Statistical mechanics of neocortical interactions:
Portfolio of physiological indicators

Lester Ingber

Lester Ingber Research
Ashland Oregon
ingber@ingber.com, ingber@alumni.caltech.edu
http://www.ingber.com/

Abstract

There are seral kinds of non-imasive imaging methods that are used to collect data from the brain, e.g.,
EEG, MEG, PETSPECT, fMRI, etc. It is dificult to get resolution of information processing using an

one of these methods. Approaches to integrate data sources may help to get better resolution of data and
better correlations to behavioral phenomena ranging from attention to diagnoses of dieeaggproach

taken here is to use algorithmsve®ped for the authos' Trading in Risk Dimensions (TRD) code using
modern methods of copula portfolio risk management, with joint probability distits demved from

the authois model of statistical mechanics of neocortical interactions (SMNI). The astAdeptive

Simulated Annealing (ASA) code is used for optimizations of training sets, as well as for importance-
sampling. Maginal distributions will be wolved to determine theirxpected duration and stability using
algorithms deeloped by the author.e., ATHTREE and RTHINT codes.
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1. Introduction

This paper presents detailed algorithms that utilize methods ofvanialte copula risk-management of
portfolios recently used in finance, toveép top-level neocortical-system joint distributions from
multiple synchronous sources of imaging dafghis approach transforms constituent probability
distributions into a common space where it emksense to #elop correlations to further gelop
probability distributions and risk/uncertainty analyses of the full portfdhdaptive Smulated Annealing
(ASA) is used for importance-sampling short-time conditional transition probability disbinis
(referred to here simply as the distributions) and for optimizing system parameters.

The neocortical distributions to be used, the use of copula transformationgtataisparate mginal
distributions, and the sophisticated optimization and sampling algorithms to be usedyealeba
developed and tested thoroughly by the author and teams he has led.

Initial prototype calculations will fit weight-parameters offeliént-resolution imaging data, optimized
with respect to parameterizedyr@nal neocortical circuitry corresponding to major electrode sites, during
binocular rary tasks.

This project, portfolio of physiological indicators (PPI), is a spinebfa more generic project, Ideas by
Statistical Mechanics (ISM), which integrates previous projects to medeitien and propaation of
ideas/patterns throughout populations subjected to endogenous and exogenous inf@&&HAa8).
Another paper uses PPI in the context ofelting experimental data for testing theories of neocortical
interactions [40].

2. Specific Aims

There are seral kinds of non-imasive imaging methods that are used to collect data from the brain, e.g.,
EEG, MEG, PETSPECT, fMRI, etc. It is dificult to get resolution of information processing using an
one of these metho88]. Approacheso integrate data sources may help to get better resolution of data
and better correlations to behavioral phenomena ranging, from attention to diagnoses of disease.

The approach taken here is to use probability distributionsredefrom a model of neocortical
interactions, which were used in pieus studies with NIH data from studies on predisposition to
alcoholism. Thes@robability distributions will beif independently using ASA to different set of data
taken from the same experimental desigtecent copula methods of portfolio risk-management used for
financial markets will deslop these marginal distributions into a joint distitibn. Thisjoint distribution

will be used to testarious cost-function hypotheses on regional circuitry and weights of different data
sets to determine if better resolution of behaviovaehts can be determined rather than by treating each
distribution separately.

2.1. Aims Enumerated

1. Probability distributions defined by Statistical Mechanics of Neocortical Interactions
(SMNI) [10,11,29],used to fit previous EEG studigz6,27], will be designed to model the tasks
represented by the data used. The SMNI distributions will be parameterized with respect to
circuitry among major electrode sites, reasonable ranges of macrocolunui@tosy and
inhibitory activity in each region, and ranges of conmégtiamong regions, including strengths
and lead-lag flows of excitatory fis. All ranges of parameters will be jugd by independent
experimental data.

2. Asan example, the SMNI distributions can be fit separatel,per@mental data from binocular
rivalry tasks, representing twbrain states — dominant and nondominant periods — froondate
collection methods — wa data sensitie © 510 cm scales, and Laplacian-transformed data
sensitve 0 2-3 cm scales — i.e., four sets of data per subject. ASA will be used for optimization.

3. For each subject, a “portfolio” of mvgochastic variables, representing the wellection methods,
will be constructed using copula algorithm&SA importance-sampling will provide numerical
portfolio distritutions. Thesdlistributions will be attempted to bét to some known analytic
distributions, but this is not essential.
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4. Somecomparisons will be made among these distributions, for each subject, and among subjects.
For example, for each brain stateyelaps of probability distributions of portfolios will be
calculated. Compariscaimong subjects with respect to moments of distidins and the werlaps
states will determine the success ofvtfaithful the model distributions are to the data.

5.  Asan example, binoculanlry likely is a stochastic Gamma process [50], wherein there can be as
much as 20% of the data switching between states during eithertieskould “train” the ftted
distributions on data presenting clear cases of brain states, and “test” these distributions on out of
sample clear data, and then match these disiitis to data not so clearly defd. Theseaesults
may be sufciently defned to be correlated with frontal region &it}i, suggesting further studies
on the role of consciousness in binoculaalry.

6.  Asanother gample, some modest progress has been made in usingasdr@rimaging, EEG, to
measure the progress of amyotrophic lateral sclerosis (B2§) This paper suggests that
simultaneous imaging data may pide much more precise measures of progress of AES.
example, neural circuits perpendicular to the scalge gise to most measurable EEG; neural
circuits parallel to the scalp\wg fise to most measurable MEG.

7. Costfunctions composed of both collection-methadiables will be used to calculatepectations
over the \arious portfolios.For example, relatie weights of the multiple collection methods can be
fit as mrameters, and relaé grengths as thyecontribute to various circuitries can be calculated.

8. Otherimaging datasets would be used for additional processing.

2.2. Background and Significance
There are often tavkinds of errors committed in multriate analyses:

E1l: Althoughthe distributions of &riables being considered are not Gaussian (or not tested towsee ho
close thg are to Gaussian), standard statistical calculations appropoiate to Gaussian
distributions are employed.

