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Abstract
A statistical mechanics of neocortical interactions (SMNI) of columnar activity, and the vector potential
of minicolumnar electromagnetic activity, provide a context to explore neocortical information processes
and influences on cognitive processing at multiple scales, i.e., mesoscopic (columnar scales), macroscopic
(mesoscopic influences at regional scales), and microscopic (mesoscopic influences of ions affecting
interactions between and among neurons and astrocytes). Even within this confined context, a case has
been made that it should not be expected that the proposed Holy Grail of neuroscience, i.e., to ultimately
explain all brain processing in terms of a nonlinear science at molecular scales, is at all realistic. As with
many Crusades for some truths, other truths can be trampled.

Most recent drafts are available as http://www.ingber.com/smni12_cog_comp.pdf
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1. Introduction
There many kinds of cognitive computation discovered and proposed in neocortex (Grossberg, 1983;
Arbib & Amari, 1985; Hagan et al, 2002; Naruseet al, 2009; Pereira & Furlan, 2010; Banaclocha,
Bóokkon & Banaclocha, 2010; Anastassiouet al, 2011). Here,primarily short-term memory (STM)
processes are considered, as described and calculated in a series of statistical mechanics of neocortical
interactions (SMNI) papers. In the next Section, a short description is given of how SMNI aggregates
synaptic and neuronal processes into mesoscopic minicolumnar and macrocolumnar processes, and how
STM is derived. A sub-Section describes applications to artificial intelligence and to biologically-
inspired computational algorithms.In the following Section after, a description is given of how these
relatively mesoscopic processes affect and are affected by relatively macroscopic regional processes.An
example is given of SMNI calculations developing specific analysis to EEG data. In the next Section
after, a description is given of how these relatively mesoscopic processes affect and are affected by
relatively microscopic ionic processes, influencing astrocyte and astrocyte-neuronal interactions. The last
Section is a summary and conclusion.

2. Mesoscales
Neocortex has evolved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions across regions of macrocolumns
(Mountcastle, 1978; Buxhoeveden & Casanova, 2002; Rakic, 2008).This common architecture processes
patterns of information within and among different regions of sensory, motor, associative cortex, etc.
Such probability distributions are a basic input into the approach used here.The statistical mechanics of
neocortical interactions (SMNI) approach was the first physical application of a nonlinear multivariate
calculus developed by other mathematical physicists in the late 1970’s to define a statistical mechanics of
multivariate nonlinear nonequilibrium systems (Graham, 1977; Langoucheet al, 1982).

2.1. SMNI Tests on STM and EEG
SMNI builds minicolumnar, macrocolumnar, and regional interactions in neocortex. Since1981, SMNI
has been developed to model columns and regions of neocortex, spanning mm to cm of tissue, As
depicted in Figure 1, SMNI develops three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. SMNI has
developed appropriate conditional probability distributions at each level, aggregating up from the smallest
levels of interactions.In (a* ) synaptic inter-neuronal interactions, averaged over by mesocolumns, are
phenomenologically described by the mean and variance of a distribution Ψ. Similarly, in (a)
intraneuronal transmissions are phenomenologically described by the mean and variance of Γ.
Mesocolumnar averaged excitatory (E) and inhibitory (I ) neuronal firings M are represented in (a’).In
(b) the vertical organization of minicolumns is sketched together with their horizontal stratification,
yielding a physiological entity, the mesocolumn. In (b’) the overlap of interacting mesocolumns at
locationsr andr ′ from timest andt + τ is sketched. In(c) macroscopic regions of neocortex are depicted
as arising from many mesocolumnar domains. (c’) sketches how regions may be coupled by long−ranged
interactions.

Most of these papers have dealt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approach (Ingber, 1981; Ingber, 1982; Ingber, 1983; Ingber, 1984;
Ingber, 1985b; Ingber, 1985c; Ingber, 1986; Ingber & Nunez, 1990; Ingber, 1991; Ingber, 1992; Ingber,
1994; Ingber & Nunez, 1995; Ingber, 1995a; Ingber, 1995b; Ingber, 1996b; Ingber, 1996a; Ingber, 1997;
Ingber, 1998). TheSMNI modeling of local mesocolumnar interactions (convergence and divergence
between minicolumnar and macrocolumnar interactions) was tested on STM phenomena. The SMNI
modeling of macrocolumnar interactions across regions was tested on EEG phenomena.

2.1.1. SMNI Description of STM

SMNI studies have detailed that maximal numbers of attractors lie within the physical firing space ofMG,
where G = {Excitatory, Inhibitory} minicolumnar firings, consistent with experimentally observed
capacities of auditory STM (Miller, 1956; Ericsson & Chase, 1982) and visual STM (Zhang & Simon,
1985), when a “centering” mechanism (CM) is enforced by shifting background noise in synaptic
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Fig. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions.
Reprinted with permission from (Ingber, 1983) by the American Physical Society.

interactions, consistent with experimental observations under conditions of selective attention
(Mountcastleet al, 1981; Ingber, 1984; Ingber, 1985c; Ingber, 1994; Ingber & Nunez, 1995).This leads
to all attractors of the short-time distribution lying along a diagonal line inMG space, effectively defining
a narrow parabolic trough containing these most likely firing states. This essentially collapses the 2
dimensionalMG space down to a one-dimensional space of most importance.Thus, the predominant
physics of STM and of (short-fiber contribution to) EEG phenomena takes place in a narrow “parabolic
trough” in MG space, roughly along a diagonal line (Ingber, 1984).

