
Statistical mechanics of neocortical interactions: Nonlinear columnar electroencephalography
Lester Ingber

Lester Ingber Research
Ashland Oregon USA

ingber@ingber.com, ingber@alumni.caltech.edu
http://www.ingber.com/

ABSTRACT: Columnar firings of neocortex, modeled by a statistical mechanics of neocortical
interactions (SMNI), are investigated for conditions of oscillatory processing at frequencies consistent
with observed electroencephalography (EEG). A strong inference is drawn that physiological states of
columnar activity receptive to selective attention support oscillatory processing in observed frequency
ranges. Directcalculations of the Euler-Lagrange (EL) equations which are derived from functional
variation of the SMNI probability distribution, giving most likely states of the system, are performed for
three prototypical Cases, dominate excitatory columnar firings, dominate inhibitory columnar firings, and
in-between balanced columnar firings, with and without a Centering mechanism (CM) (based on observed
changes in stochastic background of presynaptic interactions) which pulls more stable states into the
physical firings ranges. Only states with the CM exhibit robust support for these oscillatory states.These
calculations are repeated for the visual neocortex, which has twice as many neurons/minicolumn as other
neocortical regions. Thesecalculations argue that robust columnar support for common EEG activity
requires the same columnar presynaptic parameter necessary for ideal short-term memory (STM).It is
demonstrated at this columnar scale, that both shifts in local columnar presynaptic background as well as
local or global regional oscillatory interactions can effect or be affected by attractors that have detailed
experimental support to be considered states of STM.Including the CM with other proposed
mechanisms for columnar-glial interactions and for glial-presynaptic background interactions, a path for
future investigations is outlined to test for quantum interactions, enhanced by magnetic fields from
columnar EEG, that directly support cerebral STM and computation by controlling presynaptic noise.
This interplay can provide mechanisms for information processing and computation in mammalian
neocortex.
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1. Origins of EEG
The origins and utility of observed electroencephalography (EEG) are not yet clear, i.e., Delta (> 0-4 Hz),
Theta (4-7 Hz), Alpha (8-12 Hz), Beta (12-30 Hz), and Gamma (30-100+ Hz).Some studies strongly
dismiss the notion that EEG is an epiphenomenon, and that such oscillations may be causal in information
processing in the brain (Alexander, 2007; Alexander, Arns, Paul, Rowe, Cooper, Esseret al, 2006;
Radman, Su, An, Parra & Bikson, 2007).Several studies strongly link the presence of oscillatory
processing during short-term (STM) and long-term memory (LTM) formation, e.g., Gamma facilitating
STM formation, and Theta facilitating LTM (Axmacher, Mormann, Fernandez, Elger& Fell, 2006;
Jensen & Lisman, 2005; Kahana, 2006; Kahana, Seelig & Madsen, 2001; Lisman & Idiart, 1995; Logar,
Beliè, Koritnik et al, 2008; Meltzer, Fonzo & Constable, 2009; Mormann,Fell, Axmacheret al, 2005;
Osipova, Takashima, Oostenveld, Fernandez, Maris& Jensen, 2006; Sederberg, Kahana, Howard et
al, 2003; Singer, 1999).

Many neuroscientists believe that global regional activity supports such wav e-like oscillatory observations
(Nunez, 1974; Nunez, 1981; Nunez, 1995). Here, regional refers to major neocortical regions, e.g.,
visual, auditory, somatic, associative, frontal, etc. Global refers to interactions among these regions.

Some other investigators have shown how reasonable models of relatively local columnar activity can
support oscillatory interactions, using linearized dispersion relations derived from SMNI (Ingber, 1983;
Ingber, 1985a). Here,local refers to scales of interactions among neurons across columns consisting of
hundreds of neurons and macrocolumns consisting of thousands of minicolumns.This local approach,
using a statistical mechanics of neocortical interactions (SMNI) has also included global regional
interactions among distant local columnar activity (Ingber & Nunez, 1990).

Nature has developed structures at intermediate scales in many biological as well as in many non-
biological systems to facilitate flows of information between relatively small and large scales of activity.
Many systems possess such structures at so-called mesoscopic scales, intermediate between microscopic
and macroscopic scales, where these scales are typically defined specific to each system, and where the
mesoscopic scale typically facilitates information between the microscopic and macroscopic scales.
Typically, these mesoscopic scales have their own interesting dynamics.

This has been discussed in the SMNI papers with respect to columnar anatomy and physiology in
neocortex, which can be described by a nonlinear nonequilibrium multivariate statistical mechanics, a
subfield of statistical mechanics dealing with Gaussian Markovian systems with time-dependent drifts and
correlated diffusions, with both drifts and diffusions nonlinear in their multiple variables. SMNIhas
described columnar activity to be an effective mesoscopic scale intermediate between macroscopic
regional interactions and microscopic averaged synaptic and neuronal interactions.Such treatment of
neuronal activity, beyond pools of individual neurons, is based on evidence over the past 30 years of
mesoscopic neocortical columnar anatomy as well as physiology which possess their own dynamics
(Mountcastle, 1978; Buxhoeveden & Casanova, 2002). It is important to note that although columnar
structure is ubiquitous in neocortex, it is by no means uniform nor is it so simple to define across many
areas of the brain (Rakic, 2008).While SMNI has calculated phenomena like STM and EEG to validate
this model, there is as yet no specific real columnar data to validate SMNI’s precise functional form at this
scale.

In this context, while EEG may have generators at microscopic neuronal scales and regional macroscopic
scales, this study was motivated to investigate whether mesoscopic scales can support columnar firing
activity at observed multiple frequencies, not necessarily generate such frequencies.The short answer is
yes. Thedetailed support of this result requires quite lengthy calculations of the highly nonlinear
multivariate SMNI system.

When dealing with stochastic systems, there are several useful tools available when these systems can be
described by Gaussian-Markovian probability distributions, even when they are in non-equilibrium,
multivariate, and quite nonlinear in their means and variances. SMNIhas demonstrated how most likely
states described by such distributions can be calculated from the variational principle associated with
systems, i.e., as Euler-Lagrange (EL) equations directly from the SMNI Lagrangian (Langouche,
Roekaerts & Tirapegui, 1982). This Lagrangian is the argument in the exponent of the SMNI probability
distribution. TheEL equations are developed from a variational principle applied to this distribution, and
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they giv e rise to a nonlinear string model used by many neuroscientists to describe global oscillatory
activity (Ingber, 1995a).

Section 2 is a brief review of the SMNI model relevant to the calculations presented here. It is obvious
that the mammalian brain is complex and processes information at many scales, and it has many
interactions with sub-cortical structures.SMNI is appropriate to just a few scales and deals primarily
with cortical structures.While SMNI has included some specific regional circuitry to address EEG
calculations discussed below, details of laminar structure within minicolumns have not been included.
Such laminar circuitry is of course important to many processes and, as stated in previous SMNI papers, it
can be included by adding more variables. Somelaminar structure is implicitly assumed in phenomena
discussed in the last two sections dealing with electromagnetic phenomena that depends on some
systematic alignment of pyramidal neurons. Care has been taken to test SMNI at the appropriate scales,
by calculating experimentally observed phenomena, and to some readers it may be surprising that it is so
reasonably successful in these limited endeavors. Themathematics used is from a specialized area of
multivariate nonlinear nonlinear nonequilibrium statistical mechanics (Langouche,Roekaerts &
Tirapegui, 1982), and SMNI was the first physical application of these methods to the brain. In this paper,
the mathematics used in all SMNI publications is not repeated, albeit referenced, but only enough
mathematics is used to deal with the topic being presented.

