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Abstract

A statistical mechanics of neocortical interactions (SMNI) of columnaviggtend the vector potential

of minicolumnar electromagnetic adty, provide a contgt to explore neocortical information processes

and influences on cognit rocessing at multiple scales, i.e., mesoscopic (columnar scales), macroscopic
(mesoscopic influences atgienal scales), and microscopic (mesoscopic influences of idestiaf
interactions between and among neurons and gt)c Een within this confined context, a case has
been made that it should not bepected that the proposed Holy Grail of neuroscience, i.e., to ultimately
explain all brain processing in terms of a nonlinear science at molecular scales, is at all realistic. As with
mary Crusades for some truths, other truths can be trampled.

Most recent drafts arevalable as http://www.ingber.com/smnil2_cog_comp.pdf

$ld: smnill_cog_comp,v 1.18 2011/07/05 23:24:43 ingber Exp $
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1. Introduction

There mag kinds of cognitve computation disceered and proposed in neocottéGrossbey, 1983;

Arbib & Amari, 1985; Hagn et al 2002; Naruseet al, 2009; Pereira & Furlan, 2010; Banaclocha,
Bookkon & Banaclocha, 2010; Anastassieti al, 2011). Here,primarily short-term memory (STM)
processes are considered, as described and calculated in a series of statistical mechanics of neocortical
interactions (SMNI) papers. In thexteSection, a short description isvgn of how SMINI aggregaes
synaptic and neuronal processes into mesoscopic minicolumnar and macrocolumnar processeas, and ho
STM is derved. A sub-Section describes applications to artificial intelligence and to biologically-
inspired computational algorithmgn the following Section aftera description is gien of how these
relatively mesoscopic processes affect and are affected byebfathacroscopic regional processesn

example is gien of SMNI calculations deeloping specific analysis to EEG data. In the next Section
after, a description is gien of how these relatiely mesoscopic processes affect and are affected by
relatively microscopic ionic processes, influencing astrocyte and astrocyte-neuronal interactions. The last
Section is a summary and conclusion.

2. Mesoscales

Neocort& has &olved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions acragiense of macrocolumns
(Mountcastle, 1978; Buxhweden & Casang, 2002; Rakic, 2008).This common architecture processes
patterns of information within and among different regions of sensastor, associatie @rtex, etc.

Such probability distributions are a basic input into the approach usedTherestatistical mechanics of
neocortical interactions (SMNI) approach was the first physical application of a nonlineasariadti
calculus deeloped by other mathematical physicists in the late X#0tefine a statistical mechanics of
multivariate nonlinear nonequilibrium systems (Graham, 1977; Langaatciiel982).

2.1. SMNI Testson STM and EEG

SMNI builds minicolumngrmacrocolumnarand ragional interactions in neocore Sincel1981, SMNI
has been deloped to model columns andgiens of neocortex, spanning mm to cm of tissue, As
depicted in Figure 1, SMNI delops three biopysical scales of neocortical interactions: (a)H@’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(¢c’) macroscogionse SMNI has
developed appropriate conditional probability distributions at eaeHl,laggreating up from the smallest
levels of interactions.In (&) synaptic inter-neuronal interactionsyepaged @er by mesocolumns, are
phenomenologically described by the mean and variance of a wistib¥. Smilarly, in (a)
intraneuronal transmissions are phenomenologically described by the meanargamcey of I.
Mesocolumnar \eraged excitatoryE) and inhibitory () neuronal frings M are represented in (a’)n

(b) the vertical aganization of minicolumns is sketched together with their horizontal $tetdn,
yielding a physiological entitythe mesocolumn. In (b’) theverlap of interacting mesocolumns at
locationsr andr’ from timest andt + r is sketched. Inc) macroscopic regions of heocorte depicted
as arising from manmesocolumnar domains. (c’) sketchesviregons may be coupled by long-ranged
interactions.

Most of these papers V& cealt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approach (Ingd&81; Ingber 1982; Ingber 1983; Ingber 1984;
Ingber 1985b; Ingber1985c; Ingber1986; Ingber & Nunez, 1990; Inghet991; Ingber 1992; Ingber
1994; Ingber & Nunez, 1995; Inghd995a; Ingber1995b; Ingber1996b; Ingber1996a; Ingber1997;
Ingber 1998). TheSMNI modeling of local mesocolumnar interactions (@gence and dergence
between minicolumnar and macrocolumnar interactiors3 wested on STM phenomena. The SMNI
modeling of macrocolumnar interactions across regions was tested on EEG phenomena.