These calculations were further supported by high-resolution evolution of the two-variable short-time
conditional-probability propagator using PATHINT (Ingber & Nunez, 1995).SMNI correctly calculated
the stability and duration of STM, the primacy versus recency rule, random access to memories within
tenths of a second as observed, and the observed 7± 2 capacity rule of auditory memory and the observed
4 ± 2 capacity rule of visual memory.

SMNI also calculates how STM patterns (e.g., from a given region or even aggregated from multiple
regions) may be encoded by dynamic modification of synaptic parameters (within experimentally
observed ranges) into long-term memory patterns (LTM) (Ingber, 1983).

2.1.2. Mathematical Development
Some of the algebra behind SMNI depicts variables and distributions that populate each representative
macrocolumn in each region.

A derived mesoscopic LagrangianLM defines the short-time probability distribution of firings in a
minicolumn, composed of about 102 neurons, given its just previous interactions with all other neurons in
its macrocolumnar surround.G is used to represent excitatory (E) and inhibitory (I ) contributions. G
designates contributions from bothE and I .

PM =
G
Π PG

M [MG(r ; t + τ )|MG(r ′; t)]
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G − gG)gGG′(Ṁ
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where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies, vG
G′ and φ G

G′ are
av eraged means and variances of contributions to neuronal electric polarizations.MG′ andNG′ in FG are
afferent macrocolumnar firings, scaled to efferent minicolumnar firings byN/N* ≈ 10−3, whereN * is the
number of neurons in a macrocolumn, about 105. Similarly, AG′

G and BG′
G have been scaled by

N * / N ≈ 103 to keepFG invariant. V′ are mesocolumnar nearest-neighbor interactions.

2.1.3. Inclusion of Macroscopic Circuitry

The most important features of this development are described by the LagrangianLG in the negative of
the argument of the exponential describing the probability distribution, and the “threshold factor” FG

describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, theJG terms can be dropped, and more realistically replaced by a modified
threshold factorFG,

FG =
(VG − a|G|

G′ v
|G|
G′ NG′ −

1

2
A|G|

G′ v
|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ NG′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
,

a‡E
E′ =

1

2
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E′ . (2)

Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have
been added, whereN‡E might be on the order of 10% ofN∗: Of the approximately 1010 to 1011

neocortical neurons, estimates of the number of pyramidal cells range from 2/3 up to 4/5.Nearly every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 1010.

2.1.4. Centering Mechanism (CM)
It was discovered that more minima of the static LagrangianL are created, i.e., brought into the physical
fi ring ranges, if the numerator ofFG contains terms only inMG, tending to centerL about MG = 0
(Ingber, 1984). Thatis, BG is modified such that the numerator ofFG is transformed to
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The most likely states of the centered systems lie along diagonals inMG space, a line determined by the
numerator of the threshold factor inF E, essentially

AE
E M E − AE

I M I ≈ 0 ,  (4)

noting that inF I I − I connectivity is experimentally observed to be very small relative to other pairings,
so that (AI

E M E − AI
I M I ) is typically small only for smallM E.

Of course, any mechanism producing more as well as deeper minima is statistically favored. However,
this particular CM has plausible support:MG(t + τ ) = 0 is the state of afferent firing with highest
statistical weight.I.e., there are more combinations of neuronal firings, σ j = ±1, yielding this state than
any other MG(t + τ ), e.g.,≈ 2NG+1/2(π NG)−1/2 relative to the statesMG = ±NG. Similarly, MG(t) is the
state of efferent firing with highest statistical weight.Therefore, it is natural to explore mechanisms
which favor common highly weighted efferent and afferent firings in ranges consistent with favorable
fi ring threshold factorsFG≈0.

In general,BG
E and BG

I (and possiblyAG
E and AG

I due to actions of neuromodulators, andJG constraints
from long-ranged fibers) are available to zero the constant in the numerator, giving an extra degree(s) of
freedom to this mechanism.(If B′GE would be negative, this leads to unphysical results in the square-root
denominator ofFG. In all examples where this occurs, it is possible to instead find positive B′GI to
appropriately shift the numerator ofFG.) In this context, it is empirically observed that the synaptic
sensitivity of neurons engaged in selective attention is altered, presumably by the influence of chemical
neuromodulators on postsynaptic neurons at their presynaptic sites (Mountcastleet al, 1981).