Section 3 presents calculations of the EL equations, which are based on direct calculations of the
nonlinear multivariate EL equations of the SMNI Lagrangian, giving most likely states of the system,
performed for three prototypical Cases, dominate excitatory columnar firings, dominate inhibitory
columnar firings, and in between balanced columnar firings, with and without a Centering Mechanism
(CM) turned on which pulls more stable states into the physical firings ranges. This CM expresses
experimentally observed changes in stochastic background of presynaptic interactions during selective
attention. Thesecalculations are repeated for the visual neocortex, which has twice as many
neurons/minicolumn as other neocortical regions.

Section 4 takes an opportunity here to identify and correct a√2 error in the original SMNI work which
has been propagated in over 30 papers up until now. This error does not affect any conclusions of
previous results, but it must be corrected.Direct comparisons are made using EL results, which also
presents an opportunity to see how robust the SMNI model is with respect to changes in synaptic
parameters within their experimentally observed ranges.

Section 5 presents calculations of oscillatory states.Using the EL calculations, investigations are
performed for each of the prototypical Cases to see if and where oscillatory behavior is observed within
experimentally observed ranges.

Section 6 notes that the CM is effective at lev els of 10−2 or 10−3 of the Lagrangian defining a small scale
for columnar interactions, i.e., zooming in to still within classical (not quantum) domains of information.
If indeed there are quantum scales of direct interaction with classical scales of neuronal activity, it is
suggested that the presynaptic background responsible for the CM is a possible area for future
investigations.

Section 7 is the Conclusion, offering some conjecture on the utility of having columnar activity support
oscillatory frequencies observed over regions of neocortex, e.g., to support conveying local neuronal
information across regions as is observed in normal human activity. Mention is made on the importance
of including STM in discussions of neural correlates of consciousness.

2. SMNI
Neocortex has evolved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions across regions of macrocolumns.This
common architecture processes patterns of information within and among different regions, e.g., sensory,
motor, associative cortex, etc.

2.1. SMNI on STM and EEG
A statistical mechanics of neocortical interactions (SMNI) for human neocortex has been developed,
building from synaptic interactions to minicolumnar, macrocolumnar, and regional interactions in
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neocortex (Ingber, 1982; Ingber, 1983). Over a span of about 30 years, a series of about 30 papers on the
statistical mechanics of neocortical interactions (SMNI) has been developed to model columns and
regions of neocortex, spanning mm to cm of tissue.

As depicted in Figure 1, SMNI develops three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons (Sommerhoff, 1974); (b)-(b’) mesocolumnar domains (Mountcastle, 1978); (c)-(c’)
macroscopic regions. SMNIhas developed conditional probability distributions at each level, aggregating
up several levels of interactions. In (a* ) synaptic inter-neuronal interactions, averaged over by
mesocolumns, are phenomenologically described by the mean and variance of a distribution Ψ (both
Poisson and Gaussian distributions were considered, giving similar results). Similarly, in (a)
intraneuronal transmissions are phenomenologically described by the mean and variance ofΓ (a Gaussian
distribution). Mesocolumnarav eraged excitatory (E) and inhibitory (I ) neuronal firings M are
represented in (a’). In (b) the vertical organization of minicolumns is sketched together with their
horizontal stratification, yielding a physiological entity, the mesocolumn. In (b’) the overlap of
interacting mesocolumns at locationsr and r ′ from times t and t + τ is sketched. Hereτ ∼10 msec
represents typical periods of columnar firings. This reflects on typical individual neuronal refractory
periods of∼1 msec, during which another action potential cannot be initiated, and a relative refractory
period of∼0. 5—10msec. Futureresearch should determine which of these neuronal time scales are most
dominant at the columnar time scale taken to beτ . In (c) macroscopic regions of neocortex are depicted
as arising from many mesocolumnar domains. (c’) sketches how regions may be coupled by long−ranged
interactions.

Most of these papers have dealt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approach (Ingber, 1981; Ingber, 1982; Ingber, 1983; Ingber, 1984;
Ingber, 1985a; Ingber, 1985b; Ingber, 1986b; Ingber & Nunez, 1990; Ingber, 1991; Ingber, 1992; Ingber,
1994; Ingber & Nunez, 1995; Ingber, 1995a; Ingber, 1995b; Ingber, 1996b; Ingber, 1996a; Ingber, 1997;
Ingber, 1998). TheSMNI modeling of local mesocolumnar interactions, i.e., calculated to include
convergence and divergence between minicolumnar and macrocolumnar interactions, was tested on STM
phenomena. TheSMNI modeling of macrocolumnar interactions across regions was tested on EEG
phenomena.
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Fig. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. bythe
American Physical Society.

The EEG studies in previous SMNI applications were focused on regional scales of interactions.The
STM applications were focused on columnar scales of interactions.However, this EEG study is focused
at columnar scales, and it is relevant to stress the successes of this SMNI at this columnar scale, giving
additional support to this SMNI model in this context. A previous report considered oscillations in quasi-
linearized EL equations (Ingber, 2009a), while this study considers the full nonlinear system.

2.2. SMNI STM

SMNI studies have detailed that maximal numbers of attractors lie within the physical firing space ofMG,
where G = {Excitatory, Inhibitory} = {E, I } minicolumnar firings, consistent with experimentally
observed capacities of auditory and visual STM, when a Centering mechanism (CM) is enforced by
shifting background noise in synaptic interactions, consistent with experimental observations under
conditions of selective attention (Mountcastle, Andersen & Motter, 1981; Ingber, 1984; Ingber, 1985b;
Ingber, 1994; Ingber & Nunez, 1995).This leads to all attractors of the short-time distribution lying
approximately along a diagonal line inMG space, effectively defining a narrow parabolic trough
containing these most likely firing states. This essentially collapses the two-dimensionalMG space down
to a one-dimensional space of most importance. Thus, the predominant physics of STM and of (short-
fiber contribution to) EEG phenomena takes place in this narrow parabolic trough inMG space, roughly
along a diagonal line (Ingber, 1984).

These calculations were further supported by high-resolution evolution of the short-time conditional-
probability propagator using a numerical path-integral code, PATHINT (Ingber & Nunez, 1995).SMNI
correctly calculated the stability and duration of STM, the observed 7± 2 capacity rule of auditory
memory and the observed 4± 2 capacity rule of visual memory (Ericsson & Chase, 1982; Zhang &
Simon, 1985; Ingber, 1984; Ingber, 1985b), the primacy versus recency rule (Ingber, 1995b), random
access to memories within tenths of a second as observed, and Hick’s law of l inearity of reaction time
with STM information (Hick, 1952; Jensen, 1987; Ingber, 1999).
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SMNI also calculates how STM patterns (e.g., from a given region or even aggregated from multiple
regions) may be encoded by dynamic modification of synaptic parameters (within experimentally
observed ranges) into long-term memory patterns (LTM) (Ingber, 1983).

