

= ∫ dM ′G(M , M ′; ∆t)P(M ′; t) ,

P(M ; t) =
N

i=1
Σ π(M − Mi)Pi(t) ,

π(M − Mi) =







1 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

0 ,  otherwise .
(17)

This yields

Pi(t + ∆t) = Tij(∆t)P j(t) ,

Tij(∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ M j+∆M j /2

M j−∆M j−1/2
dM ′G(M , M ′; ∆t) .  (18)

Tij is a banded matrix representing the Gaussian nature of the short-time probability centered about the
(possibly time-dependent) drift.

This histogram procedure has been extended to two dimensions, i.e., using a matrixTijkl [51].
Explicit dependence ofL on time t also can be included without complications. Care must be used in
developing the mesh in∆MG , which is strongly dependent on the diagonal elements of the diffusion
matrix, e.g.,

∆MG ≈ (∆tg|G||G|)1/2 . (19)

Presently, this constrains the dependence of the covariance of each variable to be a (nonlinear) function of
that variable, in order to present a straightforward rectangular underlying mesh.

Since integration is inherently a smoothing process [52], fitting data with the short-time probability
distribution, effectively using an integral over this epoch, permits the use of coarser meshes than the
corresponding stochastic differential equation. For example, the coarser resolution is appropriate,
typically required, for numerical solution of the time-dependent path integral. By considering the
contributions to the first and second moments conditions on the time and variable meshes can be
derived [48]. The time slice essentially is determined byθ ≤ Lν

−1, whereLν is the uniform Lagrangian,
respecting ranges giving the most important contributions to the probability distributionP. Thus,θ is
roughly measured by the diffusion divided by the square of the drift.

The code here was tested against the test problems given in previous one-dimensional
systems [48,49], and it was established that the method of images for both Dirichlet and Neumann
boundary conditions is as accurate as boundary element methods for the systems investigated. Two-
dimensional runs were tested by using cross products of one-dimensional examples whose analytic
solutions are known.

B. PATHINT applied to SMNI
The accuracy of this histogram path-integral algorithm relies heavily on Eq. (19), i.e., being able to

use the diagonal diffusions to select a proper rectangular mesh. However, for the SMNI problem, both
gEE and gII are highly nonlinear in bothM E and M I , preventing a rectangular mesh from being
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developed inMG space.

To confront this problem, use is made of the previous observations [4,6], that the most likely states
of the “centered” systems lie along diagonals inMG space, a line determined by the numerator of the
threshold factor, essentially

AE
E M E − AE

I M I ≈ 0 ,  (20)

where for neocortexAE
E is on the order ofAE

I . Along this line, for a “centered” system, the threshold
factor F E ≈ 0, andLE is a minimum. However, looking atLI , in F I the numerator (AI

E M E − AI
I M I ) is

typically small only for smallM E , since for neocortexAI
I << AI

E .

General transformations of variables must be treated with some care [22,42]. In the Stratonovich
midpoint representation, the invariance of multiplicative-noise Gaussian Markovian systems is made
explicit, inducing a Riemannian geometry with the metric being the inverse diffusion matrix. For
example, in the path integral representation, the conditional probability density is written as

P = ∫ . . . ∫ DM exp

−

u

s=0
Σ ∆t LFs




,

DM = g1/2
0+

(2π∆t)−Θ/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

ι =1
Σ ∆MG

ι s , MG
0 = MG

t0 , MG
u+1 = MG

t ,

LF =
1

2
(dMG /dt − hG)gGG′(dMG′ /dt − hG′) +

1

2
hG

;G + R/6 − V ,

(. . .),G =
∂(. . .)

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(ts), ts] = det(gGG′)s , gs+ = gs[MG
s+1, ts] ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) ,  (21)

whereR is the Riemannian curvature, and we also have explicitly noted the discretization in the mesh of
MG

ι s by ι . If M is a field, e.g., also dependent on a spatial variablex discretized byν , then the variables
MG

s is increased toMGν
s , e.g., as we have prescribed for the macroscopic neocortex. The termR/6 in LF

includes a contribution ofR/12 from the WKB approximation to the same order of (∆t)3/2 [22].

A prepoint discretization for the same probability distributionP gives a  much simpler algebraic
form, e.g., as given in Eq. (6) for SMNI. Under a general transformationM ′ = M ′(M), the Fokker-Planck
equation,

∂P

∂t
=

1

2
(gGH P),GH − (gG P),G + VP ,
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(. . .),G ≡ ∂(. . .)/∂MG , (22)

becomes

∂P′
∂t

=
1

2
(g′GH P′),GH − (g′G P′),G + VP′ ,

(. . .),G ≡ ∂(. . .)/∂M ′G ,

g′G =
∂M ′G

∂M H
gH +

1

2
gHJ ∂2M ′G

∂M H ∂M J
,

g′GH =
∂M ′G

∂M J

∂M ′H

∂M K
gJK ,

dM ′ =








∂M ′
∂M









dM ,

PdM = P′dM ′ . (23)