2.2. Computational Physics

2.2.1. Adaptive Simulated Annealing (ASA)
Adaptive Simulated Annealing (ASA) (Ingber, 1993) is used to optimize or importance-sample
parameters of systems.

ASA is a C-language code developed to statistically find the best global fit of a nonlinear constrained
non-convex cost-function over a D-dimensional space. This algorithm permits an annealing schedule for
“temperature”T decreasing exponentially in annealing-timek, T = T0 exp(−ck1/D). Theintroduction of
re-annealing also permits adaptation to changing sensitivities in the multi-dimensional parameter-space.
This annealing schedule is faster than fast Cauchy annealing, whereT = T0/k, and much faster than
Boltzmann annealing, whereT = T0/ ln k. ASA has over 100 OPTIONS to provide robust tuning over
many classes of nonlinear stochastic systems.

For example, ASA has ASA_PARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first developed in 1994 when the author was Principal Investigator (PI) of a National Science
Foundation grant, Parallelizing ASA and PATHINT Project (PAPP). Sincethen these OPTIONS have
been used by people in various institutions.

2.2.2. PATHINT and PATHTREE
In some cases, it is desirable to develop a time evolution of a short-time conditional probability. Two
useful algorithms have been developed and published by the author.

PATHINT (Ingber, 1994) motivated the development of PATHTREE (Ingber, Chen et al, 2001), an
algorithm that permits extremely fast accurate computation of probability distributions of a large class of
general nonlinear diffusion processes.
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The natural metric of the space is used to first lay down the mesh. The evolving local short-time
distributions on this mesh are then dynamically calculated. The short-time probability density gives the
correct result up to orderO(∆t) for any final point S′, the order required to recover the corresponding
partial differential equation.In fact, O(∆t3/2) is available (Graham, 1978; Langoucheet al, 1979;
Langoucheet al, 1982).

PATHINT and PATHTREE have demonstrated their utility in statistical mechanical studies in finance,
neuroscience, combat analyses, neuroscience, and other selected nonlinear multivariate systems (Ingber,
Fujio & Wehner, 1991; Ingber & Nunez, 1995; Ingber, 2000). PATHTREE has been used extensively to
price financial options (Ingber, Chenet al, 2001).

2.3. Mesoscopic Computation

2.3.1. Generic Mesoscopic Neural Networks (MNN)
SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) (Ingber, 1992), adding
computational power to a similar paradigm proposed for target recognition (Ingber, 1985a).

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
fi rings, or multivariate firings. The“weights,” or coefficients of functions of firings appearing in the drifts
and diffusions, are fit to incoming data, considering the joint “effective” L agrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function. This program of
fi tting coefficients in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equations.A coarse deterministic estimate to
“predict” the evolution can be applied using the most probable path, but PATHINT has been used.
PATHINT, even when parallelized, typically can be too slow for “predicting” evolution of these systems.
However, PATHTREE is much faster.

The present project uses the same concepts, having sets of multiple variables define macrocolumns with a
region, with long-ranged connectivity to other regions. Eachmacrocolumn has its own parameters, which
define sets of possible patterns.

2.3.2. Ideas by Statistical Mechanics (ISM)
These kinds of applications of SMNI have obvious counterparts in an AI approach to Ideas by Statistical
Mechanics (ISM). ISM is a generic program to model evolution and propagation of ideas/patterns
throughout populations subjected to endogenous and exogenous interactions. The program is based on
the author’s work in SMNI, and uses the author’s ASA code (Ingber, 1993) for optimizations of training
sets, as well as for importance-sampling to apply the author’s copula financial risk-management codes,
TRD (Ingber, 2005), for assessments of risk and uncertainty. This product can be used for decision
support for projects ranging from diplomatic, information, military, and economic (DIME) factors of
propagation/evolution of ideas, to commercial sales, trading indicators across sectors of financial markets,
advertising and political campaigns, etc.

It seems appropriate to base an approach for propagation of ideas on the only system so far demonstrated
to develop and nurture ideas, i.e., the neocortical brain (Ingber, 2006; Ingber, 2007; Ingber, 2008).
Ultimately, ISM of course would not use functional relationships developed solely in neocortex, but rather
those more appropriate to a given population.

Following the SMNI structure, ISM develops subsets of macrocolumnar activity of multivariate stochastic
descriptions of defined populations, with macrocolumns defined by their local parameters within specific
regions and with parameterized endogenous inter-regional and exogenous external connectivities.
Parameters of subsets of macrocolumns are to be fit using ASA to patterns representing ideas.Parameters
of external and inter-regional interactions are to be determined that promote or inhibit the spread of these
ideas.
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3. Macroscales

3.1. SMNI Description of EEG
Using the power of the SMNI structure and ASA, sets of EEG and evoked potential data from a separate
NIH study, collected to investigate genetic predispositions to alcoholism, were fitted to an SMNI model
on a lattice of regional electrodes to extract brain “signatures” of STM (Ingber, 1997; Ingber, 1998). Each
electrode site was represented by an SMNI distribution of independent stochastic macrocolumnar-scaled
MG variables, interconnected by long-ranged circuitry with delays appropriate to long-fiber
communication in neocortex. The global optimization algorithm ASA was used to perform maximum
likelihood fits of Lagrangians defined by path integrals of multivariate conditional probabilities.
Canonical momenta indicators (CMI) were thereby derived for individual’s EEG data. The CMI give
better signal recognition than the raw data, and were used to advantage as correlates of behavioral states.
In-sample data was used for training (Ingber, 1997), and out-of-sample data was used for testing (Ingber,
1998) these fits.