2.3. SMNI EEG
Using the power of this formal structure, sets of EEG and evoked potential data from a separate NIH
study, collected to investigate genetic predispositions to alcoholism, were fitted to an SMNI model on a
lattice of regional electrodes to extract brain signatures of STM (Ingber, 1997; Ingber, 1998). Each
electrode site was represented by an SMNI distribution of independent stochastic macrocolumnar-scaled
MG variables, interconnected by long-ranged circuitry with delays appropriate to long-fiber
communication in neocortex. Theglobal optimization algorithm Adaptive Simulated Annealing (ASA)
(Ingber, 1989; Ingber, 1993a) was used to perform maximum likelihood fits of Lagrangians defined by
path integrals of multivariate conditional probabilities.Canonical momenta indicators (CMI), the
momentum components of the EL equations, were thereby derived for individual’s EEG data. The CMI
give better signal recognition than the raw data, and were used to advantage as correlates of behavioral
states. In-sampledata was used for training (Ingber, 1997), and out-of-sample data was used for testing
(Ingber, 1998) these fits.

These results gav e strong quantitative support for an accurate intuitive picture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

2.4. Chaos
There are many papers on the possibility of chaos in neocortical interactions, including some that consider
noise-induced interactions (Zhou & Kurths, 2003). While this phenomena may have some merit when
dealing with small networks of neurons, e.g., in some circumstances such as epilepsy, these papers
generally have considered only too simple models of neocortex. Note that SMNI can be useful to
describe some forms of epilepsy, e.g., when columnar firings reach upper limits of maximal firings, as in
some of the models presented below (Ingber, 1988).

The author took a model of chaos that might be measured by EEG, developed and published by
colleagues (Nunez & Srinivasan, 1993; Srinivasan & Nunez, 1993), but adding background stochastic
influences and parameters that were agreed to better model neocortical interactions.The resulting
multivariate nonlinear conditional probability distribution was propagated many thousands of epochs,
using the authors PATHINT code, to see if chaos could exist and persist under such a model (Ingber,
Srinivasan & Nunez, 1996).There was absolutely no measurable instance of chaos surviving in this more
realistic context. Notethat this study was at the columnar scale, not the finer scales of activity of smaller
pools of neurons.

2.5. Mathematics

2.5.1. Background
A spatial-temporal lattice-field short-time conditional multiplicative-noise (nonlinear in drifts and
diffusions) multivariate Gaussian-Markovian probability distribution was developed faithful to neocortical
function/physiology. Such probability distributions are basic to the SMNI approach used here.The
SMNI model was the first physical application of a nonlinear multivariate calculus developed by other
mathematical physicists in the late 1970’s to define a statistical mechanics of multivariate nonlinear
nonequilibrium systems (Graham, 1977; Langouche, Roekaerts & Tirapegui, 1982).

This formulation of a multivariate nonlinear nonequilibrium system requires derivation in a proper
Riemannian geometry to study proper limits of short-time conditional probability distributions. Priorto
the late 1970’s and early 1980’s, many uses of path integrals for multivariate systems nonlinear in their
drifts and diffusions were too cavalier in taking continuum limits. In general, results of derivations may
be formally written as continuum limits, but these should be understood to be implemented as discrete in
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derivations as well as in numerical work (Langouche, Roekaerts & Tirapegui, 1982; Schulman, 1981).

Some spin-offs from this study included applications to specific disciplines such as neuroscience (SMNI),
finance (Ingber, 1990; Ingber, 2000), combat simulations (Ingber, 1993b), and nuclear physics (Ingber,
1986a) In addition generic computational tools were developed to handle such nonlinear structures, for
optimization and importance-sampling with ASA (Ingber, 1993a), and for path-integral systems,
including PATHINT (Ingber, 2000; Ingber & Nunez, 1995) and PATHTREE (Ingber, Chen, Mondescuet
al, 2001). Theuse of financial risk-management algorithms has been cast into a framework that can
enhance resolution of brain imaging from multiple synchronized sources (Ingber, 2008b; Ingber, 2009b).
The SMNI model also has been generalized to a model for Artificial Intelligence (Ingber, 2007; Ingber,
2008a).

2.5.2. SMNI Application
Some of the algebra behind SMNI depicts variables and distributions that populate each representative
macrocolumn in each region. While Riemannian terms were calculated when using the Stratonovich
midpoint discretization of the probability distribution (Ingber, 1982; Ingber, 1983), in order to explicitly
deal with the multivariate nonlinearities, here it suffices to use the more readable Ito prepoint
discretization, which is an equivalent numerical distribution when used consistently (Langouche,
Roekaerts & Tirapegui, 1982).

A derived mesoscopic LagrangianL defines the short-time probability distribution P of firings in a
minicolumn composed of∼102 neurons, whereP is the product ofPG, whereG = {E, I } chemically
independent excitatory and inhibitory firing distributions, by aggregating probability distributions of
neuronal firings pσ j

, giv en its just previous interactions with all other neurons in its macrocolumnar
surround.G designates contributions from bothE and I . The Einstein summation convention is used for
G indices, whereby repeated indices in a term implies summation over that index, unless summation is
prevented by vertical bars, e.g., |G|.

P =
G
Π PG[MG(r ; t + τ )|MG(r ′; t)]

=
σ j

Σ δ


 jE
Σσ j − M E(r ; t + τ )




δ



 jI
Σσ j − M I (r ; t + τ )





N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG) ,

P≈(2π τ )−1/2g1/2 exp(−Nτ L) ,

L = LE + L I = (2N)−1(Ṁ
G − gG)gGG′(Ṁ

G′ − gG′) + MGJG/(2Nτ ) − V′ ,

Ṁ
G = [MG(t + τ ) − MG(t)] /τ ,

V′ =
G
ΣV′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + NG tanhFG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1NGsech2FG ,

g = det(gGG′) ,

FG =
(VG − a|G|

G′ v
|G|
G′ NG′ −

1

2
A|G|

G′ v
|G|
G′ MG′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ NG′ +

1

2
A|G|

G′ MG′)))1/2
,
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aG
G′ =

1

2
AG

G′ + BG
G′ (1)

where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies (4 combinations of
{E, I } with {E ′, I ′} fi rings), vG

G′ andφG
G′ are averaged means and variances of contributions to neuronal

electric polarizations. MG′ and NG′ in FG are afferent macrocolumnar firings, scaled to efferent
minicolumnar firings byN/N * ∼10−3, where N * is the number of neurons in a macrocolumn,∼105.
Similarly, AG′

G and BG′
G have been scaled byN * / N∼103 to keep FG invariant. V′ are derived

mesocolumnar nearest-neighbor (NN) interactions (not used in this columnar study).JG was used in
early papers to model influences on minicolumnar firings from long-ranged fibers across regions, but later
papers integrated these long-ranged fibers directly into the above framework as described below, leaving
SMNI with no free parameters.Reasonable typical values of the postsynaptic neuronal parameters are
taken to be |vG

G′| = φG
G′ = 0. 1N * / N. The presynaptic neuronal parameters are given below for the

different Cases considered.

It is interesting to note that, as originally derived (Ingber, 1982; Ingber, 1983), the numerator ofFG

contains information derived from presynaptic firing interactions.The location of most stable states of
this SMNI system are highly dependent on the interactions presented in this numerator. The denominator
of FG contains information derived from postsynaptic neuromodular and electrical processing of these
fi rings. Thenonlinearities present in this denominator dramatically affect the number and nature of stable
states at scales zoomed in at magnifications on the order of a thousand times, representing neocortical
processing of detailed information within a sea of stochastic activity.