E2: Eithercorrelations among the variables are ignored, or the mistakes committed in E1 — incorrectly
assuming variables are Gaussian — are compounded by calculating correlations agidddsv
were Gaussian.

The harm in committing errors E1 and E2 can be fatal — fatal to the analysis and/or fatal to people acting
in good faith on the basis of these risk assessments. Risk is measured by tails ofidisrilsojf the

tails of some variables are muddttér or thinner than Gaussian, the risk in committing E1 can be quite
terrible. Mary times systems are pushed to and past desvels lef risk when seeral variables become

highly correlated, leading to extreme dependence of the full system on the sensitivity oftisdess

It is very important not to commit E2 errors. This project will establish the importance of correctly
dealing with the E1 and E2 issues in Section (2.), andlaje code based on the algorithms described
below.

The neocortical distrilttions to be used, the use of copula transformations to integrate dispagiteamar
distributions, and the sophisticated optimization and sampling algorithms to be usedyealeba
developed and tested thoroughly by the author and teams he has led in academrianga and
industry.

3. Neocortical Modeling

Several components of this project are necessary for its completion. All of thesebdan deeloped
into a mature context already.

3.1. Probabilistic Model of Non-Invasive EEG

Since the late 1976, the author has ddoped a statistical mechanics of neocortical interactions (SMNI),
building from synaptic interactions to minicolumnamacrocolumnar and regional interactions in
neocortg. The SMNI model was the first pisical application of a nonlinear muiriate calculus
developed by other mathematical y#icists in the late 1978'to cefine a statistical mechanics of
multivariate nonlinear nonequilibrium systefds49]. Most relevant to this study is that a spatial-
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temporal lattice-field short-time conditional multiplicagtinoise (nonlinear in drifts and @#iions)
multivariate Gaussian-Madvian probability distrilmtion (hereafter simply referred to as the SMNI
distribution) is deeloped that was used to fit previous sets of NIH EEG data. Such probability
distributions are a basic input into the approach used here.

From circa 1978, a series of papers on SMNI has beesloged to model columns and regions of
neocort&, spanning mm to cm of tissue. Most of these papeve kigalt explicitly with calculating
properties of short-term memory (STM) and scalp EEG in order to test the basic formulation of this
approach at minicolumnar and macrocolumnar scales, r&8pNI derves aggregate behavior of
experimentally obsered columns of neurons from statistical electrical-chemical properties of synaptic
interactions. Whilenot useful to yield insights at the single neurovelleSMNI has demonstrated its
capability in describing large-scale properties of short-term memory and electroencephalographic (EEG)
systematics [10-12,18,21,22,24,26,45].

3.1.1. Application to Proposed Project

As depicted in Fig. 1, neocortdas &olved to use minicolumns of neurons interacting via short-ranged
interactions in macrocolumns, and interacting via long-ranged interactions across regions of
macrocolumns. Thisommon architecture processes patterns of information within and amégdif
regions of sensorymotor, associatve wrtex, etc. Therefore, the premise of this approach is that this is a
good model to describe and analyzeoletion/propa@tion of information among these oefd
populations.

A spatial-temporal latticeidld short-time conditional multiplicate-noise (nonlinear in drifts and
diffusions) multvariate Gaussian Madvian probability distribution is deloped faithful to neocortical
function (ptysiology). Suclprobability distributions are a basic input into the approach used here.

3.1.2. SMNI Testson STM and EEG

The author has d@eloped a statistical mechanics of neocortical interactions (SMNI) for human negcorte
building from synaptic interactions to minicolumpamacrocolumnar and regional interactions in
neocorte. Sincel981, a series of papers on the statistical mechanics of neocortical interactions (SMNI)
has been deloped to model columns and regions of neosorépanning mm to cm of tissue. Most of
these papers kia cealt explicitly with calculating properties of STM and scalp EEG in order to test the
basic formulation of this approach [9-12,14-16,18,19,21-27,44,45].

The SMNI modeling of local mesocolumnar interactions ¥emence and dergence between
minicolumnar and macrocolumnar interactionslswiested on STM phenomena. The SMNI modeling of
macrocolumnar interactions across regions was tested on EEG phenomena.

3.1.3. SMNI Description of STM

SMNI studies hee cetailed that maximal numbers of attractors lie within the physioagfspace oM ©,

where G = {Excitatory Inhibitory} minicolumnar firings, consistent with experimentally obsérv
capacities of auditory and visual STM, when a “centering” mechanism is enforced by shifting background
noise in synaptic interactions, consistent widpeximental observations under conditions of selecti
attention [12,15,21,45,56]This leads to all attractors of the short-time distiiim lying along a diagonal

line in M® space, déctively defining a narrev parabolic trough containing these most likely firing states.
This essentially collapses the 2 dimensioM¥ space dan to a one-dimensional space of most
importance. Thughe predominant pisics of STM and of (short-fiber contribution to) EEG phenomena
takes place in a namo* parabolic trough” inVI® space, roughly along a diagonal line [12].

These calculations were further supported by high-resolutiolut®n of the short-time conditional-
probability propagator usingAPHINT [45]. SMNI correctly calculated the stability and duration of
STM, the primag versus recencrule, random access to memories within tenths of a second aseahserv
and the observed#2 capacity rule of auditory memory and the observed?4capacity rule of visual
memory.

SMNI also calculates o STM patterns may be encoded by dynamic miodifon of synaptic
parameters (within experimentally observed ranges) into long-term memory patterns (LTM) [11].
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Fig. 1. lllustrated are three biopsical scales of neocortical interactions: (a)+@’) micro-
scopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscogionse SMNIhas
developed appropriate conditional probability distributions at eae#i,laggreaing up from

the smallest leels of interactions.In (&) synaptic inter-neuronal interactionsjeeaged wer

by mesocolumns, are phenomenologically described by the mean and variance ofia distrib
tion W. Smilarly, in (@) intraneuronal transmissions are phenomenologically described by
the mean and variance bf Mesocolumnar\geraged excitatoryE) and inhibitory () neu-

ronal firings are represented in (a’). In (b) the verticalaoization of minicolumns is
sketched together with their horizontal stratification, yielding gspiogical entity the
mesocolumn. Irfb’) the overlap of interacting mesocolumns isetkhed. Inc) macroscopic
regions of neocorte are depicted as arising from mammesocolumnar domains(c’)
sketches h@ regons may be coupled by long-ranged interactions.