These results gav e strong quantitative support for an accurate intuitive picture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

3.2. Complementary Global Models of EEG
There are other models of EEG which also have sound experimental support. Some of the models can be
shown to be indeed complementary to SMNI (Ingber & Nunez, 2010). Scalp potentials (EEG) are
generated by synaptic current sources at small scales; each cubic millimeter of cortical tissue contains
more than 100 million synapses. In contrast to this small scale activity, EEG data are recorded at
macroscopic (centimeter) scales. All dependent variables are expressed as functions of time and cortical
location. The basic approach ignores embedded network activity, although networks have been included
in more advanced models (Nunez, 1989; Jirsa & Haken, 1996).

3.2.1. The Stretched String With Attached Springs
Periodic boundary conditions are generally essential to global theories because the cortical-white matter
system is topologically close to a spherical shell.While this picture of distinct local and global models
grossly oversimplifies expected genuine dynamic behaviors with substantial cross- scale interactions, it
provides a convenient entry point to brain complexity (Nunez, 1995; Ingber, 1995a). In the “string
model” displacement is governed by the basic string equation

∂2Φ
∂t2

− ν 2 ∂2Φ
∂x2

+ [[ω 2
0 + f (Φ)]]Φ = 0 (5)

For the simple case of homogeneous linear springs attached to a homogeneous linear string of lengtha
and wav espeedν , the normal modes of oscillationω n are given by

ω 2
n = ω 2

0 + ((
nπν

a
))2 n = 1, 2, 3, . . . (6)

3.3. SMNI Derivation of String Model

3.3.1. Euler-Lagrange (EL)
The EL equations are derived from the long-time conditional probability distribution of columnar firings
over all cortex, represented bỹM , in terms of the ActionS, The path integral has a variational principle,
δ L = 0 which gives the EL equations for SMNI (Ingber, 1982; Ingber, 1983).

When dealing when multivariate Gaussian stochastic systems with nonlinear drifts and diffusions, it is
possible to work with three essentially mathematically equivalent representations of the same physics:
Langevin equations — coupled stochastic differential equations, a Fokker-Plank equation — a
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multivariate partial differential equation, and a path-integral Lagrangian — detailing the evolution of the
short-time conditional probability distribution of the variables (Langoucheet al, 1982).

While it typically takes more numerical and algebraic expertise to deal with the path-integral Lagrangian,
there are many benefits, including intuitive numerical and algebraic tools.For example, the Lagrangian
components and EL equations are essentially the counterpart to classical dynamics,

Mass= gGG′ =
∂2L

∂(∂MG/∂t)∂(∂MG′/∂t)
,

Momentum= ΠG =
∂L

∂(∂MG/∂t)
,

Force=
∂L

∂MG
,

F − ma= 0: δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG/∂t)
(7)

The most-probable firing states derived variationally from the path-integral Lagrangian as the EL
equations represent a reasonable average over the noise in the SMNI system.For many studies, the noise
cannot be simply disregarded, as demonstrated in other SMNI STM and EEG studies, but for the purpose
here of demonstrating the existence of multiple local oscillatory states that can be identified with EEG
frequencies, the EL equations serve very well.

The Lagrangian and associated EL equations have been developed at SMNI columnar scales, as well as
for regional scalp EEG activity by scaling up from the SMNI columnar scales as outlined below.

3.3.2. Strings
The nonlinear string model was derived using the EL equation for the electric potentialΦ measured by
EEG, considering one firing variable along the parabolic trough of attractor states being proportional toΦ
(Ingber & Nunez, 1990).

Since only one variable, the electric potential is being measured, is reasonable to assume that a single
independent firing variable offers a crude description of this physics. Furthermore,the scalp potentialΦ
can be considered to be a function of this firing variable. (Here,“potential” refers to the electric potential,
not any potential term in the SMNI Lagrangian.)In an abbreviated notation subscripting the time-
dependence,

Φt− << Φ >>= Φ(M E
t , M I

t ) ≈ a(M E
t − << M E >>) + b(M I

t − << M I >>) ,  (8)

wherea andb are constants, and << Φ >> and << MG >> represent typical minima in the trough.In the
context of fitting data to the dynamic variables, there are three effective constants,{ a, b,φ } ,

Φt − φ = aME
t + bM I

t (9)

The mesoscopic columnar probability distributions,P, is scaled over this columnar firing space to obtain
the macroscopic conditional probability distribution over the scalp-potential space:

PΦ[Φ] = ∫ dMEdM I P[M E, M I ]δ [Φ − Φ′(M E, M I )] (10)

The parabolic trough described above justifies a form

PΦ = (2π σ 2)−1/2 exp(−∆t ∫ dx LΦ) ,

LΦ =
α
2

|∂Φ/∂t|2 +
β
2

|∂Φ/∂x|2 +
γ
2

|Φ|2 + F(Φ) ,

σ 2 = 2∆t/α , (11)
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whereF(Φ) contains nonlinearities away from the trough,σ 2 is on the order of 1/N given the derivation
of L above, and the integral over x is taken over the spatial region of interest. In general, there also will
be terms linear in∂Φ/∂t and in∂Φ/∂x.