To properly deal with multivariate nonlinear multiplicative-noise systems, researchers have had to
properly discretize the Feynman Lagrangian,LF , in terms of the Feynman ActioñSF , including
Riemannian induced with the Stratonovich midpoint discretization (Langouche,Roekaerts & Tirapegui,
1982). Again, the Einstein convention of summing over factors with repeated indices is assumed.The
Feynman probability distribution over the entire cortex, consisting ofΛ mesocolumns spanning a total
cortical areaΩ, can be written formally, i.e., with discretization understood to be necessary in all derived
uses and numerical calculations, as

S̃F = minΛΩ−1 ∫ dt′ ∫ d2r L F ,

LF =
1

2
N−1(Ṁ

G − hG)gGG′(M
G′ − hG′) − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

V = V′ − (
1

2
hG

;G + R/6)/N ,

V′ = V′E + V′I − MGJG/(2Nτ ) ,

hG
;G = g−1/2(g1/2hG),G ,

g = ||gGG′|| = det(gGG′) = gEEgII ,

gGG′ = (gGG′)−1 ,

R = g−1(gEE,II + gII ,EE) −
1

2
g−2 × {g II [gEE,EgII ,E + (gEE,I )

2] + gEE[gII ,I gEE,I + (gII ,E)2]} ,

[. . .],G ≡ (∂/∂MG)[. . .] .  (2)

The Riemannian curvatureR arises from the nonlinear inverse variancegGG′, which is abona fide metric
of this parameter space (Graham, 1978).The discretization of the determinant prefactor of the
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conditional probability distribution requires additional care (Langouche, Roekaerts & Tirapegui, 1982).
The discretization in the prepoint representation is outlined below. All these these terms were calculated
and found to be large enough in SMNI to be included in any numerical calculations if this midpoint
discretization were to be used (Ingber, 1983).

In this context, note that all derivations of proper distributions as well as all numerical applications in
SMNI should be considered to be in discretized representations.Many physics papers portray formal
continuum limits, but discretization must be understood, especially in these nonlinear systems.SMNI
presents a moderate noise system, e.g., as was used in the Chaos section above. Since numerical solutions
of the path integrals, e.g., using PATHINT and PATHTREE, are proportional to factors of the metric
(inverse covariance) andτ , discretization is well enforced. The use of ASA for importance and
optimization also uses OPTIONS in the code to enforce discrete states, e.g., integers, to well model SMNI
columnar firings.

2.5.3. Prototypical Cases
Three Cases of neuronal firings were considered in the first introduction of STM applications of SMNI
(Ingber, 1984). Below is a short summary of these details. Note that while it suffices to define these
Cases usingFG, the full Lagrangian and probability distribution, upon which the derivation of the EL
equations are based, are themselves quite nonlinear functions ofFG, e.g., via hyperbolic trigonometric
functions, etc.

Since STM duration is long relative to τ , stationary solutions of the LagrangianL, L, can be investigated
to determine how many stable minima << MG >> may simultaneously exist within this duration.Detailed
calculations of time-dependent folding of the full time-dependent probability distribution supports
persistence of these stable states within SMNI calculations of observed decay rates of STM (Ingber &
Nunez, 1995).

It is discovered that more minima ofL are created, i.e., brought into the physical firing ranges, if the
numerator ofFG contains terms only inMG, tending to centerL aboutMG = 0. Thatis, BG is modified
such that the numerator ofFG is transformed to

F ′G =
−

1

2
A|G|

G′ v
|G|
G′ MG′

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a′|G|
G′ NG′ +

1

2
A|G|

G′ MG′)))1/2
,

a′GG′ =
1

2
AG

G′ + B′GG′ , (3)

The most likely states of the centered systems lie along diagonals inMG space, a line determined by the
numerator of the threshold factor inF E, essentially

AE
E M E − AE

I M I ≈ 0 ,  (4)

noting that inF I I − I connectivity is experimentally observed to be very small relative to other pairings,
so that (AI

E M E − AI
I M I ) is typically small only for smallM E.

Of course, any mechanism producing more as well as deeper minima is statistically favored. However,
this particular CM has plausible support:MG(t + τ ) = 0 is the state of afferent firing with highest
statistical weight.I.e., there are more combinations of neuronal firings, σ j = ±1, yielding this state than
any other MG(t + τ ), e.g.,∼2NG+1/2(π NG)−1/2 relative to the statesMG = ±NG. Similarly, MG(t) is the
state of efferent firing with highest statistical weight.Therefore, it is natural to explore mechanisms
which favor common highly weighted efferent and afferent firings in ranges consistent with favorable
fi ring threshold factorsFG≈0.

A model of dominant inhibition describes how minicolumnar firings are suppressed by their neighboring
minicolumns. For example, this could be effected by developing NN mesocolumnar interactions (Ingber,
1983), but here the averaged effect is established by inhibitory mesocolumns (Case I) by setting
AI

E = AE
I = 2AE

E = 0. 01N* /N. Since there appears to be relatively little I − I connectivity, set
AI

I = 0. 0001N* /N. The background synaptic noise is taken to beBE
I = BI

E = 2BE
E = 10BI

I = 0. 002N* /N.
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As minicolumns are observed to have ∼110 neurons (visual cortex appears to have approximately twice
this density) (Mountcastle, 1978), and as there appear to be a predominance ofE over I neurons (Nunez,
1981), here take NE = 80 andN I = 30. UseN* /N = 103, vG

G′, and φG
G′ as estimated previously. MG

represents time-averagedMG. The threshold factorsFG
I for this I model are then

F E
I =

(0. 5M I − 0. 25M E + 3. 0)

(π /2)1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

F I
I =

(0. 005M I − 0. 5M E − 45. 8)

(π /2)1/2(0. 001M I + 0. 1M E + 11. 2)1/2
. (5)

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly
the step-function forms tanhFG

I in gG(t) changeMG(t) to MG(t + τ ). F I
I will cause afferent M I to fire

for most of its values, asM I ∼ − N I tanhF I
I will be positive for most values ofMG in F I

I , which is already
weighted heavily with a term -45.8. Looking atF E

I , it is seen that the relatively high positive values of
efferentM I require at least moderate values of positive efferentM E to cause firings of afferentM E. The
use ofπ /2 will be discussed below, as this differs from the use ofπ in previous papers.

The centering effect of the I model, labeled here as the IC model, is quite easy for neocortex to
accommodate. For example, this can be accomplished simply by readjusting the synaptic background
noise fromBG

E to B′GE ,

B′GE =
[VG − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

EvG
E NE]

vG
E NG

(6)

for both G = E and G = I . In general, BG
E and BG

I (and possiblyAG
E and AG

I due to actions of
neuromodulators, andJG constraints from long-ranged fibers) are available to zero the constant in the
numerator, giving an extra degree(s) of freedom to this mechanism.(If B′GE would be negative, this leads
to unphysical results in the square-root denominator ofFG. In all examples where this occurs, it is
possible to instead find positive B′GI to appropriately shift the numerator ofFG.) In this context, it is
empirically observed that the synaptic sensitivity of neurons engaged in selective attention is altered,
presumably by the influence of chemical neuromodulators on postsynaptic neurons at their presynaptic
sites (Mountcastle, Andersen & Motter, 1981).