2.1.1. SMNI Description of STM

SMNI studies hee cetailed that maximal numbers of attractors lie within the physioafspace oM°©,
where G = {Excitatory Inhibitory} minicolumnar firings, consistent with experimentally observ
capacities of auditory STM (Miller1956; Ericsson & Chase, 1982) and visual STM (Zhang & Simon,
1985), when a *“centering” mechanism (CM) is enforced by shifting background noise in synaptic
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Fig. 1. lllustrated are three biophysical scales of neocortical interactions: Je(a(a
microscopic neurons; (b)-(b") mesocolumnar domains; (c)-(c’) macroscogonse
Reprinted with permission from (Inghd©83) by the American Physical Society.

interactions, consistent with experimental observations under conditions of veeletténtion
(Mountcastleet al, 1981; Ingber1984; Ingber 1985c; Ingber1994; Ingber & Nunez, 1995)This leads
to all attractors of the short-time distribution lying along a diagonal lidd$rspace, déctively defining

a narronv parabolic trough containing these mostelik firing states. This essentially collapses the 2
dimensionalM® space down to a one-dimensional space of most importafues, the predominant
physics of STM and of (short-fiber contribution to) EEG phenomena takes place in & hpambolic
trough” in M€ space, roughly along a diagonal line (Inglieg4).

These calculations were further supported by high-resolutioluteon of the two-variable short-time
conditional-probability propagator usingPHINT (Ingber & Nunez, 1995)SMNI correctly calculated
the stability and duration of STM, the prinyagersus recencrule, random access to memories within
tenths of a second as observed, and the obserr@dapacity rule of auditory memory and the observ
4 + 2 capacity rule of visual memory.

SMNI also calculates o STM patterns (e.g., from a\gn regon or eren aggregaed from multiple
regions) may be encoded by dynamic mimdifion of synaptic parameters (withirkperimentally
observed ranges) into long-term memory patterns (LTM) (IndBE&B).

2.1.2. Mathematical Development

Some of the algebra behind SMNI depicts variables and distributions that populate each repeesentati
macrocolumn in each region.

A derived mesoscopic Lagrangiah,, defines the short-time probability distribution of firings in a
minicolumn, composed of about?0eurons, gien its just previous interactions with all other neurons in

its macrocolumnar surrounds is used to represent excitatorig)(and inhibitory () contributions. G
designates contributions from bdhandl .

Pw =1 PSIMC(r;t +1)|ME(r; 1)]
G



Lester Ingber -4 - MNI Cognitive Algorithms Multiple Scales

O oo OnN
=X ox o~ ME(t+ )@ o - M (st + )] py,
o [JiE 0ol i

=1 @nrg®®) 2 exp(-N7LS) ,
G
Pu=(2nr) g2 exp(-N7Ly)

Ly =LE + L = @N) (M - g®)gea(M® - g%) + MCJg/(2NT) - V',

<

' =Z\!"g'(pDMG’)2 ,
G
g% =-r7{(M® + N®tanhF®), g° = (go)™ = o6 7 "N°sechiF® , g = det(gse) .

(VC - aSlVSING - % ACNEIM®) .
= T 3G =S AGTEBG @
(2(vG)? + (752 (ag' NS+~ ASIME)2 - = 2

where AS, and BE are minicolumnaaveraged inter-neuronal synapticfiehcies, ve and ¢ are
avaaged means and variances of contributions to neuronal electric polarizalGhandN® in F€ are
afferent macrocolumnar firings, scaled to efferent minicoluminagé by N/N* = 1073, whereN * is the
number of neurons in a macrocolumn, abouf. 1G@milarly, AS and BE have keen scaled by
N */N = 10° to keepF € invariant. V' are mesocolumnar nearest-neighbor interactions.

FG

2.1.3. Inclusion of Macroscopic Circuitry

The most important features of thisvdlepment are described by the Lagrangidhin the ngaive o
the argument of the exponential describing the probability disioitb, and the “thresholdaétor” FC®
describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, thé; terms can be dropped, and more realistically replaced by aiewbdif
threshold factoF©,

1 ' 1 '
s (Ve - agvVg'N® - 5 ASVEM® — afFVENE - 5 AEVEMFE)
F

- 1 1 ’
(712G )2 + (76121 (aG NE + AGIMC + a NIFE + ~ AEMIE))12
1
aff =~ AF+BE 2)

Here, aferent contributions fromN*E long-ranged excitatory fibers, e.g., cortico-cortical neurong ha
been added, wherdl*® might be on the order of 10% di"”: Of the approximately 18 to 10
neocortical neurons, estimates of the number of pyramidal cells range from 2/3 up edrly. every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 10

2.1.4. Centering Mechanism (CM)

It was discoered that more minima of the static Lagrangiaare created, i.e., brought into theypical
firing ranges, if the numerator & contains terms only iM©, tending to centeL aboutM® =0
(Ingber 1984). Thais, B® is modified such that the numeratorff is transformed to
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The most likely states of the centered systems lie along diagondl$ Bpace, a line determined by the
numerator of the threshold factorf¥, essentially

AEME - AEM' =0, @)

noting that inF' | — | connectiity is experimentally observed to be very small reta cther pairings,
so that At ME — Al M') is typically small only for smalME.