Here, the EL equation includes variation across the spatial extent,x, of columns in regions,

∂
∂t

∂L

∂(∂Φ/∂t)
+

∂
∂x

∂L

∂(∂Φ/∂x)
−

∂L

∂Φ
= 0 (12)

The result is

α
∂2Φ
∂t2

+ β
∂2Φ
∂x2

+ γ Φ −
∂F

∂Φ
= 0 (13)

The determinant prefactor g defined above also contains nonlinear details affecting the state of the
system. Sinceg is often a small number, distortion of the scale ofL is avoided by normalizingg/g0,
whereg0 is simplyg evaluated atM E = M‡E′ = M I = 0.

If there exist regions in neocortical parameter space such thatβ /α = −c2, γ /α = ω 2
0, i.e., as explicitly

calculated using the Centering Mechanism (CM) and as derived in previous SMNI EEG papers,

1

α
∂F

∂Φ
= −Φ f (Φ) ,  (14)

then the nonlinear string model is recovered.

Note that this string derivation is only consistent with the global string analog described in the first
sections of this paper, if the spatial extent is extended across the scalp via long-ranged fibers connecting
columns withM‡E′ fi rings. Thisleads to a string of columns.The next section calculates an EL model
that shows that these columns can be viewed as spring analogs.

3.3.3. Springs
For a giv en column in terms of the probability description given above, the above EL equations are
represented as

∂
∂t

∂L

∂(∂M E/∂t)
−

∂L

∂M E
= 0 ,

∂
∂t

∂L

∂(∂M I /∂t)
−

∂L

∂M I
= 0 (15)

Early calculations included many coupled equations, representing spatial and spatial-derivative terms in
the Lagrangian from nearest-neighbor minicolumns.SMNI includes divergence and convergence of
columnar interactions, whereby a minicolumn interacts afferently and efferently via its axonal processes
to a subset of neuronal dentritic afferents as well as to other minicolumns, defining a dynamic
mesocolumn (Ingber, 1982; Ingber, 1983). Thesespatial terms permit calculation and verification of
observed velocities of propagation of information across minicolumns via short-ranged non-myelinated
fibers.

To inv estigate dynamics of multivariate stochastic nonlinear systems, such as neocortex presents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear diffusions in particular are typically washed out.

Previous SMNI EEG studies had demonstrated that simple linearized dispersion relations derived from
the EL equations support the local generation of frequencies observed experimentally as well as deriving
diffusive propagation velocities of information across minicolumns consistent with other experimental
studies. Theearliest studies simply used a driving forceJGMG in the Lagrangian to model long-ranged
interactions among fibers (Ingber, 1982; Ingber, 1983). Subsequentstudies considered regional
interactions driving localized columnar activity within these regions (Ingber, 1996b; Ingber, 1997; Ingber,
1998).
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A recent set of calculations examined these columnar EL equations to see if EEG oscillatory behavior
could be supported at just this columnar scale, i.e., within a single column.At first, the EL equations
were quasi-linearized, by extracting coefficients of M and dM/dt. The nonlinear coefficients were
presented as graphs over all firing states (Ingber, 2009a). Thisexercise demonstrated that a spring-type
model of oscillations was plausible. Then a more detailed study was performed, developing over two
million lines of C code from the algebra generated by an algebraic tool, Maxima, to see what range of
oscillatory behavior could be considered as optimal solutions satisfying the EL equations (Ingber, 2009b).
The answer was affi rmative, in that ranges ofω t ≈ 1 were supported, implying that oscillatory solutions
might be sustainable just due to columnar dynamics at that scale.The full probability distribution was
ev olved with such oscillatory states, confirming this is true.

These results survive even with oscillatory input into minicolumns from long-ranged sources (Ingber &
Nunez, 2010), since the CM is independent of firing states, and just depends on averaged synaptic values
used in SMNI.

3.4. Macroscopic Computation
Computation in neocortex often includes interactions between information processed at finer scales.For
example, it has been noted that experimental data on velocities of propagation of long-ranged fibers
(Nunez, 1981; Nunez, 1995) and derived velocities of propagation of information across local
minicolumnar interactions (Ingber, 1982) yield comparable times scales of interactions across
minicolumns of tenths of a second.Furthermore, since a reasonable case has been made that global EEG
is shaped and constrained by geometry of the skull, and since not all information flow across regions need
not be direct, it is possible that macroscopic EEG plays a significant role, at least a constraint, on some
information processing across regions. Therefore,such phenomena as STM likely are inextricably
dependent on interactions at local and global scales, and this is assumed here.