3.1.4. SMNI Description of EEG

Using the power of this formal structure, sets of EEG amtteel potential data from a separate NIH
study collected to inestigate genetic predispositions to alcoholism, were fitted to an SMNI model on a
lattice of regional electrodes to extract brain “signatures” of §IR7]. Eachelectrode site as
represented by an SMNI distution of independent stochastic macrocolurseaied M€ variables,
interconnected by long-ranged circuitry with delays appropriate to long-fiber communication in
neocort&. The global optimization algorithm ASA was used to perform maximum likelihood fits of
Lagrangians defined by path integrals of nwaliate conditional transition probabilitiesCanonical
momenta indicators (CMI) were thereby ded for individual's EEG data. The CMI gie ketter signal
recognition than the vadata, and were used to ahtage as correlates of behavioral statassample

data was used for training [26], and out-of-sample data was used for testing [27] these fits.

These results aye strong quantitatie sipport for an accurate intuié gcture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or beftaral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurd®ascent work using SMNI gés drect calculations supporting

local columnar generation of EEG for three prototypical cases, predominately inhibitory coliimgsy f

and in between balanced columnarinfs, with and without the centering mechanism described
above [41].
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3.2. Direct Fit of SMNI to EEG

3.2.1. Data collection

The project used the collection of EEG spontaneous esdged goked potential (AEP) data from a
multi-electrode array under a variety of conditionse fit data being collected at\ssal centers in the

United States, sponsored by the National Institute on Alcohalséband Alcoholism (NIAAA)

project [6,59]. These experiments, performed on carefully selected sets of subjects, suggest a genetic
predisposition to alcoholism that is strongly correlated to EEG AEP responses to patterned targets.

For the purposes of this papér suffices to explain that we fit data obtained from 19 electrode sites on
each of 49 subjects, of which 25 are considered to be high risk with respect to a propensity to alcoholism,
and 24 are considered to b&vldsk. Eachsubject participated in EEG-monitored pattern-matching tasks.
The time epoch during which the P300 EP exists waaaed (the P300 EP is named for its appearance
over 300 msec after an appropriate stimulus), yielding 191 time epochs of 5.2 msec for each ofg¢he abo
circumstances. Eaddet of 192 pieces of data is obtained byimg the subject perform similar pattern-
matching tasks, e.g., about 100 such tasks, time-locking the EEG responses to the initiation of the task,
and aeraging wer the set of tasks for each time epoch.

3.2.2. Mathematical Development of Columns

Some of the algebra behind SMNI depicts variables and distributions that populate each repessentati
macrocolumn in each region.

A derived mesoscopic Lagrangiah,, defines the short-time probability disttiton of firings in a
minicolumn, composed dfiL0? neurons, gien its just preious interactions with all other neurons in its
macrocolumnar surroundG is used to represent excitatorf)(and inhibitory () contributions. G
designates contributions from bdhand] .

Pw =1 PSIME(r; t +7)[ME(r; 1)]
G

O oo OnN
=3 o2 o) - ME(r t+ @ oy - M (r;t+ )1 ps,
g [JE OOl 0i

~I'I(2ﬂrgee) Y2exp(-N7Ly)

Pu=(27r) 29" exp(-N7Ly) ,

Ly = L5+ L =@CN) Y (M® - ¢®)gae(M® - g%) + MCJg/(2NT) - V',

g® =-7}(M® + N®tanhF®),
g% = (gog) ! = 08 1 INCsechF€ |
g = det@cc)

P '
(VE - aGVgIN® =~ AGNEIM®) 1
FC = 2 — a3 = A +BS, (1)
(VY2 + (#S)7I(aIN® + ALIM®))

where AG and B are mmmolumnaaveraged inter-neuronal synaptlcfleﬁmes vG and qu are
aveaged means and variances of coniiins to neuronal electric polarizations1® andN® in FC are
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afferent macrocolumnairings, scaled to efferent minicolumnar firings ByN * (1L0°3, whereN * is the
number of neurons in a macrocolumi®®. Similarly, AS andBS have teen scaled by * /N0 sup
3 to keepFC invariant. V' are mesocolumnar nearest-neighbor interactions.

3.2.3. Inclusion of Macroscopic Circuitry

The most important features of thisvdlepment are described by the Lagrangidhin the ngaive o
the argument of thexponential describing the probability distribution, and the “threshadtof” F©
describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, thé; terms can be dropped, and more realistically replaced by aietbdif
threshold factoF©,

C1 : o1 :
o (Ve - alSVIEING - ; ASNVEIME - afEVE NTE - : AEVE MFE)
= ) 1 i } 1 ) 1
(mI(VEN2 + (#S)2](alSING + . ASIMG +aEEN¢E + . AfIin?MiE )Y2

t€ _ 1 B | piE
af = AT +BE . )

Here, afferent contributions from+E long-ranged excitatory fibers, e.g., cortico-cortical neuronge ha
been added, wherdl** might be on the order of 10% di"”: Of the approximately 18 to 10
neocortical neurons, estimates of the number of pyramidal cells range from 1/10 to 2/3. Nawgrly e
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 10

3.2.4. Algebraic Development of Regions
A linear relationship was assumed (about minima to be fit to data) betwektftfieing states and the
measured scalp potentidl,, at a gven dectrode sitev representing a macroscopic region of neuronal
activity:

®, -p=aME +bM', 3)
where { @¢,a,b } are constants determined for each electrode #itehe prepoint discretization, the
postpointM € (t + At) moments are gen by

m=<®,-g>=a<ME>+bh<M'>
=ag" +bg'

o2 =< (@, -9 >~ < &, - p>%= 22gE +b7g" @)

where theM®-space driftsg®, and diffusionsg®®’, havebeen deried ebove. Note that the macroscopic
drifts and diffusions of th@'’s are simply linearly related to the mesoscopic drifts and diffusions of the
M®’s. For the prepoinM(t) firings, we assume the same linear relationship in ternfsgf, b} .