Of course, ayp mechanism producing more as well as deeper minima is statistiaathed. Havever,
this particular CM has plausible suppolt®(t +7) =0 is the state of afferent firing with highest
statistical weight.l.e., there are more combinations of neuronalds, o; = +1, yielding this state than
ary other MC(t + 1), e.g.,= 2N°*2(7zN®)™'2 relative © the statedM® = +N€. Similarly, MC(t) is the
state of efferent firing with highest statistical weigfitherefore, it is natural to explore mechanisms
which favar common highly weighted efferent and affereminfs in ranges consistent witlaviorable
firing threshold factorf ©=0.

In general,BE and BY (and possiblyAS and A® due to actions of neuromodulators, ahgdconstraints
from long-ranged fibers) arevalable to zero the constant in the numeragiving an extra dgree(s) of
freedom to this mechanisnglf B'S would be neative, this leads to unpfsical results in the square-root
denominator ofF®. In Al examples where this occurs, it is possible to instead find pod¥i® to
appropriately shift the numerator &°.) In this context, it is empirically observed that the synaptic
sensitvity of neurons engged in selecte dtention is altered, presumably by the influence of chemical
neuromodulators on postsynaptic neurons at their presynaptic sites (Mourticakti681).

2.2. Computational Physics

2.2.1. Adaptive Simulated Annealing (ASA)

Adaptive Smulated Annealing (ASA) (Ingber1993) is used to optimize or importance-sample
parameters of systems.

ASA is a C-language code \d#oped to statistically find the best global fit of a nonlinear constrained
non-covex ast-function eer a D-dimensional space. This algorithm permits an annealing schedule for
“temperature”T decreasingonentially in annealing-timk, T = T, exp(-ck®). Theintroduction of
re-annealing also permits adaptation to changing seétiegiin the multi-dimensional parametgace.

This annealing schedule is faster than fast Cawcimealing, wherel' = Ty/k, and much faster than
Boltzmann annealing, where = Ty/Ink. ASA has @er 100 OPTIONS to praide robust tuning \oer

mary classes of nonlinear stochastic systems.

For example, ASA has ASA ARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first deeloped in 1994 when the author was Principaletigator (Pl) of a National Science
Foundation grant, Parallelizing ASA andTHINT Project (RPP). Sincethen these OPTIONS ha
been used by people in various institutions.

2.2.2. PATHINT and PATHTREE

In some cases, it is desirable torglep a time golution of a short-time conditional probabilityfwo
useful algorithms heae keen deeloped and published by the author.

PATHINT (Ingber 1994) motiated the deelopment of RTHTREE (Ingber Chen et al 2001), an
algorithm that permits extremely fast accurate computation of probability distributions of a large class of
general nonlinear diffusion processes.
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The natural metric of the space is used to first lawrdéhe mesh. Thevelving local short-time
distributions on this mesh are then dynamically calculated. The short-time probability dewnsstyhgi
correct result up to ordgd(At) for ary final point S, the order required to reeer the corresponding
partial differential equation.In fact, O(At*?) is available (Graham, 1978; Langouchs al 1979;

Langoucheet al, 1982).

PATHINT and ATHTREE hae demonstrated their utility in statistical mechanical studiesniante,
neuroscience, combat analyses, neuroscience, and other selected nonlineaiateultistems (Ingbger
Fujio & Wehner 1991; Ingber & Nunez, 1995; Inghe2000). ATHTREE has been usedtensvely to
price financial options (IngbgiChenet al, 2001).

2.3. Mesoscopic Computation

2.3.1. Generic Mesoscopic Neural Networks (MNN)

SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) (14§82), adding
computational power to a similar paradigm proposed for target recognition (16§88a).

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
firings, or multvariate frings. The"weights] or coefficients of functions of firings appearing in the drifts

and diffusions, areitf to incoming data, considering the joint fesftive” L agrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function. This program of
fitting coeficients in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically et representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equatigngoarse deterministic estimate to
“predict” the eolution can be applied using the most probable path, BIHINT has been used.
PATHINT, even when parallelized, typically can be toowsléor “predicting” evolution of these systems.
However, PATHTREE is much faster.

The present project uses the same concepts, having sets of maltipldes define macrocolumns with a
region, with long-ranged connexitly to other rgions. Eachmacrocolumn has its own parameters, which
define sets of possible patterns.