By this CM,B′EE = 1. 38andB′II = 15. 3,andFG
I is transformed toFG

IC, Case IC,

F E
IC =

(0. 5M I − 0. 25M E)

(π /2)1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

F I
IC =

(0. 005M I − 0. 5M E)

(π /2)1/2(0. 001M I + 0. 1M E + 20. 4)1/2
. (7)

Note that, aside from the enforced vanishing of the constant terms in the numerators ofFG
I , the only other

changes inFG
I moderately affect the constant terms in the denominators.

The other extreme of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (Case E) by using the same parameters{BG

G′, vG
G′,φG

G′, AI
I } as in the I

model, but settingAE
E = 2AI

E = 2AE
I = 0. 01N* /N. This yields

F E
E =

(0. 25M I − 0. 5M E − 24. 5)

(π /2)1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

F I
E =

(0. 005M I − 0. 25M E − 25. 8)

(π /2)1/2(0. 001M I + 0. 05M E + 7. 24)1/2
. (8)

The negative constant in the numerator ofF I
E inhibits afferent M I fi rings. Althoughthere is also a
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negative constant in the numerator ofF E
E , the increased coefficient of M E (relative to its corresponding

value in F E
I ), and the fact thatM E can range up toNE = 80, readily permits excitatory firings throughout

most of the range ofM E.

Applying the CM to E,B′EI = 10. 2 and B′II = 8. 62. The net effect in FG
EC, Case EC, in addition to

removing the constant terms in the numerators ofFG
E , is to change the constant terms in the denominators:

12.3 inF E
E is changed to 17.2 inF E

EC, and 7.24 inF I
E is changed to 12.4 inF I

EC.

Now it is natural to examine a balanced Case intermediate between I and E, labeled here as Case B.This
is accomplished by changingAE

E = AI
E = AE

I = 0. 005N* /N. This yields

F E
B =

(0. 25M I − 0. 25M E − 4. 50)

(π /2)1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
B =

(0. 005M I − 0. 25M E − 25. 8)

(π /2)1/2(0. 001M I + 0. 050M E + 7. 24)1/2
. (9)

Applying the CM to B,B′EE = 0. 438and B′II = 8. 62. The net effect inFG
BC, Case BC, in addition to

removing the constant terms in the numerators ofFG
B , is to change the constant terms in the denominators:

8.30 inF E
B is changed to 7.40 inF E

BC, and 7.24 inF I
B is changed to 12.4 inF I

BC.

Previously, calculations were performed for the three prototypical firing Cases, dominate excitatory (E),
dominate inhibitory (I) and balanced about evenly (B). More minima were brought within physical firing
ranges when a CM is invoked (Ingber, 1984), by tuning the presynaptic stochastic background, a
phenomena observed during selective attention, giving rise to Cases EC, IC and BC.The states BC are
observed to yield properties of auditory STM, e.g., the 7± 2 capacity rule and times of duration of these
memory states (Ingber, 1984; Ingber, 1985b).

It is observed that visual neocortex has twice the number of neurons per minicolumn as other regions of
neocortex. In the SMNI model this gives rise to fewer and deeper STM states, consistent with the
observed 4± 2 capacity rule of these memory states. These calculations are Cases ECV, ICV and BCV.

2.5.4. Macroscopic Circuitry
The most important features of this development are described by the LagrangianL in the negative of the
argument of the exponential describing the probability distribution, and the threshold factorFG describing
an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to include interactions among
macrocolumns, theJG terms can be dropped, and more realistically replaced by a modified threshold
factor FG,

FG =

(VG − a|G|
G′ v

|G|
G′ NG′ −

1

2
A|G|

G′ v
|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ NG′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2

a‡E
E′ =

1

2
A‡E

E′ + B‡E
E′ . (10)

Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have
been added, whereN‡E might be on the order of 10% ofN∗: Of the approximately 1010 to 1011

neocortical neurons, estimates of the number of pyramidal cells range from 1/10 to 2/3.Nearly every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 1010.

The long-ranged circuitry was parameterized (with respect to strengths and time delays) in the EEG
studies described above (Ingber, 1997; Ingber, 1998). In this way SMNI presents a powerful
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computational tool to include both long-ranged global regional activity and short-ranged local columnar
activity.

This nature of physiological connectivity among columns even across regions can lead to oscillatory
behavior induced among many columns, as will be stressed in the Conclusion after results of this study
are described.

3. Euler-Lagrange (EL)
The EL equations are derived from the long-time conditional probability distribution of columnar firings
over all cortex, represented bỹM , in terms of the ActionS,

P̃[M̃(t)]dM̃(t) = ∫ . . . ∫ DM̃ exp(−NS̃) ,

M̃ = {M Gν } ,

S̃ =
t

t0

∫ dt′L̃ ,

L̃ = ΛΩ−1 ∫ d2rL ,

L = LE + L I ,

DM̃ =
u+1

s=1
Π

Λ

ν =1
Π

E,I

G
Π (2π dt)−1/2(gν

s)1/4dMGν
s δ [Mt = M(t)][δ [M0 = M(t0)] , (11)

whereν labels the two-dimensional laminar→r-space ofΛ∼5 × 105 mesocolumns spanning a typical region
of neocortex, Ω, (total cortical area∼4 × 1011 µm2); ands labels theu + 1 time intervals, each of duration
dt ≤ τ , spanning (t − t0). At a giv en value of (r ; t), M = {M G}.

The path integral has a variational principle,δ L = 0 which gives the EL equations for SMNI (Ingber,
1982; Ingber, 1983). TheEinstein convention is used to designate summation over repeated indices, and
the following notation for derivatives is used:

(. . .):z = d(. . .)/dz, z = {x, y} ,

(. . .),G = ∂(. . .)/∂MG, (. . .),Ġ = ∂(. . .)/∂(dMG/dt),

(. . .),G:z
= ∂(. . .)/∂(dMG/dz),

(. . .),∇G = x̂∂(. . .)/∂(dMG/dx) + ŷ∂(. . .)/∂(dMG/dy). (12)

The EL equations are:

δ L = 0,

δGL = L,G −∇ ⋅ L,∇G −L,Ġ:t = 0,

∇ ⋅ L,∇G = L,G:z:z = (L,G:z
,G′ )MG′

:z + (L,G:z
,G′:z )MG′

:zz

L,Ġ:t = (L,Ġ ,G′ )Ṁ
G′ + (L,Ġ ,Ġ′ )M̈

G′
. (13)

This exhibits the extremum condition as a set of differential equations in the variables
{M G, Ṁ

G
, M̈

G
, MG

:z, MG
:zz} in r − t = (x, y, t) space, with coefficients nonlinear inMG. Note that theV′

term for NN interactions in the LagrangianL will introduce spatial derivative terms that appear in these
EL equations.
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For a giv en column this is represented as

∂
∂t

∂L

∂(∂M E/∂t)
−

∂L

∂M E
= 0 .

∂
∂t

∂L

∂(∂M I /∂t)
−

∂L

∂M I
= 0 .  (14)

The Lagrangian components and EL equations are essentially the counterpart to classical dynamics,

Mass= gGG′ =
∂2L

∂(∂MG/∂t)∂(∂MG′/∂t)
,

Momentum= ΠG =
∂L

∂(∂MG/∂t)
,

Force=
∂L

∂MG
,

F − ma= 0: δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG/∂t)
. (15)

To inv estigate dynamics of multivariate stochastic nonlinear systems, such as neocortex presents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear diffusions in particular are typically washed out. Here, path integral
representations of systems, otherwise equivalently represented by Langevin or Fokker-Planck equations,
present elegant algorithms by use of variational principles leading to EL equations (Langouche,
Roekaerts & Tirapegui, 1982).