The data we are fitting are consistent witlvoking the “centering” mechanism discussed \abo
Therefore, for the prepoi¥ E(t) firings, we also tak advantage of the parabolic trough ded for the
STM Lagrangian, and take

M'(t) = cME(t) )
where the slope is determined for each electrode siféhis permits a complete transformation frof®
variables to® variables.

Similarly, as gpearing in the modified thresholdctor F€ each regional influence from electrode gite
acting at electrode site given by dferent firingsM*E, is taken as

MIE, =d,M5(t-T, ), (6)

UV



Lester Ingber -8- Portfolio of Physiological Indicators

whered, are constants to be fitted at each electrode siteTanglis the delay time estimated for inter
electrode signal propagation, based on current anatomical knowledge of the memmzbdk\elocities of
propagtion of action potentials of long-rangeblers, typically on the order of one tovesal multiples of
r=5 msec. Soméerms in whichd directly affects the shifts of synaptic parameﬁgswhen calculating
the centering mechanism also contain long-rangiedaefes (inerse conductiities) BEE. Therefore, the
latter were keptiked with the other electrical-chemical synaptic parameters during tkesénffuture
fits, we will experiment taking thE's as parameters.

This defines the conditional probability distribution for the measured scalp potepntial

Pv[q)v(t +At)|q)v(t)] = exp(_LvAt) )

1
(2n02At) 12

_ 1 ] _
LV - Tﬂ ((Dv m)2 ' (7)

wherem and o have keen denied just aboe. As dscussed ah@ in defining macroscopic regions, the
probability distribution for all electrodes is taken to be the product of all these distributions:

P=[]P,,
L=>L,. (8)

Note that we are also stronglyoking the current widespread belief in the dipole or nonliséamg
model. The model SMNI, desied for P[MS(t +At)|ME(t)], is for a macrocolumnaaveraged
minicolumn; hence we expect it to be a reasonable approximation to represent a macrocolumn, scaled to
its contritution to®,. Hence we usé to represent this macroscopic regional Lagrangian, scaled from its
mesoscopic mesocolumnar counterpart Howeve, the abwe exression forP, uses the dipole
assumption to also use this expression to represeaiab¢éo mary macrocolumns present in agien
under an electrode: A macrocolumn has a spatial extent of about a milliietealp electrode has been
shavn, under gtremely fivarable circumstances, to Ve a esolution as small as\&eal millimeters,
directly competing with the spatial resolution atitdd to magnetoencephalography; often most data
represents a resolution more on the order of upveralecentimeters, mgnmacrocolumns. Stilljt is

often argued that typically onlyweal macrocolumns firing coherently account for the electric potentials
measured by one scalp electr¢dlé]. Then,we are testing this model to see if the potential will scale to
a representatie macrocolumn. Theesults presented here seem to confirm that this approximation is in
fact quite reasonable.

As noted in a previous SMNI paper [12], the structure of STM ses\en goproximation settind® = 0
in the denominator of ®, after applying the “centering” mechanisrio speed up theitting of data in
this studythis approximation was used here as well.

The resolution of this model is certainly consistent with the resolution of the Bataxample, for the
norvisual neocortex, taking thexteeme of permitting only unit changes M€ firings, it seems
reasonable to aiays be able to map the observed electric poterdialesd from a given dectrode onto a
mesh a fraction of MEN' = 10%.

3.2.5. Results

For this studywe wsed some current knowledge of the P300 EP phenomena to limit ourselvesit@ just f
electrodes per subject, corresponding to hypothesized fast amdcahoponents of P300. Therdt
component appears to be generated along the brain midline, from frontal (Fz) to central (Cz) to parietal
(Pz) areas; a delay time of one 5.2-msec epahassumed for each relafghe slav component appears

to be generated from Pz, branching out to lateral areas P3 and P4; a delay timé&.2frmsec epochs

was assumed for each brancltgince P300 has such a quite broad rise, peak, and deeagq targe

fraction of a second, gional delays are not expected to be very important here. Data currently being
collected on more stringent time-locked STM tasks are expected to provide stronger tests of the
importance of such delays. Furthermore, the redataick of sensitivity of fits to such delays here
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suggests that volume conductance effects are large in these data, and Laplacian techniques to localize
EEG activities are required to get more electrode-specific sensitivity to such delaysver, the main
emphasis here is to determine whether SMNI is consistent with EEG data collected under conditions of
selectve atention, and these results appear to be quite strong.

The P300 EPso named because of its appearaneer 800 msec after an appropriate stimulus, has been
demonstrated to be gaively correlated (reduction in amplitude and delay) with a number of psychiatric
diseases, e.g., schizophrenia and depression, and typically is mestaasites Pz, P3 and H&4].
Here, the suggestion is that there also is some correlation with some precursor activity at Fz and Cz.

Thus, that project reported fits to 46,550 pieces of data. As described mbthe section deving
P[P(t + At)|D(1)], we have: four parameters at site Fz, corresponding toficeffits { ¢,a,b,c } ; five
parameters at CZ{ ¢, a,b,c,dr,_ ¢, } ; five parameters at P4 ¢,a,b,c,dc,_p,} ; five parameters at
P3, { @ a,b,c,dp, p3 } ; and five parameters at P4,{ @,a,b,c,dp, psa } . This represents a
24-parameter fit for 950 points of data (each electrode offsetdypdints to account for delays) for each
of 49 subjects.