2.3.2. ldeasby Statistical M echanics (I1SM)

These kinds of applications of SMNI\ledovious counterparts in an Al approach to Ideas by Statistical
Mechanics (ISM). ISM is a generic program to modevolution and propagation of ideas/patterns
throughout populations subjected to endogenous and exogenous interactions. The program is based on
the authoss work in SMNI, and uses the auth®ASA code (Ingberl993) for optimizations of training

sets, as well as for importance-sampling to apply the astlhmpula financial risk-management codes,

TRD (Ingber 2005), for assessments of risk and uncertaifitijis product can be used for decision
support for projects ranging from diplomatic, information, militaaiyd economic (DIME) factors of
propagation/eolution of ideas, to commercial sales, trading indicators across sectorarafidl marlkts,
advertising and political campaigns, etc.

It seems appropriate to base an approach for padipagof ideas on the only system so far demonstrated
to develop and nurture ideas, i.e., the neocortical brain (Ing@®6; Ingber 2007; Ingber 2008).
Ultimately, ISM of course wuld not use functional relationshipsvei®ped solely in neocortex, but rather
those more appropriate to agi population.

Folowing the SMNI structure, ISM delops subsets of macrocolumnar activity of nualtiate stochastic
descriptions of defined populations, with macrocolumngddfby their local parameters within spacif
regions and with parameterized endogenous -mgional and rogenous external connadgties.
Paameters of subsets of macrocolumns are tdt lsihg ASA to patterns representing ideRBstameters

of external and interegional interactions are to be determined that promote or inhibit the spread of these
ideas.
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3. Macroscales

3.1. SMNI Description of EEG

Using the pwer of the SMNI structure and ASA, sets of EEG avaked potential data from a separate
NIH study collected to inestigate genetic predispositions to alcoholism, wéted to an SMNI model

on a lattice of regional electrodes tdract brain “signatures” of STM (Inghe¥997; Ingber1998). Each
electrode site was represented by an SMNI digioh of independent stochastic macrocolurstaled

M€ variables, interconnected by long-ranged circuitry with delays appropriate to ibmmg-f
communication in neocorte The global optimization algorithm ASA was used to perform maximum
likelihood fits of Lagrangians detd by path integrals of multariate conditional probabilities.
Canonical momenta indicators (CMI) were therebyweédrifor individual's EEG data. The CMI ge
better signal recognition than thewdata, and were used to advantage as correlates of behavioral states.
In-sample data was used for training (Ingld®®7), and out-of-sample data was used for testing (Ingber
1998) these fits.

These results aye strong quantitatie sipport for an accurate intuigé gcture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

3.2. Complementary Global Models of EEG

There are other models of EEG which alseehsund experimental support. Some of the models can be
shavn to be indeed complementary to SMNI (Ingber & Nunez, 2010). Scalp potentials (EEG) are
generated by synaptic current sources at small scales; each cubic millimeter of cortical tissue contains
more than 100 million synapses. In contrast to this small scatgc&EG data are recorded at
macroscopic (centimeter) scales. All dependent variablescpressed as functions of time and cortical
location. The basic approach ignores embedded networktycdthough networks hae keen included

in more advanced models (Nunez, 1989; Jirsa & Haken, 1996).

3.2.1. The Stretched String With Attached Springs

Periodic boundary conditions are generally essential to global theories because the cortical-white matter
system is topologically close to a spherical sh@lhile this picture of distinct local and global models
grossly @ersimplifies expected genuine dynamic babses with substantial cross- scale interactions, it
provides a cowenient entry point to brain compligy (Nunez, 1995; Ingberl995a). Inthe “string
model” displacement is gerned by the basic string equation

’o_ ,000

otz Vv W+[wo+f(¢)]¢—0 ©®)
For the simple case of homogeneous linear springs attached to a homogeneous linear string @f length
and vavespeed/, the normal modes of oscillatian, are gien by

n
wﬁ=w§+(7”")2 n=1,2,3,... (6)

3.3. SMNI Derivation of String M odel

3.3.1. Euler-Lagrange (EL)

The EL equations are deed from the long-time conditional probability distribution of columriangs
over dl cortex, represented by, in terms of the Actiors, The path integral has a variational principle,
oL = 0 which gves the EL equations for SMNI (Inghet982; Ingber1983).

When dealing when multériate Gaussian stochastic systems with nonlinear drifts and diffusions, it is
possible to work with three essentially mathematically &gt representations of the sameysibs:
Langevin equations — coupled stochastic feliential equations, a dkkerPlank equation — a
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multivariate partial differential equation, and a path-gnéé Lagrangian — detailing ther@ution of the
short-time conditional probability distribution of the variables (Langoetiz 1982).