The nonlinear string model mentioned in the Introduction was recovered using the EL equation for the
electric potentialΦ measured by EEG, considering one firing variable along the parabolic trough of
attractor states being proportional toΦ (Ingber & Nunez, 1990).Here, the EL equation includes variation
across the spatial extent,x, of columns in regions,

∂
∂t

∂L

∂(∂Φ/∂t)
+

∂
∂x

∂L

∂(∂Φ/∂x)
−

∂L

∂Φ
= 0 .  (16)

The result is

α
∂2Φ
∂t2

+ β
∂2Φ
∂x2

+ γ Φ −
∂F

∂Φ
= 0 .  (17)

The determinant prefactor g defined above also contains nonlinear details affecting the state of the
system. Sinceg is often a small number, distortion of the scale ofL is avoided by normalizingg/g0,
whereg0 is simplyg evaluated atM E = M‡E′ = M I = 0.

If there exist regions in neocortical parameter space such that we can identifyβ /α = −c2, γ /α = ω 2
0 (e.g.,

as explicitly calculated using the CM),

1

α
∂F

∂Φ
= −Φ f (Φ) ,  (18)

then we recover the nonlinear string model.

The most-probable firing states derived variationally from the path-integral Lagrangian as the EL
equations represent a reasonable average over the noise in the SMNI system.For many studies, the noise
cannot be simply disregarded, as demonstrated in other SMNI STM and EEG studies, but for the purpose
here of demonstrating the existence of multiple local oscillatory states that can be identified with EEG
frequencies, the EL equations serve very well.
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Previous SMNI EEG studies have demonstrated that simple linearized dispersion relations derived from
the EL equations support the local generation of frequencies observed experimentally as well as deriving
diffusive propagation velocities of information across minicolumns consistent with other experimental
studies. Theearliest studies simply used a driving forceJGMG in the Lagrangian to model long-ranged
interactions among fibers (Ingber, 1982; Ingber, 1983). Subsequentstudies considered regional
interactions driving localized columnar activity within these regions (Ingber, 1996b; Ingber, 1997; Ingber,
1998). Thisstudy considers self-sustaining EEG activity within columns.

3.1. Maxima, Gnuplot and C
Maxima is a computer code that processes algebraic language (Schelter, 2009). Thecode also can
perform many numerical calculations, although typically with less efficiency than C code.Maxima
output can be directly converted to Fortran, and then the f2c utility can be used to generate C code.
However, that C code is barely readable and thus hard to maintain. Instead, Maxima output can be
directly processed by a few simple Unix scripts to generate very decent standard C code. At all stages,
numerical checks were used to be sure the Maxima and C codes were faithful to each other. If the
columnar parameters are left unspecified, then some of the EL coefficients can be as long as several
hundred thousand lines of code.

A great advantage of using an algebraic language like Maxima over numerical languages like C/C++ is
that highly nonlinear expressions can be processed before numerical specifications, often keeping small
but important scales intact without losing them to round-off constraints.

The numerical output of Maxima is then developed by Gnuplot (Williams & Kelley, 2008) into graphs
presented here.

3.2. Adaptive Simulated Annealing
Adaptive Simulated Annealing (ASA) (Ingber, 1989; Ingber, 1993a) is used to optimize nonlinear
parameters, deal with complex constraints, and to importance-sample large spaces of multiple variables.

ASA is a C-language code developed to statistically find the best global fit of a nonlinear constrained
non-convex cost-function over a D-dimensional space. This algorithm permits an annealing schedule for
“temperature”T, an annealing parameter linked historically to other physical processes, decreasing
exponentially in annealing-timek, T = T0 exp(−ck1/D). The introduction of re-annealing also permits
adaptation to changing sensitivities in the multi-dimensional parameter-space. Thisannealing schedule is
faster than fast Cauchy annealing, whereT = T0/k, and much faster than Boltzmann annealing, whereT =
T0/ ln k. ASA has over 100 OPTIONS to provide robust tuning over many classes of nonlinear stochastic
systems.

4. sqrt(2) Error
The probability distribution for neuronal firing, dependent on the probability distributions of synaptic
interactions, had been calculated prior to SMNI (Shaw & Vasudevan, 1974). The SMNI calculation
explicitly detailed physical stages in this derivation and generalized the results to be robust using various
distributions (Ingber, 1982; Ingber, 1983). Whilethe first SMNI calculations gav ethe same final results,
via direct communication with the author of the previous work, some error found its way into the first
SMNI papers.

At the stage of a straightforward saddle-point calculation (Mathews & Walker, 1970), a√2 error has been
propagated in a series of papers spanning 1981-2008. As first published in 1982 (Ingber, 1982), in the
calculation of the conditional probability of individual neuronal firing,pσ j

,

pσ j
= π −

1

2

∞

(σ j F j √ π /2)
∫ dz exp(−z2) =

1

2
[1 − erf (σ j F j √ π /2)],

F j = (V j −
k
Σ a jk v jk)/[π

k′
Σ a jk′(v

2
jk′ + φ2

jk′)]
1

2 . (19)



Lester Ingber - 15 -

The last equation,F j should be corrected with a√2, as in

F j = (V j −
k
Σ a jk v jk)/[(π /2)

k′
Σ a jk′(v

2
jk′ + φ2

jk′)]
1

2 . (20)

This also similarly affects all mesocolumnar averages over neuronal F j , yielding FG factors in
subsequent algebra.

In this paper, calculations of the Balanced Centered Case with this√ (2) error is Case BC2, to be
compared with calculations of Case BC.This error has no dramatic consequences on other results derived
in the above papers. Thisis because in all these papers, regarding (v2

jk′ + φ2
jk′), only numerical values of

0. 12 values have been used forv2
jk′ and φ2

jk′. Thus, this would only have the numerical effect of
increasingφ by a factor of 1.73 (a number not well established experimentally): 0.12 + 0. 12 = 0. 02 →
2(0. 02)= 0. 04 = 0. 12 + √ 0. 03

2
= 0. 12 + 0. 1732, whereqvjk′ is the mean andqφ2

jk′ is the variance ofΓ,
in mV, of the postsynaptic response toq quanta. Therefore,this also presents an opportunity to see how
robust the SMNI model is with respect to changes in synaptic parameters within their experimentally
observed ranges.

While care has been taken to use only neocortical parameters with values within experimental
observations, these values can range substantially, and so any results such as those presented here could
be just as reasonable if interpolated or reasonably extrapolated between these two figures.

5. Oscillatory States
To inv estigate self-sustained oscillatory interactions, in the EL equations the substitution is made

MG → MG exp(−iωGt) (21)

where realωG is sought in this study, and where the same notationMG is used in theωG-transformed
space. Thereal part ofωG represents oscillatory states, while the imaginary part represent attenuation in
time of these states. If in fact there are some finite neighborhoods inMG space that supports realω , with
zero or only modest attenuation, then it can be claimed that these neighborhoods support oscillatory states
(Ingber, 2009a). Themotivation of this study was to seek such states with zero attenuation within
experimentally observed ranges and to see if there could be multiple frequencies spanning observed
frequency ranges.