4. Microscales
In regard to neocortical information processing at the level of short-term memory (STM), there are two
major paradigms that have not yet been reconciled.

4.1. Bottom Up
There has been much work done, both experimentally and theoretically, detailing quite a few specific
mechanisms at the level of individual neurons and glial processes and their interactions, that can explain
information processing and codification of information that may be instrumental in STM (Amzica &
Massimini, 2002). In particular, a class of glial cells, astrocytes, present in numbers greater than neurons
in human neocortex, is of interest here (Oberheimet al, 2009). For example, astrocytes in neocortical
laminae 1 extend their mm processes across associative/computing laminae 1-3, afferent laminae 4,
touching and communicating with other glia cells and neurons (Reisin & Colombo, 2002; Colomboet al,
2005). Laminae2-6 have larger astrocytes, and in laminae 5-6 with mostly efferent neuronal processes
there are some astrocytes with varicose projections (Oberheimet al, 2009). However, it appears that a
primary means of communication among astrocytes (and other glial cells) is via Ca2+ waves, propagating
at speeds up to 40µm/s (Bellinger, 2005) over hundreds of mm of neuronal structures.They influence
excitation and inhibition of neuromodulators, and recent research points to their direct effect on
polarization thresholds via Ca2+ waves. For example, the influence of neuron firing on astroglial calcium
ions may be caused by movement of sodium and potassium ions in and out the body and axon of neurons.

It should be noted that there are other mechanisms proposed, other than direct neuron-neuron interactions,
to describe various aspects of neocortical information processing, e.g., soliton formation (Georgiev,
2003), and ephaptic excitation of neurons (Anastassiouet al, 2011).

There are many approaches in this “bottom-up” context, including quantum computation in microtubles
(Haganet al, 2002), nonlinear systems approaches to neural processes (Rabinovich et al, 2006), magnetic
processes within astrocytes (Banaclocha, 2005; Banaclocha, 2007; Banaclocha & Banaclocha, 2010;
Banaclocha, Bo´okkon & Banaclocha, 2010), pulsating Ca2+ waves in astrocytes (Schipke et al, 2002;
Scemeset al, 2000; Goldberg et al, 2010), neuron-astrocyte networks (Pereira & Furlan, 2009; Pereira &
Furlan, 2010), including glutamate-specific Ca2+-induced signaling processes between neurons and
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astrocytes (Postnov et al, 2009), influences of blood flow on neuronal processes (Moore & Cao, 2008),
and mathematical formulations of qualia based on neural information processing (Balduzzi & Tononi,
2009).

4.2. Top Down
There has been much theoretical work done at the level of columnar and regional neocortical activity,
detailing correlations of experimental brain activity with behavioral observations (Buxhoeveden &
Casanova, 2002; Rakic, 2008).For example, various imaging techniques, both intra-cranial and non-
invasive, hav edemonstrated that specific brain activity often is correlated with STM as well as specific
processing of information and attentional states (Nunez & Srinivasan, 2006).

There also has been much theoretical work trying to bridge brain activity across multiples scales, e.g.,
from neuronal to columnar to regional scales of activity, with detailed calculations defining STM (Ingber,
1981; Ingber, 1983; Ingber, 1984; Ingber & Nunez, 1995) and analyses of scalp EEG (Ingber, 1997;
Ingber, 2009b; Ingber & Nunez, 2010).Relevant to the present work, minicolumnar EEG has been
demonstrated to scale up to EEG observed at regional scalp measurements.While minicolumnar EEG
may not be the only source of scalp EEG, it is sufficient to scale for detailed fits to observed scalp EEG
data.

It is reasonable to state that, while most neuroscientists believe that ultimately Bottom Up processing will
explain all brain activity (Rabinovich et al, 2006), some other neurophysiologists and psychologists
believe that direct Top Down processes are important components of mammalian information processing,
which cannot be solely explained by Bottom Up processes.

4.3. Smoking Gun
As yet, there does not seem to be any “smoking gun” for explicit Top to Down mechanisms that directly
drive Bottom Up STM processes. Of course, there are many Top Down type studies demonstrating that
neuromodulator and neuronal firing states, e.g., as defined by EEG frequencies, can modify the milieu or
context of individual synaptic and neuronal activity, which is still consistent with ultimate Bottom Up
paradigms. However, there is a logical difference between Top Down milieu as conditioned by some prior
external or internal conditions, and some direct Top Down processes that direct cause Bottom Up
interactions specific to STM. Here, the operative word is “cause”.

4.4. Support for Top-Down Mechanism
There is a body of evidence that suggests a specific Top to Down mechanism for neocortical STM
processing.