While it typically takes more numerical and algebraic expertise to deal with the pagtaiihtegrangian,
there are manbenefts, including intuitve rumerical and algebraic tools-or example, the Lagrangian
components and EL equations are essentially the counterpart to classical dynamics,

9%L
M = , = ,
ass= dee = 5GMG/ana@ME /at)
oL
M tum=nN®= ———
omentum a(aMG/at) )
oL
Force= FIVER
oL 0 oL

F-ma=0: oL=0=

- 7
dMS 3t A(@MC/at) 0

The most-probable firing states ded variationally from the path-integral Lagrangian as the EL
equations represent a reasonab@age wer the noise in the SMNI systenf-or mary studies, the noise
cannot be simply disgarded, as demonstrated in other SMNI STM and EEG studie$oibthe purpose
here of demonstrating the existence of multiple local oscillatory states that can béedtleviti EEG
frequencies, the EL equations sexery well.

The Lagrangian and associated EL equatione flmen deeloped at SMNI columnar scales, as well as
for regional scalp EEG activity by scaling up from the SMNI columnar scales as outlined belo

3.3.2. Strings

The nonlinear string model was dexd using the EL equation for the electric potenttaimeasured by
EEG, considering one firing variable along the parabolic trough of attractor states being proportfonal to
(Ingber & Nunez, 1990).

Since only one ariable, the electric potential is being measured, is reasonable to assume that a single
independent firing variable offers a crude description of thysiph. Furthermordghe scalp potentiab

can be considered to be a function of thiad variable. (Here'potential” refers to the electric potential,

not ary potential term in the SMNI Lagrangiann an abbreviated notation subscripting the time-
dependence,

P < O >>= P(MF, M/) = a(MF- < ME ) +b(M{ - < M' ), 8)

wherea andb are constants, an& & > and < M® > represent typical minima in the trough the
context of fitting data to the dynamic variables, there are three effeotistants,{ a,b, ¢} ,

- 9= aMF +bM| ©

The mesoscopic columnar probability distibns, P, is scaled aver this columnar firing space to obtain
the macroscopic conditional probability distributiorecthe scalp-potential space:

Po[®P] =J'dMEdM'P[ME,M']cS[(D—CD'(ME,M')] (10)
The parabolic trough described a&bqgustifies a form
Po = (2rmo?) Y2 exp(-At J’ dx Lg) ,

Lo = % |od/otf? + g lodb/ox|* + g [P + F(P) ,

o? =2\t/a , (11)
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whereF (®) contains nonlinearitiesveay from the troughg? is on the order of /N given the dervation
of L above, and the intgral over x is taken wer the spatial region of interest. In general, there also will
be terms linear i@®/0t and indPd/0x.

Here, the EL equation includes variation across the spatial exferitcolumns in regions,
0 oL 0 oL oL

ot a®ion | ax 3D 9o 0 12
ot A(dP/At)  dx A(P/IX) D (12)
The result is
0’0 %0 oF
—+ [ — + - =
Tz P Po TV® 59 70 (13)

The determinant prattor g defined abwe dso contains nonlinear details affecting the state of the
system. Sincey is often a small humbgedistortion of the scale ok is avoided by normalizingy/go,
wheregy is simplyg evduated atM & = M*& = M' = 0.
If there exist regions in neocortical parameter space suchgthat —c2, yla = wé, i.e., as eplicitly
calculated using the Centering Mechanism (CM) and ageadlan previous SMNI EEG papers,

1 0F

o op - Pf@), (14)

then the nonlinear string model is reeed.

Note that this string desition is only consistent with the global string analog described initsie f
sections of this papeif the spatial xtent is extended across the scalp via long-ranged fibers connecting
columns withM*E' firings. Thisleads to a string of columnghe next section calculates an EL model
that shows that these columns can be viewed as spring analogs.

3.3.3. Springs

For a gven column in terms of the probability descriptiorvegi aove, the abee B equations are
represented as

9 oL oL _.
ot A(OME/ot) OME
a oL oL _, (15)

ot d@M'/3t) oM!

Early calculations included marcoupled equations, representing spatial and spatialetieg terms in

the Lagrangian from nearest-neighbor minicolumi®MVINI includes drergence and camergence of
columnar interactions, whereby a minicolumn interacts afferently dackefly via its axonal processes

to a subset of neuronal dentritic afferents as well as to other minicolummsingleh dynamic
mesocolumn (Ingberl982; Ingber 1983). Thesespatial terms permit calculation aneérification of
obsened velocities of propagation of information across minicolumns via short-ranged non-myelinated
fibers.

To investigate dynamics of multariate stochastic nonlinear systems, such as neaqmesents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear diffusions in particular are typically washed out.

Previous SMNI EEG studies had demonstrated that simple linearized dispersion relatived filem

the EL equations support the local generation of frequencies observed experimentally as welhgs deri
diffusive propagtion \elocities of information across minicolumns consistent with otkper@mental
studies. Theearliest studies simply used a driving fotkeM® in the Lagrangian to model long-ranged
interactions among fibers (Inghed982; Ingber 1983). Subsequenstudies considered gmnal
interactions driving localized columnar activity within thesgioas (Ingber1996b; Ingber1997; Ingber
1998).