Very Fast Simulated Re-Annealing (VFSR) was the precursor code to[%$AThe VFSR runs took

several CPU hours each on a personal SuARBBstation 2 (28.5 MIPS, 21 SPECmarks) running under
GNU g++, a C++ compiler deloped under the GNU project at the Massachusetts Institute of
Technology which proved to yield faster runs than using Sartundled non-ANSI C, depending onvino
efficiently the simulated annealing run could sense its way out of local minima. Runsxeeree for
inclusion of delays between electrodes, as discussec.alddl runs were completed in approximately

400 CPU hours.Typically, a least one to three sigiwént-igure consistencies between finer resolution
runs per parameter were obtained by exiting the global simulated annealing runs after eiteés of

100 acceptances or 20,000 trials led to the same best estimate of the global minima. Each trial typically
represented attor of 3 to 5 other generated sets of randomly selected parameters, which did not satisfy
the physical constraints on the electrode set§ b€} , { M"E } and the centering mechanism (which
required calculation of me synaptic parameters{ Bg } for each ne set of regional connedsfity
parameterq d} ). Someefficieng/ was gained by using the means and extremes of the observed electric
potentials as a guide for the ranges of the sets of intercept paragnetgrs

Several more signitant-igure accurag was obtained by shunting the code to a local fitting procedure,
the Brogyden-Fletcher-Goldfrb-Shanno (BFGS) algorithm [62], where it eithgitedd naturally or vas
forcefully exited, saving the Veest cost function to date, after exceeding a limit of 1000 function calls.
The local BFGS runs enforced the abghysical constraints by adding penalties to the cost functions
calculated with trial parameters, proportional to the distance out of range.

These sets of EEG data were obtained from subjects whylerie reacting to pattern-matching tasks
requiring \arying states of selegé dtention taxing their short-term memoryfo test the assumptions
made in the model, after each subjechta set wasitted to its probability distribution, the data were
again filtered through theitted Lagrangian, and the mean and mean-square valud$ efere recorded

as thg were calculated fron® above. Although M® were permitted to roam throughout theirygpical
ranges oftNE = +80 andtN' = +30 (in the nonvisual neocoras is he case for all thesegiens), their
obsered efective (regional- and macrocolumnaweraged) minicolumnarifing states were observed to
obey the centering mechanisml.e., this numerical result is consistent with the assumption that
M®=0=MTFinF°,

3.3. Other Aspectsof SMNI

Other aspects of SMNI clarify somgenlap with neural networks, and also explain some approaches not
developed by SMNI such as chaotic behavior.

3.3.1. Generic Mesoscopic Neural Networks

As depicted in Fig. 2, SMNI was applied to propose a parallelized generic mesoscopic neumddsnetw
(MNN) [19], adding computational power to a similar paradigm proposed fpgttegcognitiorj13]. The
present project uses the same conceptangpasets of multiple variables define macrocolumns with a
region, with long-ranged connectivity to othegi@ens. Eachmacrocolumn has itsam parameters, which
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Fig. 2. “Learning” takes place by presenting the MNN with data, and parametrizing the data
in terms of the ‘ffings” or multivariate M€ “spins’ The “weights’ or coeficients of func-

tions of M€ appearing in the drifts and diffusions, aiteté incoming data, considering the
joint “effective’ L agrangian (including the logarithm of the prefactor in the probability distri-
bution) as a dynamic cost functiorfhis program of fitting codifcients in Lagrangian uses
methods of ASA.

“Prediction” takes advantage of a mathematically gt representation of the Lagrangian
path-intgral algorithm, i.e., a set of coupled Lanigerate-equationsA coarse deterministic
estimate to “predict” the welution can be applied using the most probable path, b
PATHINT has been usedPATHINT, even when parallelized, typically can be toowldor
“predicting” evolution of these systems. Hower, PATHTREE is much faster.

define sets of possible patterns.

3.3.2. On Chaosin Neocortex

There are manpapers on the possibility of chaos in neocortical interactions. While this phenomena may
have sme merit when dealing with small netsks of neurons, e.g., in some circumstances such as
epilepsythese papers generallyeacmonsidered only too simple models of neocortex.

The author took a model of chaos that might be measured by EE€opdel and published by some
colleagues, but adding background stochastic influences and parameters that were agreed to better model
neocortical interactions. The resulting nudtiate nonlinear conditional probability distributionasy
propagted mawg thousands of epochs, using the auth&®THINT code, to see if chaos couldigt and

persist under such a modéb]. Therewas &solutely no measurable instance of chaos surviving in this
more realistic context.

3.4. Computational Algorithms

3.4.1. Adaptive Simulated Annealing (ASA)

Adaptive Smulated Annealing (ASA)20] is used to optimize parameters of systems and also to
importance-sample variables for risk-management.

ASA is a C-language code \d#oped to statistically find the best global fit of a nonlinear constrained
non-cowvex st-function @er a D-dimensional space. This algorithm permits an annealing schedule for
“temperature’T decreasing exponentially in annealing-tilnelT = T, exp(—ckP). Theintroduction of
re-annealing also permits adaptation to changing seétisgiin the multi-dimensional parametgrace.

This annealing schedule is faster than fast Cawcimealing, wherel = Ty/k, and much &ster than
Boltzmann annealing, whefe = To/Ink. ASA has oer 100 OPTIONS to provide robust tuningep

mary classes of nonlinear stochastic systems.

For example, ASA has ASA ARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first deeloped in 1994 when the author of this approach was PI of National Scienoddtion
grant DMS940009FParallelizing ASA and RTHINT Project (RPP). Sincehen these OPTIONS ha
been used by various companies.
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3.4.2. PATHINT and PATHTREE

In some cases, it is desirable torelep a time golution of a short-time conditional probabilitgg., of
the kind fitted in this study to EEG datawo useful algorithms ha been deeloped and published by
the author.

PATHINT and ATHTREE hae demonstrated their utility in statistical mechanical studiesnante,
neuroscience, combat analyses, neuroscience, and other selected nonlinearmriateulti
systems [28,38,43,45PATHTREE has been used extesgy to price financial options [42].