4.4.1. Magnetism Influences in Living Systems
An example of a direct physical mechanism that affects neuronal processing not part of “standard”
sensory influences is the strong possibility of magnetic influences in birds at quantum levels of interaction
(Kominis, 2009; Rodgers & Hore, 2009; Solov’yov & Schulten, 2009). It should be noted that this is just
a proposed mechanism (Johnsen & Lohmann, 2008).

4.4.2. Neocortical Magnetic Fields
There are many studies on electric (Alexanderet al, 2006) and magnetic fields in neocortex (Murakami &
Okada, 2006; McFadden, 2007; Irimiaet al, 2009; Georgiev, 2003).

At the level of a single neuron, electric field strengths can be as high as about 10V/m for a summation of
excitatory or inhibitory postsynaptic potentials as a neuron fires. Theelectric fieldD

D = ε E (16)

is rapidly attenuated as the dielectric constantε seen by ions is close to two orders of magnitude times
that in vacuum,ε0 due to polarization of water (Nunez, 1981). Magnetic field strengthsH in neocortex
are generally quite small, even when estimated for the largest human axons at about 10−7T, about 1/300 of
the Earth’s magnetic field, in dendritic microtubles, based on ferrofluid approximation to the microtuble
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environment with a magnetic permeabilityµ,

B = µH (17)

about 10µ0 (Georgiev, 2003). Thus,the electromagnetic fields in neocortex differ substantially from
those in vacuum, i.e.,

ε0µ0c2 = 1 (18)

wherec is the speed of light.

The above estimates of electric and magnetic field strengths do not consider collective interactions within
and among neighboring minicolumns, which give rise to field strengths much larger as typically measured
by noninvasive EEG and MEG recordings. While electrical activity may be attenuated in the neocortical
environment, this is not true for magnetic fields which may increase collective strengths over relatively
large neocortical distances. The strengths of magnetic fields in neocortex may be at a threshold to
directly influence synaptic interactions with astrocytes, as proposed for long-term memory (LTM)
(Gordon et al, 2009) and short-term memory (STM) (Banaclocha, 2007; Pereira & Furlan, 2010)
Magnetic strengths associated by collective EEG activity at a columnar level giv es rise to even stronger
magnetic fields. Columnarexcitatory and inhibitory processes largely take place in different neocortical
laminae, providing possibilities for more specific mechanisms.

4.4.3. Columnar EEG
As discussed above, details of STM have been calculated in the SMNI papers. The Centering Mechanism
(CM), associated in these calculations with changes in background inhibitory synaptic activity, drive the
columnar system into multiple collective firing states.This CM leads to detailed calculations of STM
capacity, duration and stability that agrees with experimental observations.

Future work must consider magnetic fields produced at different laminae due to collective minicolumnar
fi rings as detailed by SMNI for STM processes. These magnetic fields may affect Ca2+ ion wav es that are
considered by some researchers as being vital processes for astrocyte-neural interactions that give rise to
higher-order cognitive states (Bellinger, 2005; Nakanoet al, 2007).

The interactions between the momentum of these Ca2+ ions and minicolumnar magnetic fields can be
approached classically, e.g., at a local minicolumnar scale, or quantum mechanically, e.g., considering
possible entanglement across macrocolumnar scales.

4.5. Strengths of Vector Potential
To demonstrate that top-down influences can be appreciable, here a direct comparison is described
between the momentump of Ca2+, ions which already have been established as being influential in STM
and LTM, and an SMNI vector potential (SMNI-VP).The SMNI-VP is constructed from magnetic fields
induced by neuronal electrical firings, at thresholds of collective minicolumnar activity with laminar
specification, which plausibly can give rise to causal top-down mechanisms that effect molecular
excitatory and inhibitory processes in STM and LTM. A specific example might be causal influences on
momentump of Ca2+ ions by the SMNI-VPA, as calculated by the canonical momentumq

q = p − eA (19)

wheree is the electron coulomb charge andB = ∇ × A is the magnetic field B, which may be applied
either classically or quantum-mechanically. Note that gauge ofA is not specified here, and this can lead
to important effects especially at quantum scales (Tollaksenet al, 2010).

A can be calculated using the standard assumption that large-scale EEG is developed from oscillatory
electrical dipole activity p exp(−iω t), the first moment of the charge distribution densityρ giving rise to
the dipole. The electromagnetic vector potentialA (Jackson, 1962) is

A =
eiω r /c

cr ∫ Jd3x (20)

for the electric current densityJ, which in the dipole approximation,
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p = ∫ xρ(x)d3x (21)

gives rise to

A = −
iω peiω r /c

cr
(22)

This is a dipole model for collective minicolumnar oscillatory currents, corresponding to top-down
signaling, flowing in axons, not for individual neurons. The top-down signal is claimed to cause relevant
effects on the surrounding milieu, but is not appropriate outside these surfaces due to strong attentuation
of electrical activity. Howev er, the vector potentials produced by these dipoles due to axonal discharges
do survive far from the axons, and this can lead to important effects at the molecular scale, e.g., in the
environment of ions (Feynmanet al, 1964; Giuliani, 2010).