Lester Ingber -10- MNI Cognitive Algorithms Multiple Scales

A recent set of calculationsxamined these columnar EL equations to see if EEG oscillatorywibeha
could be supported at just this columnar scale, i.e., within a single col@miirst, the EL equations

were quasi-linearized, by extracting dogients of M and dM/dt. The nonlinear coéitients were
presented as graphsep al firing states (Ingber2009a). Thisexercise demonstrated that a spring-type
model of oscillations as plausible. Then a more detailed study was performedlogang over two

million lines of C code from the algebra generated by an algebraic tool, Maxima, to see what range of
oscillatory behavior could be considered as optimal solutions satisfying the EL equations 20@@iey.

The answer was fafmative, in that ranges ofut = 1 were supported, implying that oscillatory solutions
might be sustainable just due to columnar dynamics at that stlaéefull probability distribution \as

evdved with such oscillatory states, confirming this is true.

These results sumé even with oscillatory input into minicolumns from long-ranged sources (Ingber &
Nunez, 2010), since the CM is independentririd states, and just depends meraged synapticalues
used in SMNI.

3.4. Macroscopic Computation

Computation in neocorkeoften includes interactions between information processed at finer s€akes.
example, it has been noted thaperimental data on velocities of propagation of long-rangeerd

(Nunez, 1981; Nunez, 1995) and ded velocities of propagation of information across local
minicolumnar interactions (Ingherl982) vyield comparable times scales of interactions across
minicolumns of tenths of a seconBurthermore, since a reasonable case has been made that global EEG
is shaped and constrained by geometry of the skull, and since not all informati@erfdgs regions need

not be direct, it is possible that macroscopic EEG plays a significant role, at least a constraint, on some
information processing acrossgiens. Thereforesuch phenomena as STM likely are xmieably
dependent on interactions at local and global scales, and this is assumed here.

4, Microscales

In regard to neocortical information processing at theslef short-term memory (STM), there aredw
major paradigms that ti@ rot yet been reconciled.

4.1. Bottom Up

There has been muchovk done, both experimentally and theoreticadigtailing quite a f& specific
mechanisms at thevd of individual neurons and glial processes and their interactions, thakgkaine
information processing and codification of information that may be instrumental in STM (Amzica &
Massimini, 2002). In particulaa dass of glial cells, astrocytes, present in numbers greater than neurons
in human neocorte, is of interest here (Oberheimal, 2009). For example, astrocytes in neocortical
laminae 1 extend their mm processes across assefiathputing laminae 1-3, afferent laminae 4,
touching and communicating with other glia cells and neurons (Reisin & Colombo, 2002; Cebatbo
2005). Laminae-6 hae lamger astrocytes, and in laminae 5-6 with mostly efferent neuronal processes
there are some astrocytes with varicose projections (Obesdtedtin 2009). Havever, it appears that a
primary means of communication among astrocytes (and other glial cells) is¥Viwaes, propagting

at speeds up to 40m/s (Bellinger 2005) over hundreds of mm of neuronal structuréBhey influence
excitation and inhibition of neuromodulators, and recent research points to their diesit af
polarization thresholds via €awaves. For exkample, the influence of neuron firing on astroglial calcium
ions may be caused by mrement of sodium and potassium ions in and out the body and axon of neurons.

It should be noted that there are other mechanisms proposed, other than direct neuron-neuron interactions,
to describe arious aspects of neocortical information processing, e.g., soliton formationgi@geor
2003), and ephaptic excitation of neurons (Anastasdiali 2011).

There are manapproaches in this “bottom-up” context, including quantum computation in microtubles
(Haganet al, 2002), nonlinear systems approaches to neural processes (Retbtcal, 2006), magnetic
processes within astrocytes (Banaclocha, 2005; Banaclocha, 2007; Banaclocha & Banaclocha, 2010;
Banaclocha, Bokkon & Banaclocha, 2010), pulsating avaves in astrogites (Schipk et al, 2002;
Scemeset al, 2000; Goldbeg et al, 2010), neuron-astrocyte networks (Pereira & Furlan, 2009; Pereira &
Furlan, 2010), including glutamate-spéciiC&*-induced signaling processes between neurons and
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astrogtes (Postno et al, 2009), influences of blood fl® on reuronal processes (Moore & Cao, 2008),
and mathematical formulations of qualia based on neural information processing (Balduaaddi, T
2009).

4.2. Top Down

There has been much theoretical work done at i & columnar and regional neocortical iy,
detailing correlations of experimental brain activity with behavioral observations (Buedeoe &
Casanwa, 2002; Rakic, 2008).For example, various imaging technigues, both intra-cranial and non-
invasive, have demonstrated that specific brain ait}i often is correlated with STM as well as spiecif
processing of information and attentional states (Nunez &vasiam, 2006).