4. Tradingin Risk Dimensions (TRD)

A full real-time risk-managed trading system has been coded by the author using state of the art risk
management algorithms, Trading in Risk Dimensions (TRB) TRD is based largely on pr®us

work in several disciplines using a similar formulation of mudiiate nonlinear nonequilibrium
systems [31-33]using paverful numerical algorithms to fit models to d@B8]. A published report

which was a precursor to this project was formulated for a portfolio of og8éhs Thesemethods hee

been applied by the author to futures and to stock prices.

4.1. Application to Proposed Project

In the context of this approach, the concepts of “portfolio” are considered to be extended to the total
ensemble of of multiple regions of populations of data, eaeimgnaets of multiple ariables. Thats,
although the each region willate same kinds of multipleaviables, to create a generic system for the
project, such ariables in different regions will be part of the full set of mmaitate nonlinear stochastic
variables across all gions. Oncehe full “portfolio” distribution is deeloped, various measures of cost

or performance can be calculated, in addition to calculating various measure of risk.

The concepts of trading-rule parameters can be extendedwachtreat parameters that might be
included in this work, e.g., to permit some topelecontrol of weights gien to dfferent members of
ensembles, or parameters in models that affect their interactiosasg$ca desired outcome of projects.

4.1.1. Standard Code For All Platforms

The ASA and TRD codes are in vanilla C, able to run across all Unix platforms, including Linux and
Cygwin under Vihdows [http://gygwin.com]. StandardUnix scripts are used t@dilitate file and data
manipulations. &r example, output analysis plots — e.g., 20 sub-plots per page, are prepared in batch
using RDB (a Perl relational database tool from ftp://ftp.rand.org/RDB-hobbs/), Gnuplot (from
http://gnuplot.sourceforge.net/), and other Unix script@€ldped by the author.

The judicious use of pre-processing and post-processing of variables, in addition to processing by
optimization and importance-sampling algorithms, presents important features to the proposed project
beyond simple maximum ld#lihood estimates based on (quasi-)linear methods of regression usually
applied to such systems.

TRD includes design and code required to interface to actual data feedeautte platforms.Similar
requirements might be essential for future use of these approaches in the project proposed here.

As with most compbe projects, care must bevgn to sundry problems that arise. Similar andvn&ich
problems can be expected to arise in this project as well.

4.1.2. Gaussian Copula

The concept behind copulas is simple, albeit some applications may be quitexcoktgiginal (separate
from other \ariables) distributions of time series often do not exhibit simple GaussianidrehEhese
maiginal distributions are transformed into a Gaussian space of nevihediahfriables. Afterthis is
done for all multiple ariables of interest, it then makes sense in thejaimt Gaussian space to calculate
covariance matrices and correlationsTheorems on copulas guarantee unigueness wérsm
transformations back to the original spaces of interest [63].

Gaussian copulas are véped in TRD. Other copula distabons are possible, e.g., Student-t
distributions (often touted as being more sewsit fat-tailed distributions — here data isst adaptvely



Lester Ingber -12 - Portfolio of Physiological Indicators

fit to fat-tailed distributions prior to copula transformations). These alteendstributions can be quite
slow because iverse transformations typically are not as quick as for the present distribution.

Copulas are cited as an important component of risk management not yet widely used by risk
management practitiones]. Gaussiarcopulas are presentlygaded as the Basel Il standard for credit
risk management [7]. TRD permits fast as well as robust copula risk management in real time.

The copula approach can be extended to more general utistn# than those considered hi@gg If
there are not analytic or rekatly standard math functions for the transformations (and/eerse
transformations described) here, then these transformations must be perfopiraity enumerically in
code such as TRD. Then, the ASA_PARALLEL OPTIONS alreadgtiag in ASA would be ery
useful to speed up real time calculations [20].

4.2. Exponential Marginal Distribution Models

For specificity, assume that each matkis fit well to a two-tailed exponential density disttibn p (not
to be confused with the ingded price variablep,) with scaley and meamn,

B 1 Gxm
Dﬂ e ¥ dx,dx>=m 1l
p()dx =07 geem =5 X ()
U= e x dx,dx<m X
02y
0
which has a cumulate probability distribution
dx U 0 _lecm il
F(dx) = J’ dx’ p(dx’) = = §+ sgndx-m)l-e « (10)
ra 2 0 O
where y andm are defined by\aerages < > over a window of data,
m=<dx>,2y? =< (dx)? > - < dx >? (12)

The p(dx) are “marginal” distritutions observed in the market, modeled to fit thevaldgebraic form.

Note that the exponential distribution has an infinite number of non-zero cumulants, so that
< dx? > - < dx > does not hee the same “variance” meaning for this “width” as it does for a Gaussian
distribution which has just tavindependent cumulants (and all cumulants greater than the secosid)v

Below algorithms are spedd#d to address correlated markets giving rise to the stochastic behavior of
these markets.

The TRD code can be easily modd to utilize distrilations p'(dx) with different widths, e.g., dérent
x' for dx less than and greater tham
_|dx-m|

e X dx (12)

p'(dx)dx = 1%

4.3. Copula Transformation

4.3.1. Transformation to Gaussian Marginal Distributions
A Normal Gaussian distribution has the form
_oy?
dy)=—e 2 13
p(dy) = (13)

with a cumulatre dstribution
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dy
F(dy) = [1 + erf (14)
2g L2 [g

where the erf() function is a tabulated function coded into most math libraries.

By setting the numerical values of the abdvo cumulative dstributions, monotonic on interval [0,1],
equal to each othethe transformation of the marginal variables to thg marginal variables is effected,

O _ldx-m|[]
dy =V2ef™(2F(dx) -1) =V2sgn(dx -m)erf ' -e x O (15)
O u

The irnverse mapping is used when applying this to the portfolio distribution,

O Cldy| !
dx=m- sgn(dy))(ln[l erf s E% (16)

4.3.2. Including Correlations

To wnderstand he correlations enterlook at the stochastic process idefl by thedy' marginal
transformed variables:

dy' = g'dw, (17)
wheredw; is the Wiener Gaussian noise contributingiybof marleti. The transformations are chosen
such tha’g*"—

Now, a gven markets roise, @'dw;), has potential contributions from &l markets, which is modeled in
terms ofN independent Gaussian processizg,

§'dw; = 3 g dz (18)
k
The cavariance matrix ') of thesey variables is then gen by
o' = X gla (19)

with inverse matrix, the “metritwritten as {;) and determinant ofg) written asg.