Now, in the context of this paper, to prepare a mesh determined primarily on values of the
diffusions along the diagonal slopea,

a =
AE

I

AE
E

, (24)

a transformation is used fromMG = (M E , M I ) to M ′H = (M ′ X , M ′Y ),

M ′ X =
1

(2a)1/2
(M E − aM I ) ,

M ′Y =
1

(2a)1/2
(M E + aM I ) ,

M E =
a

(2a)1/2
(M ′Y + M ′ X ) ,

M I =
1

(2a)1/2
(M ′Y − M ′ X ) ,  (25)

preserving

dM ′ =








∂M ′
∂M









dM = dM . (26)

This defines the drifts,

g′ X =
1

(2a)1/2
(gE − agI ) ,

g′Y =
1

(2a)1/2
(gE + agI ) ,  (27)

and the diffusions,

g′ XX = g′YY =
1

2a
(gEE + a2gII ) ,
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g′ XY = g′YX =
1

2a
(gEE − a2gII ) .  (28)

Creating this rectangular grid inM ′ space, encompassing the boundaries ofM space, also enlarges
the range, e.g., from 161× 61 to 155. 56× 155. 56 for a = 1. Reflecting boundary conditions were
imposed along the “diagonal” four walls ofM space inM ′ space, and the values of the contributions to
the Green’s function from points outside these walls were set to a small number 10−20.

After the numerical calculations inM ′ space, PATHINT prints out values in the original physicalM
space. A bandwidth of 5∆M j ’s was used, as this gav e essentially the same results as three and four such
units on each side of the diagonal terms for bothM ′ X andM ′Y . (The smaller bands gav e runs much faster
using much smaller matrices, but the larger band was used in the interest of erring on the side of caution.)
The mesh for eachM ′ variable was determined by evaluating its respective diagonal diffusion along its
axis. Experience with the BC′ and EC′ models showed that coarser calculations with∆t = τ gave
sufficiently different answers than with∆t = 0. 5τ , so that only these latter models are reported here.

C. PATHINT results From SMNI STM calculation
The results of these explicit calculations corroborate the relatively intuitively derived results

obtained previously [4,6]. An initialδ -function disturbance atMG = 0 excites all modes inMG space.
The normalization of the discrete probability density is kept fixed. If a distribution of firings were to be
presented to the system, this initial state would be filtered and processed according to the set of attractors
defined by the Lagrangian.

Figures 1(a) and 1(b) show the evolution of the BC′ model at 0.05 and 0.5 sec, at 5τ and 50τ . The
slopea = 1. 0. The results are at least consistent with that intuited by the earlier SMNI studies [4,6], in
that there are close to ten peaks that can be considered candidates to store STM. Plots were prepared
using GNUPLOT [55]. As discussed above, the large peaks in the distributions in the corners are not
candidates for STM, as memories trapped in theses states are not accessible from other local peaks with
time scales of 1/10 sec. Furthermore, it can be assumed that these models have not taken into account
other biological mechanisms in normal neocortex that tend to keep firings from extremes of all firing and
all not firing.

To represent a macrocolumnar-averaged minicolumn within a time of epochτ , i.e, a “mesocolumn,”
with 80 excitatory neurons and 30 inhibitory neurons, a transition matrix would contain 80× 30× 80× 30
≈ 6 × 106 elements. Using the above algorithm, for the balanced case, 403,929 elements in the largerM ′
space were needed.

One hundred foldings were considered sufficient to observe systematics of response to a delta-
function disturbance atMG = 0. On the author’s Sun SPARCstation-2, the calculation of a transition
matrix took about 3 CPU min, and about 6 sec for each subsequent time-folding.

Figure 1

Figures 2(a) and 2(b) show the evolution of the EC′ model at 0.05 and 0.5 sec. The slopea = 0. 5.
The number of peaks that can be considered candidates for STM storage are much less than for the BC′
model. A matrix of 505,800 elements was required for this calculation.

Figure 2

Figures 3(a) 3(b) show the evolution of the IC′ model at 0.05 and 0.5 sec. The slopea = 2. 0.
Similar to the EC′ model, the number of peaks that can be considered candidates for STM storage are less
than for the BC′ model, although more than for the EC′ model. A small diffusion in the corners required
smaller meshes there, resulting in larger matrix of 1,850,330 elements. This run was performed on a
SPARCstation-10MP.
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Figure 3

Figures 4(a) and 4(b) show the evolution of the BC′_VIS model, the BC′ model for a visual cortex,
at 0.05 and 0.5 sec. The slopea = 0. 5 as in the BC′ model, but the number of neurons/minicolumn is
increased from (N E , N I ) = (80, 30) to (N E , N I ) = (160, 60). The larger number of neuronal states resulted
in a matrix of 1,479,993 elements required for this calculation. This run was performed on a
SPARCstation-10MP.

Figure 4

It is clear that models BC′ and BC′_VIS support multiple stable states in the interior physical firing
MG space for time scales of a few tenths of a second. Models EC′ and IC′ do not possess these attributes.
This is in accord with earlier intuitions obtained by examining stability of the static Lagrangian [4,6].