There also has been much theoreticatktrying to bridge brain activity across multiples scales, e.g.,
from neuronal to columnar tog®nal scales of adatity, with detailed calculations defining STM (Ingber
1981; Ingber 1983; Ingber 1984; Ingber & Nunez, 1995) and analyses of scalp EEG (Ingberw;
Ingbetr 2009b; Ingber & Nunez, 2010)Relevant to the present work, minicolumnar EEG has been
demonstrated to scale up to EEG observed at regional scalp measuréiieiteésminicolumnar EEG
may not be the only source of scalp EEG, it idisighnt to scale for detailed fits to observed scalp EEG
data.

It is reasonable to state that, while most neuroscientistygdiiat ultimately Bottom Up processing will
explain all brain activity (Rabindgch et al, 2006), some other neurophysiologists and psychologists
believe tat direct Bp Down processes are important components of mammalian information processing,
which cannot be solely explained by Bottom Up processes.

4.3. Smoking Gun

As yet, there does not seem to bg amoking gun” for gplicit Top to Down mechanisms that directly
drive Bottom Up STM processes. Of course, there areyriiap Down type studies demonstrating that
neuromodulator and neurondirig states, e.g., as defined by EEG frequencies, can modify the milieu or
contet of individual synaptic and neuronal agdty, which is still consistent with ultimate Bottom Up
paradigms. Haever, there is a logical diérence between Top Down milieu as conditioned by some prior
external or internal conditions, and some direcp TDown processes that direct cause Bottom Up
interactions specific to STM. Here, the opamthord is “cause”.

4.4. Support for Top-Down M echanism

There is a body of evidence that suggests a $p€emifp to Down mechanism for neocortical STM
processing.

4.4.1. Magnetism Influencesin Living Systems

An example of a direct physical mechanism thdec$ neuronal processing not part of “standard”
sensory influences is the strong possibility of magnetic influences in birds at quavdisnofiénteraction
(Kominis, 2009; Rodgers & Hore, 2009; Sdlmv & Schulten, 2009). It should be noted that this is just
a proposed mechanism (Johnsen & Lohmann, 2008).

4.4.2. Neocortical Magnetic Fields

There are manstudies on electric (Abanderet al, 2006) and magnetic fields in neocorigurakami &
Okada, 2006; McFadden, 2007; Iringaal, 2009; Georgig, 2003).

At the level of a angle neuron, electriddld strengths can be as high as about 10V/m for a summation of
excitatory or inhibitory postsynaptic potentials as a neuiras.f Theelectric fieldD

D=¢E (16)

is rapidly attenuated as the dielectric constaseen by ions is close to aworders of magnitude times
that in \acuum, gy due to polarization of ater (Nunez, 1981). Magnetic field strengthsn neocort&

are generally quite smallyen when estimated for the largest human axons at abo(T,Jdbout 1/300 of

the Earths magnetic field, in dendritic microtubles, based on ferrofluid approximation to the microtuble
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environment with a magnetic permeability

about 1Qs, (Georgie, 2003). Thus,the electromagnetic fields in neocortdiffer substantially from
those in vacuum, i.e.,

EoloC® =1 (18)
wherec is the speed of light.

The abwee estimates of electric and magnetieldi strengths do not consider colleetinteractions within

and among neighboring minicolumns, whichiggiise to field strengths much larger as typically measured
by nonirvasive EEG and MEG recordings. While electrical activity may be attenuated in the neocortical
ervironment, this is not true for magnetic fields which may increase collegtengths wer relatively

large neocortical distances. The strengths of magnetic fields in neocoate be at a threshold to
directly influence synaptic interactions with asyies, as proposed for long-term memoryl NI
(Gordon et al, 2009) and short-term memory (STM) (Banaclocha, 2007; Pereira & Furlan, 2010)
Magnetic strengths associated by collectHEG activity at a columnar Vel gives rise to &en gronger
magnetic ields. Columnaexcitatory and inhibitory processes largelydgkace in diferent neocortical
laminae, providing possibilities for more specific mechanisms.

4.4.3. Columnar EEG

As discussed alve, details of STM hae keen calculated in the SMNI papers. The Centering Mechanism
(CM), associated in these calculations with changes in background inhibitory synagptig, @ttve the
columnar system into multiple colleedi firing states. This CM leads to detailed calculations of STM
capacity duration and stability that agrees with experimental observations.

Future work must consider magnetic fields produced at different laminae due toel@ntcolumnar
firings as detailed by SMNI for STM processes. These magnetic fields may affearOaaves that are
considered by some researchers as being vital processes for astrocyte-neural interactioesiigatagi
higher-order cognitie dates (Bellinger2005; Nakancet al, 2007).

The interactions between the momentum of thesé ©as and minicolumnar magnetic fields can be
approached classicallg.g., at a local minicolumnar scale, or quantum mechanjoatly, considering
possible entanglement across macrocolumnar scales.