Note that this is not necessarily the only or most popular description of electromagnetic influences in
neocortex, which often describes dendritic presynaptic activity as inducing large scale EEG (Nunez,
1981), or axonal firings directly affecting astrocyte processes (McFadden, 2007).This work is only and
specifically concerned with electromagnetic fields in collective axonal firings, directly associated with
columnar STM phenomena in SMNI calculations, which create vector potentials influencing ion momenta
just outside minicolumnar structures.

After fitting the electrical dipole momentp to minicolumnar electrical field near minicolumns, this value
of A is then to be compared to the value ofp for Ca2+. Note that the magnetic fieldB derived from A,

B = ∇ × A (23)

is still attenuated in the glial areas where Ca2+ waves exist, but A derived near the minicolumns will be
used there as well since it is not so attenuated.

The electrical dipole for collective minicolumnar EEG derived from A is

E =
ic

ω
∇ × B =

ic

ω
∇ × ∇ × A (24)

which in a near-field approximation for minicolumns gives

E =
3n(n ⋅ p) − p

r 3

B =
iω n × p

cr2
(25)

wheren is the unit vector in the direction ofp. The far-field approximations are

E = B × n

B =
ω 2n × peiω r /c

(cr)2
(26)

The SMNI columnar probability distributions, derived from statistical aggregation of synaptic and
neuronal interactions among minicolumns and macrocolumns, have established credibility at columnar
scales by detailed calculations of properties of STM. Under CM conditions, they exhibit multiple
columnar collective firing states. It must be stressed that these minicolumns are the entities which the
above dipole moment is modeling. The Lagrangian of the SMNI distributions, although possessing
multivariate nonlinear means and covariance, have functional forms similar to arguments of firing
distributions of individual neurons, so that the description of the columnar dipole above is a model
faithful to the standard derivation of a vector potential from an oscillating electric dipole.

The effective collective minicolumnar potential is estimated to be about 10 times as strong as a neuronal
postsynaptic voltage of 10−3V, or 10−2 V, where V measures volts, equivalent to m2-kg-/A-s3 (A measures
amperes). Ata laminar thickness,r , within axons, of about 10−3 m, theE field density dimension is on
the order of 10−2/r V/m. This gives a dipole value on the order of 10−2r 2 C-m (C measures coulomb,
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measured by A-s) at the near field.

This yields an estimate for values of |A|, for ω = 6. 366cps, corresponding to EEG frequencies of 40 s−1

A-s/m2, on the order of 10−10r V-m at the near field of firing minicolumns. In SI units, as can be
described by the Coulomb force, the equivalent units of C = (kg-m3/s2)1/2, or eAwill be in units of linear
momentum. Taking r to be a laminae thickness gives an estimate of 10−13 V-m, which decreases as 1/r
aw ay from the near field, all measured within axons for the purposes of describing electrical activity.

The contribution ofA to the canonical momentum is measured byeA, wheree = 1. 602× 10−19 C. This
gives a momentum contribution fromA on the order of 10−32 kg-m/s.

The mass of a Ca2+ ion is 1.33× 10−25 kg. Assumingspeeds of 40µm/s, estimate the momentum of a
single ion is estimated to be about 5× 10−30 kg-m/s.

This comparison ofp and A demonstrates it is possible for minicolumnar electromagnetic fields to
influence important ions involved in cognitive and affective processes in neocortex. Our estimate of
minicolumnar electric dipole is quite conservative, and a factor of 10 would make these effects even more
dramatic. Sincethis effect acts on all Ca2+ ions, it may have an even greater effect on Ca2+ waves,
contributing to their mean wav e-front movement. Consideringslower ion momentap would make this
comparison toA ev en closer.

Such a smoking gun for top-down effects awaits forensic in vivo experimental verification, requiring
appreciating the necessity and due diligence of including true multiple-scale interactions across orders of
magnitude in the complex neocortical environment.

4.6. Microscopic Computation
This work simply shows that electromagnetic fields within neurons can have effects outside of them, e.g.,
on ions that mediate interactions between and among neurons and astrocytes (Pereira & Furlan, 2010;
Pereira & Furlan, 2009). Other work has shown the important computational effects of such interactions,
including consideration of magnetic influences per se (Banaclocha, 2007; Banaclocha,Bóokkon &
Banaclocha, 2010).

5. Conclusion
This paper has focused on some specific approaches, like SMNI and the vector potential of minicolumnar
electromagnetic activity, to delve into influences of neocortical interactions and their possible influences
on cognitive processing, at multiple scales.Even within this confined context, a case has been made that
it should not be expected that the proposed Holy Grail of neuroscience, i.e., to ultimately explain all brain
processing in terms of a nonlinear science at molecular scales (Rabinovich et al, 2006), is at all realistic.
As with many Crusades for some truths, other truths can be trampled.There is much more work to be
done on STM at multiple scales (Ingber, 2012).
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