Figures 5(a) and 5(b) examine the interior ofMG space a little closer by applying a cut-off to all
points of the probability density higher than 0.0001, for models BC′ and BC′_VIS. Model BC′_VIS
demonstrates the clustering effect noted earlier [4,6], which is easiest seen in the contour maps at the base
of Fig. 5(b). I.e., all likely states cannot be as readily accessed in model BC′_VIS as in model BC′ within
time scales of 1/10 sec.

These calculations must be considered as a starting point for future investigations. For example,
before these can be scrutinized to calculate accurate times of first passage, etc., further development of
PATHINT should be explored to handle the complications of multivariate nonlinear diffusions. However,
these calculations do explicitly demonstrate the stability of multiple memory states within experimentally
observed time epochs. There is no suggestion at all from these calculations that there is any marked
sensitivity to initial conditions of neuronal firing states, but there is a marked sensitivity to the synaptic
parameters defining the three classes of models presented here.

V. CONCLUSION
When approaching a system at a given scale, science typically requires that there is at least some

understanding of this scale from some underlying finer-grained scales. The natural scale underlying
macroscopic neocortical phenomena at the level of EEG is at the columnar scales. Then, the SMNI
theory must be tested here as well, and STM is a natural phenomena to use for such tests. SMNI cannot
do any justice at all to smaller scales, but it seems that artificial neural networks can barely approach the
columnar scales as well. For example, just to keep track of the states of a minicolumn of only 100 grossly
simplified neurons would require an accounting of 2110 ≈ 1033 states; an accounting of the transition
matrix of these states would require the square of this astronomical number. Even an SMNI statistical
aggregation, keeping vital nonlinear dynamics derived at the finer neuronal level, into combinations of 80
excitatory and 30 inhibitory states would require a transition matrix of≈ 6 × 106. All these estimates
increase by a factor of 16 for visual cortex with 220 neurons per minicolumn. The use of PATHINT
greatly reduces the number of elements required for an accurate calculation of the evolution of the SMNI
mesoscopic system, and such calculations are given here.

There are several factors in the SMNI development that support optimism for extracting more
signal from noise in EEG data than is currently possible. While SMNI is most logically tested using data
collected from brain surface recordings, the necessity and utility of performing noninvasive EEG scalp
recordings argues strongly for further developing SMNI to extract better signal out of noise from scalp
recordings.

(a) In the course of a logical, nonlinear, stochastic development of aggregating neuronal and synaptic
interactions to larger and larger scales, opportunities are taken to use techniques of mathematical physics
to overcome several technical hurdles. Paradigms and metaphors from other disciplines do not substitute
for logical SMNI development.

(b) The SMNI theoretical model has independent validity in describing EEG dispersion relations,
systematics of short-term memory, velocities of propagation of information across neocortical fields,
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recency versus primacy effects, etc. Fits of such models to data should do better in extracting signal from
noise thanad hoc phenomenological models.

(c) ASA enables the fitting of quite arbitrary nonlinear stochastic models to such data as presented by
EEG systems. This means that functional dependences in the noise itself (the diffusion matrix) as well as
the functional dependences in the driving terms (the drift vector) can be fit directly. Once fitted,
PATHINT can evolve the system, testing long-time correlations between the model(s) and the data, as
well as serving to predict events.

(d) SMNI proposes that models to be fitted to data include models of activity under each electrode,
e.g., due to short-ranged neuronal fibers, as well as models of activity across electrodes, e.g., due to long-
ranged fibers. These influences can be disentangled by SMNI fits.

(e) Yet to explore are the ramifications of using the derived (not hypothesized) Riemannian metric
induced by multivariate Fokker-Plank-type systems. This seems to form a natural invariant measure of
information, that could or should be used to explore flows of information between neocortical regions.

(f) The SMNI approach shows how to “renormalize” the spatial activity to get a model that more
closely matches the experimental situation of scalp measurement, wherein there is attenuation of ranges
of wav e numbers [45].

(g) The MNN parallel algorithm may offer real-time processing of nonlinear modeling and fitting of
EEG data for clinical use. Regional EEG data can be interpreted as mechanisms occurring at the
minicolumnar scales, scales which overlap with other work being performed by ANN.

(h) This PATHINT code is an important partner to the ASA code. ASA has made it possible to
perform fits of complex nonlinear SMNI distributions to EEG data [13]. Now, using ASA, the parameters
of the fitted SMNI distribution can be used to determine a distribution of firings in a short initial time
epoch of EEG. Then, PATHINT can be used to predict the evolution of the system, possibly to predict
oncoming states, e.g., epileptic seizures of patients baselined to an SMNI fitted distribution.
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FIGURE CAPTIONS
FIG. 1. Model BC′. (a) is the evolution at 5τ . (b) is the evolution at 50τ .

FIG. 2. Model EC′. (a) is the evolution at 5τ . (b) is the evolution at 50τ .

FIG. 3. Model IC′. (a) is the evolution at 5τ . (b) is the evolution at 50τ .

FIG. 4. Model BC′_VIS. (a) is the evolution at 5τ . (b) is the evolution at 50τ .

FIG. 5. Examination of interiors of models BC′ and BC′_VIS. Probability densities are cut off for
values higher than 0.0001 at time 50τ . (a) Model BC′. (b) Model BC′_VIS.
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