Since Gaussian variables arewnbeing used, the e@riance matrix is calculated directly from the
transformed data using standard statistics, the point of this “copula” transformation [53,61].

Correlationsp are denved from bilinear combinations of market volatilities

i g’
pl = ——— (20)
Vg'gl
Since the transformation to Gaussian space hasedaf' = 1, here the omriance matrices theoretically
are identical to the correlation matrices.

This gives a multivariate correlated proce$sin the dy variables, in terms of Lagrangiathsand Actions
A,

P(dy) = P(dy', ...,dy"N) = (27zdt) 2g 2™ (21)
wheredt = 1 @bove. The Lagrangian L is géen by
L= 2dt2 Z dy'g;; dy’ (22)

The effectve action Ag;, presenting a “cost function” useful for sampling and optimization, is defined by

P(dy) =€ | Ay =Ldt+Ing+ - In2rdt) (23)
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4.3.3. Stable Covariance Matrices

Covariance matrices, and theirvierses (metrics), are known to be quite npsy dten the/ must be
further deeloped/iltered for proper risk management. The root cause of this noise is recognized as
“volatility of volatility” present in market dynami¢47]. In addition to such problems, ill-conditioned
matrices can arise from loss of precision fogéavariables sets, e.g., when calculatingise matrices

and determinants as required hehe.general, the winde size used for ceariance calculations should
exceed the number of market variables to help tame such problems.

A very good approach fowvaiding ill-conditioning and lack of posiute-definite matrices is to perform
pre-averaging of input data using a wingaf three epochfs1]. Othermethods in the literature include
subtracting eigeralues of parameterized random matripg]. Using Gaussian transformed data
alleviates problems usually encountered with fat-tailed disfiobs. Selectiorof reasonable windes,
coupled with pre-geraging, seems to robustlyad ill-conditioning.

4.3.4. Copula of Multivariate Correlated Distribution
The multvariate distribution inx-space is specified, including correlations, using

ady

P(d P(d 24
() = P51 (24)
Oady' O
Where% Ois the Jacobian matrix specifying this transformation. Thiesgi
0
I CYRUCIEMICYN .

P(dx) =g 2e 2T ﬂPi(dx') (25)
where (dydx) is the column vector of(dyl,---,dy)) expressed back in terms of their respexti
(axt,...,dx"N), (dyg)' is the transpose wevector and (1) is the identity matrix (all ones on the
diagonal)

The Gaussian copula(dx) is defined from Eq. (25),

1 - Z(dy x) (gl |)(dy x)
C(dx) = e (26)

4.4. Portfolio Distribution

The time series variables most often used are retiMn®.g., (M (t) - M(t — 1))/M(t), since this helps to
scale variables from different sources prior to combining them. The probability déi{sivy) of
portfolio returnsdM is given as

P(dM) = J’ ITI d(dx')P(dx)dp (dM, - Jz(a,-,t dx! + b)) (27)

where the Dirac delta-functiafy, expresses the constraint that
dM = ¥ (a; dx! +b;) (28)
j

The coeficientsa; andb; are determined by in terms of portfolio parameters, e.g., contractNz@s
finance, but her&NC means relatie importance of contributions to neuronal activities fronfedént
imaging modalities at specific time epochs.

4.4.1. Recursive Risk-Management in Trading Systems

Sensible deglopment of trading systems fit trading-rule parameters to generate the “best” portfolio (best
depends on the chosen criteria). This necessitates fitting risk-maN&gdchosen risk targets, for each

set of chosen system-spécifieocortical parameters, e.g., selected by an optimization algorKtgiven

set of system-speafneocortical parameters affects tg andb; ; coeficients in Eq. (27) as these rules
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act on the forecasted time series ay Hne generated to sample the mudtiate distributions.

This process must be repeated as the system parameter space is sanitpliee twdt function of the
Portfolio returns @er a reasonably large in-sample set of data.

45. Risk Management

Once P(dM) is devdoped (e.g., numerically), risk-management optimization isnddf Theportfolio
integral constraint is,

~VaR)
Q = P(dM < VaR) = J’ dM P(M|M';) (29)

where VaR is a ixed percentage of the totavailable mong to invest. E.g.,this is specitally
implemented as

VaR = 0. 05, Q = 0.01 (30)

where the alue ofVaR is understood to represent a possible 5% loss in portfolio returns in one epoch,
e.g., which approximately translates into a 1% chance of a 20% loss within 20 epochs. Expected tail loss
(ETL), sometimes called conditional VaR or worst conditioxgleetation, can be directly calculated as

an aerage wer the tail. While the VaR is useful to determingected loss if a tailvent does not occur

ETL is useful to determine what can be lost if a taéhé occurs [2].

ASA [20] is used to sample future contractsided by a cost function, e.g., maximum profit, subject to
the constraint

Costo = |Q - 0. 01 (31)

by optimizing theNC;; parameters. Othgvost-sampling constraints can then be appligdidgments
always must be made whether to apply specific constraints, before, during or after sampling.)

Risk management is ddoped by (ASA-)sampling the space of the next emfNC;;} to fit the aboe
Q constraint using the sampled markatiables{ dx}. The combinatoric space ®C’s satisfying theQ
constraint is huge, and so additiof-models are used to choose the actiNT; ;} used.

4.5.1. Sampling Multivariate Normal Distribution for Events

Eq. (27) certainly is the core equation, the basic foundation, of modt i risk management of
portfolios. For general probabilities not Gaussian, and when including correlations, this equation cannot
be solved analytically.

Some people approximate/mutilate this multiple gra to attempt to get some analytigkpeession.
Their results may in some cases sens hteresting “t9” models to study some extreme cases of
variables, but there is no reasonable way to estimateniach of the core calculation has been destio

in this process.