Note that if the time scales of postsynaptic response,τ , is on the order of 10 msec, thenωGτ (which is
what is being calculated) on the order of 1 is equivalent to a frequency νG = ωG/(2π ) on the order of 16
cps (Hz), in the observed beta range, close to the range of observed Alpha and Beta rhythms.

5.1. Computation
For further computation, for each Case, each of the two coupled EL equations is further decomposed into
real and imaginary parts. Code for each function is developed in Maxima, then converted to C code using
Unix scripts, yielding 40 files containing these 40 C functions. Each EL C code is a one long single-
equation function of 4 variables,{M G,ωG}. The code developed by Maxima consists of 4.22M (4.22
million) lines of 248M characters.This code is further processed by Unix scripts to a more efficient C
code used in runs of 2.39M lines of 102M characters, or an average of 60K lines for each of the 40
functions. Thepackage of ASA (about 13K lines) and SMNI codes compile and run without errors or
warnings with low-level optimization flags -g -Wall on IBM a31p Thinkpads running at 2 GHz, under
gcc/g++-4.3.3 under Linux Ubuntu 9.04 with 1 GB RAM, and under gcc-4.3.2 under XP Professional
SP3/Cygwin-1.5.25-15 with 2 GB RAM.

For each Case, a cost function is defined as the sum of absolute values of real and imaginary parts of both
equations, i.e., a sum of 4 C functions.An MG mesh is defined by 32 points inM E and 12 points inM I .
The M E: M I ranges are -80:80 and -30:30 in increments of 5 for non-visual Cases, and -160:160 and
-60:60 in increments of 10 for visual Cases.

Values of M E or M I equal to zero are skipped, as for these points optimization with respect toωG are
indeterminate, as the zeros multiply theωG making optimization meaningless.E.g., the EL equations for
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MG = 0 is a constant, independent ofωG. Since there are obvious strong interactions betweenM E and
M I , even if one MG ≠ 0 supports oscillations, it would be expected that the otherMG′ = 0 (half theG′
neurons in the column are firing) would have some oscillations induced, but theG′ oscillations are not
calculated here.A decision was made not to optimize with respect to just oneωG and assume some
behavior of the otherωG′ at these points. The meshes closest to these Cases offer reasonable insights into
what frequencies are supported in these Cases at these points.

The size of these files pushed the capacity of gcc on these particular computers. Memory became
exhausted when optimization flag -O was tried.Even without -O flags, attempts to create functions that
combined these functions into the one file with each cost function also exhausted memory, so the cost
function calls combinations of 4 of these functions in 4 respective files. Numericalchecks made between
Maxima and C codes gav eat least 6 significant figure agreement in the EL equations.

ASA is used to minimize this cost function with parametersωG to less than 0.5, about 5 orders of
magnitude less than typical larger absolute values that can be attained without minimization when theωG
are stable in the search. After some experimentation, good results were obtained by using the ASA
algorithm for 500 generated states to get within the regions of global minima, then shunting the code over
to the modified Nelder-Mead simplex code that is integrated with the ASA distribution in module
FITLOC. The simplex code only improved the ASA results in a few instances. Pointsthat did not
converge to 0.5, indicating no good fit was achieved at these mesh points, are not registered on the graphs.
It was interesting to see that most of the mesh points that did converge gav evalues ofωG around observed
frequency ranges. AfterskippingMG optimizations as discussed above, this left 3,840 Case calls to ASA
and FITLOC, each call representing 500 function evaluations in ASA and from 8 to 500 extra evaluations
in FITLOC.

At each point inMG mesh, the argumentiωG induces some symmetries inωG space:

RealEL(ω E,ω I ) = RealEL(−ω E, −ω I )

ImagEL(ω E,ω I ) = −ImagEL(−ω E, −ω I ) (22)

These symmetries were checked to be intact in Maxima even with its floating-point precision in the
coefficients of{M G,ωG} in the EL equations. Therefore, since the cost function is composed of absolute
values of real and imaginary parts, the ranges for the optimization were constrained to−4. 0≤ ω E ≤ 4. 0
and 0≤ ω I ≤ 4. 0, i.e., quadrants [−ω E: +ω I ] and [+ω E: +ω I ], since the other two quadrants inω I space
would have the same minima structures. I.e., [−ω E: +ω I ] = [+ω E: −ω I ] and [+ω E: +ω I ] = [−ω E: −ω I ].
The range of 4.0 was selected to correspond to about 4 times the Alpha frequency. The additional
symmetricωG minima were added into the graphs after the optimization calculations.

The numerical calculations were performed on a dedicated Ubuntu computer in about 30 secs per Case
per mesh point, about 16 CPU-hrs for all calculations.Gnuplot was used this data to develop the graphs
presented here.

5.2. Results
In the following figures, oscillatory states supported by satisfying the EL variational equations are given
for all Cases.It is clear that the Cases with the CM robustly support oscillatory behavior in many regions
of firing space, whereas Cases without this mechanism do not.Clearly, the presence of attractors, as they
shift due to their oscillatory factors, make it more feasible to sustain these oscillations.The left and
middle columns graph the populations ofω E andω I independently. The right columns give scatter plots
of correlated pairsω E − ω I as they are calculated from each set ofE − I EL equations.This combination
of graphs details areas ofMG as well as correlated values ofωG which support oscillatory interactions.

Figure 2 gives results for Cases I and IC. Figure 3 gives results for Cases E and EC. Figure 4 gives
results for Cases B and BC. Figure 5 gives results for Case BC2 with modified postsynaptic stochastic
background as discussed previously. Figure 6 gives results for visual cortex with the CM, Cases ICV,
ECV and BCV.
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Fig. 2. Oscillatory excitatory firing ω E and oscillatory inhibitory firing ω I populations for
Case I are in the top left and center graphs, resp.With the CM,ω E andω I for Case IC are in
the lower left and center graphs, resp.The right columns give the correlated pairsω E − ω I as
they are calculated from each set ofE − I EL equations.

Fig. 3. Oscillatory excitatory firing ω E and oscillatory inhibitory firing ω I populations for
Case E are in the top left and center graphs, resp.With the CM,ω E andω I for Case EC are
in the lower left and center graphs, resp. The right columns give the correlated pairsω E − ω I
as they are calculated from each set ofE − I EL equations.
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Fig. 4. Oscillatory excitatory firing ω E and oscillatory inhibitory firing ω I populations for
Case B are in the top left and center graphs, resp.With the CM,ω E andω I for Case BC are
in the lower left and center graphs, resp. The right columns give the correlated pairsω E − ω I
as they are calculated from each set ofE − I EL equations.

Fig. 5. With the CM, oscillatory excitatory firing ω E and oscillatory inhibitory firing ω I
populations for Case BC2 are in the left and center graphs, resp. The right columns give the
correlated pairsω E − ω I as they are calculated from each set ofE − I EL equations.
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Fig. 6. With the CM, for visual cortex, oscillatory excitatory firings ω E populations for
Cases BCV, ECV and ICV are in the left column, in the top, middle and bottom graphs, resp.
Oscillatory inhibitory firings ω I for Cases BCV, ECV and ICV are in the center column, in
the top, middle and bottom graphs, resp.The right columns give the correlated pairsω E − ω I
as they are calculated from each set ofE − I EL equations.

In all CM Cases, there is a high clustering of all observed frequencies, most populated in in the ranges
Beta and Gamma, but extending broadly into Alpha as well. In the non-CM Cases, there is not robust
support for most observed frequencies, but Delta and Theta are sparsely populated. Note that this
interpretation of results is highly sensitive to the details of the time scales of averaged postsynaptic
response,τ , which has been chosen here to be on the order of 10 msec,

6. Quantum Influences

The presynaptic CM is effective at lev els of 10−2 or 10−3 of the Lagrangian defining a small scale for
columnar interactions, i.e., zooming in to still within classical (not quantum) domains of information.If
indeed there are quantum scales of direct interaction with classical scales of neuronal activity, it is
suggested that the presynaptic background responsible for the CM is a possible area for future
investigations. Previous papers have described how some new columnar interactions might be tested
using enhanced resolution from multiple synchronous imaging techniques using SMNI (Ingber, 2008b;
Ingber, 2009b). Inthe context of this paper, aproposed specific quantum influence on classical columnar
activity might be tested using such enhanced resolution. This section gives the rationale for the possible
nature of such an interaction.

Over the past decades, there is growing evidence that a direct interaction of coherent quantum states with
classical scales of interaction, via a mechanism utilizing the superoxide radical O*−

2 , may be responsible
for birds being able to “see” magnetic fields aiding them to navigate over long distances (Kominis, 2009;
Rodgers & Hore, 2009; Solov’yov & Schulten, 2009). It should be noted that this is just a proposed
mechanism (Johnsen & Lohmann, 2008).However, if indeed such a magnetic mechanism via a
superoxide radical has evolved in one higher organism, it may be present in others.

There have been proposed mechanisms that interactions between minicolumns and complex glial
networks, involving reciprocal magnetic interaction between neurons and astrocytes, are involved in
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cerebral memory and computation (Banaclocha, 2007). This suggests that it is possible that the changes
in the presynaptic background responsible for the CM are influenced by magnetic interactions in glial
networks. Thesemagnetic interactions would be strongly influenced by changing electrical activity of
minicolumnar firings, i.e., columnar EEG as calculated here.In minicolumns there is systematic
alignment of pyramidal neurons, which can enhance these magnetic fields. Notethat typical values of
magnetic fields measured in the human brain, corresponding to auditory evoked potential on the order of
10 µV are about 10 pT (1 pT = 1 pico Tesla = 10−12 Tesla) (Reite & Zimmerman, 1978), but some
investigators estimate minicolumnar magnetic fields may reach up to 0.2µT (Banaclocha, 2007).Typical
magnetic fields on the Earth’s surface are about 30-60µT. Typical magnetic fields used in MRI are 5-10
T. These ranges illustrate the difficulty in finding a reasonable magnetic mechanism in the brain.
However, the brain magnetic mechanism conjectured here would effect background presynaptic noise, not
generate any signal per se. The Conclusion further discusses some roles of noise in sometimes helping
signal resolution.

For example, a possible scenario might have some columnar activity initiated by external or internal
stimuli. Via long-ranged interactions, such changes in this columnar firings would contribute to changes
in other columnar firings, even across regions of cortex. If the presynaptic background that turns on the
CM was influenced by a glial network via magnetic interactions in turn influenced by oscillatory
columnar activity, possibly influenced by increased levels of oxygen due to increased blood flow to more
active columns, a sufficiently strong coupled interaction among these mechanisms could be sustained
within durations of observed STM, giving rise to observed cerebral memory and computation.

7. Conclusion
Using SMNI, scenarios mentioned above can be detailed.For example, if oscillatory behavior is
generated within a given column — especially a column with the CM on, then these oscillations may be
induced in other columns — especially those with the CM on and with which it has strong connectivity
via long-rangedM‡E′ fi rings which contribute to their local threshold factors FG. Therefore it is
reasonable to conjecture that if columnar firings of short-ranged fibersMG can oscillate within ranges of
oscillations of long-ranged fibers M *‡E, this could facilitate information processed at fine neuronal and
synaptic scales to be carried across minicolumns and regional columns with relative eff i ciency. Note that
this activity is at levels of 10−2 or 10−3 of the Lagrangian defining a small scale for STM, i.e., zooming in
to still within classical (not quantum) domains of information, e.g., at the scale being sensitive to one to
several neurons.

While attractor states have been explicitly detailed in previous papers for several SMNI models, here
oscillatory states have been calculated throughout the range of firing space.Given that long-ranged fiber
interactions across regions can constrain columnar firings, it is useful to at least learn how oscillations
may be supported in limited ranges of such constrained firings.

The results show that only under conditions suitable for STM do columnar interactions per se support
spectra of oscillatory behavior ωG in observed frequency ranges robust throughoutMG fi ring space.In
retrospect, this is not too surprising, since some coherent interactions are likely required to sustain
multiple stable states for STM.This leads to a strong inference that physiological states of columnar
activity receptive to selective attention support oscillatory processing in these ranges. Note that selective
attention even to information processed within a given region of neocortex likely requires interactions
with frontal cortex and/or sub-cortical structures not explicitly included in the SMNI model.

For example, during Theta — often present during sleep, and during faster Beta and Gamma — often
present during intense concentration, information inherent in dynamic STM firings as well as in relatively
static LTM synaptic parameters, are often merged into associative neocortex, and during conscious
selective attention frontal cortex often controls processing of this information. The use of global carrier
frequencies could aid in the noise suppression to convey this information at the finer scales calculated
here.

The sensitivity of stochastic multivariate nonlinear (multiple quasi-stable states) to relatively weak
oscillatory forces has been documented in many systems (Lindner, Garcia-Ojalvo, Neiman &
Schimansky-Geier, 2004). Stochasticresonance has been demonstrated in mammalian brain, using



Lester Ingber - 21 -

relatively weak electric fields to effect sinusoidal signals in stochastic firings of groups of neurons
(Gluckman, Netoff et al, 1996). InSMNI, noise arises at synaptic levels, and the sensitivity at issue in
STM is at the aggregated mesoscopic level of columns of neuronal distributions. Theav eraged synaptic
noise is a parameter which appears in the mean as well as the covariance of the aggregated system via the
threshold factorsFG. As introduced here at the columnar level, oscillatory changes in firings within the
duration of STM shifts the stable STM states in firing space, directly affecting access to these states.

The source of the background synaptic noise, especially presynaptic noise which gives rise to the CM,
also is a long-standing area of research (Gluckman,Netoff et al, 1996). Furtherresearch into the roles of
the CM and columnar support for EEG, together with other proposed mechanisms for columnar-glial
magnetic interactions for some control of glial-presynaptic background interactions, includes a path for
future investigations outlined above to test for quantum-classical interactions that directly support STM
by controlling presynaptic noise.

STM (or working memory), along with selective (or focused) attention to this memory, are generally
considered important aspects of the “easy” problem of consciousness, e.g., where objective neural
correlates of consciousness (NCC) are sought, without addressing the “hard” aspects of subjective and
phenomenal states, e.g., “qualia” (Crick & Koch, 1998). In the absence of selective attention,
unconscious processing of information and computation can still take place using STM.In this context,
such research in consciousness and unconscious information processing must include the dynamics of
STM.

It has been demonstrated here at the columnar scale, that both shifts in local columnar presynaptic
background as well as local or global regional oscillatory interactions can effect or be affected by
attractors that have detailed experimental support to be considered states of STM. This interplay can
provide mechanisms for information processing and computation in mammalian neocortex.
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