Many people resort to Monte Carlo sampling of this multiple graé ASA has an ASA _SAMPLE
option that similarly could be applieddowever, there are published fast algorithms spgealfy for
multivariate Normal distributions [3].

4.5.2. Transformation to Independent Variables

The multvariate correlatedly variables are further transformed into independent uncorrelated Gaussian
dz variables. Multiple Normal random numbers are generated for edzhvariable, subsequently
transforming back taly, dx, and dp variables to enforce the Dirad-function constraint specifying the
VaR constraint.

The method of Cholegkdecomposition is used (eigeaiue decomposition also could be used, requiring
inverses of matrices, which are used elsewhere in this project), whereinven@amoe matrix isdctored

into a product of triangular matrices, simply related to each other by the adjoint opeiEtisnis
possible becaudgs is a symmetric posite-definite matrix, i.e, because care has been taken to process the
raw data to presewmrthis structure as discussed previously.
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G=(g)=c'c , 1=cG?c’ (32)

from which the transformation of ttdy to dz are obtained Eachdz has 0 mean and standardid¢ion 1,
SO its coariance matrix is 1:

| =< (d2)"(dz) > =< (d2)T (C G C") (d2) > (33)
=<(C'd)'G*(CTd7) >=<(dy)' G (dy) > (34)

where
dy=C'dz (35)

The collection of relateddx}, {dy}, and {dz} sampled points are defined here as Events related to
market me@ements.

4.5.3. Numerical Development of Portfolio Returns

One approach is to directlydkop the portfolio-returns distribution, from which moments are calculated
to defne Q. This approach has the virtue of explicitiyhéiting the shapes of the portfolio distitibn
being used. In some production runs, integration fivet the Diraco-function permits dster numerical
calculations of moments of the portfolio distribution, to fit these shapes.

The sampling process of Ents are used to generate portfolio-return Bins to determine the shape of
P(dM). Basedon prior analyses of data — matldistributions hee keen assumed to be basicallyotw

tailed exponentials — here too prior analyses strongly supports two-tailed distributions for the portfolio
returns. Thereforanly a “reasonable” sampling of points of the portfolio distribution, expressed as Bins,
is needed to calculate the momenir example, a base function to bigdd to the Bins would be in
terms of parameters, widand meamm,,,

n 1 _dM-my
D& e X dM,dM >=my 1 _ldv-my
P(dM)dM = 1 dv-m, =% e X d™m (36)
O—e x dM,dM <my
02
X andm,, are defined from data in the Bins by
my =< dM >, 2X? =< (dM)? > - < dM >? (37)

By virtue of the sampling construction &f(dM), X implicitly contains all correlation information
inherent inA' g« .

The TRD code can be easily maed to utilize distrilntions P'(dM) with different widths, e.g., dérent
X' for dM less than and greater thamy,,
_[dM=my|

e x du (38)

P'(dM)dM =
(dM)dM =
A large number of Events populate Bins into the tail$@iM). Different regions oP(dM) could be
used to calculate a piegise X to compare to onX ove the full region, with respect to sensitivities of
values obtained foB,

_[VaR-my|

Q=_e X (39)

Note that ixing Q, VaR, and my, fixes the full shape of the portfolio exponential distiion. Sampling
of the NC; is used to adapt to this shape constraint.

5. Summary

The methods to be used allvikaleen tested and used by the author for projects in other disciplines or
contts. Thesamethods include the use of ASA for optimization and importance-sampling, application
of the SMNI model to fit EEG data for purposes of comparing experimental paradigms, risk-management



Lester Ingber -17 - Portfolio of Physiological Indicators

tools for deeloping top-level probability distributions of multiariate systems with differing mginal
distributions, and experience working with larger sets of data.

Again, it is important to stress that the use of these algorithms cannot be approached as a “black-box”
statistical analysis of data, e.g., withougae to decisions to ma&kon €ales and tuning of parameters

and functions to be dgeloped and tested, and multiple sanity checks on intermediate as welhlas f
results among the team of researchers.

The Specit Aims enumerated in Section (2.1.) are an accurate chronological outline of the research
design envisioned at this time.

Using the methods of risk-management described in Section (4ding in Risk Dimensions (TRD),
copula algorithms will be used towa#op a portfolio of \ariables from different EEG setups, i.e., for each
subject for each experimental paradigifter full “portfolio” distributions are deeloped, \arious
expectations of functional forms can bevdeped, typically simply intuitiely formulated, but ne able

to be algebraically and numerically calculated faithful to these intuitions.

For example, considerariablesx; and x, from two scales of measurements, e.g., as obtained from from
two data collection methods — wadata sensitie © 510 cm scales, and Laplacian-transformed data
sensitve © 2-3 cm scalesEachx may represent a collection of parameterized stochastic variables, e.g.,
sets of excitatory and inhibitory activity at each electrode 4$itging the SMNI distributions, mginal
distributions p1(x;) and p,(x,) are fit to data. The top-leel “ portfolio” distribution is then deeloped,

p(x), wherex can represent gnfunction of x; and x,, e.g., X = ax; + bx,, wherea and b might be
parameters to fit\er sub-sets of experiments according to the degree of influence of dreedbes.

As another example, a cost functiG(x,, x,) can be deeloped, e.g., that might represent some specif
circuitry measured among EEG electrode sites. The weights of the connections and time delays between
regions would be parameters @(xy, X»), along with parameters in the SMNI model of excitatory and
inhibitory activities within each ggon. Sincewe have a lona fide probability distribution, this would be

a maximum likelihood fitting procedure using ASAResolution of this calculation might be enhanced
using ASA to importance-sample an analyttcof the full portfolio distribution to its previous copula
development, thereby defining a recursiuse of ASA for theifting process. This procedure has been

used by the author in multiple previously published studies.

The true test of these algorithms requires good synchronized data utilizing multiple imaging techniques.
While some such data apparently is being genef&tb#,60], as is too common in medicine and
neuroscience, this data is not at all magslable for public use, and it likely will taksome time before

such data can be used as described here.
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