4.5. Strengths of Vector Potential

To demonstrate that top-dm influences can be appreciable, here a direct comparison is described
between the momentumof C&*, ions which already e been established as being influential in STM
and LTM, and an SMNI vector potential (SMNI-VPYhe SMNI-VP is constructed from magnetieldis
induced by neuronal electrical firings, at thresholds of collectiinicolumnar activity with laminar
specifcation, which plausibly can g rise to causal top-én mechanisms that effect molecular
excitatory and inhibitory processes in STM anM. A specifc example might be causal influences on
momentunp of C&* ions by the SMNI-VR, as @lculated by the canonical momentgm

q=p-€A (19)

wheree is the electron coulomb charge aBd= 0 x A is the magneticiéld B, which may be applied
either classically or quantum-mechanicaljote that gauge oA is not specified here, and this can lead
to important effects especially at quantum scales (Tolla&gsah2010).

A can be calculated using the standard assumption that large-scale EB@dpedkfrom oscillatory
electrical dipole actity p exp(-iwt), the first moment of the charge distribution dengitgiving rise to
the dipole. The electromagnetic vector poteriglackson, 1962) is

iwr/c

e
cr
for the electric current densifly which in the dipole approximation,

A=

IJd3x (20)
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p= IXp(x)d3x (21)
gives lise to
: iowrlc
A=— lwpe (22)
cr

This is a dipole model for collegg mnicolumnar oscillatory currents, corresponding to topato
signaling, flowing in axons, not for inddual neurons. The top-down signal is claimed to causeargle

effects on the surrounding milieu, but is not appropriate outside these surfaces due to strong attentuation
of electrical actiity. Howeve, the vector potentials produced by these dipoles due to axonal disshar

do survve far from the axons, and this can lead to importafieicesf at the molecular scale, e.g., in the
environment of ions (Feynmagt al, 1964; Giuliani, 2010).

Note that this is not necessarily the only or most popular description of electromagnetic influences in
neocorte, which often describes dendritic presynaptic\égtias inducing large scale EEG (Nunez,
1981), or axonal firings directly affecting astrocyte processes (McFadden, ZD@3)work is only and
specifcally concerned with electromagnetic fields in colleetixonal firings, directly associated with
columnar STM phenomena in SMNI calculations, which creat¢ov potentials influencing ion momenta

just outside minicolumnar structures.

After fitting the electrical dipole momeptto minicolumnar electricaliéld near minicolumns, thisalue

of A is then to be compared to the valugdbr C&#*. Note that the magnetic fieBl derived from A,
B=0OxA (23)

is still attenuated in the glial areas wheré'Gmaves exist, tut A derived near the minicolumns will be

used there as well since it is not so attenuated.

The electrical dipole for colleet mnicolumnar EEG deved fromA is

E=C0xB=S0OxOxA (24)
w w
which in a near-field approximation for minicolumnseg
3 —
£ 3n(np)-p
r3
iwnxp
B= 25
o2 (25)
wheren is the unit vector in the direction pf The far-field approximations are
E=Bxn
2 jwr/c
wn x pe
= 26
(cr)? (26)

The SMNI columnar probability distributions, dexl from statistical aggogtion of synaptic and
neuronal interactions among minicolumns and macrocolumne, éstablished credibility at columnar
scales by detailed calculations of properties of STM. Under CM conditiong, edigbit multiple
columnar collectie firing states. It must be stressed that these minicolumns are the entities which the
abore dpole moment is modeling. The Lagrangian of the SMNI distiilms, although possessing
multivariate nonlinear means and vediance, hae functional forms similar to arguments dfirfg
distributions of individual neurons, so that the description of the columnar dipole aba nodel

faithful to the standard de#dtion of a vector potential from an oscillating electric dipole.

The efective wllective minicolumnar potential is estimated to be about 10 times as strong as a neuronal
postsynaptic voltage of T/, or 107 V, where V measures volts, egdent to nf-kg-/A-s> (A measures
amperes). Af laminar thickness,, within axons, of about 10 m, theE field density dimension is on

the order of 1%/r V/Im. Thisgives a dpole value on the order of 2 C-m (C measures coulomb,
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measured by A-s) at the near field.

This yields an estimate for values Af,|for w = 6. 366¢cps, corresponding to EEG frequencies of 40 s
A-s/m?, on te order of 10 V-m at he near field of firing minicolumns. In Sl units, as can be
described by the Coulomb force, the emlgint units of C = (kg-i's?)*’2, or eAwill be in units of linear
momentum. @&kingr to be a laminae thicknessvgs an estimate of 10" V-m, which decreases a# 1
awgy from the near field, all measured within axons for the purposes of describing electrical activity.

The contribution ofA to the canonical momentum is measureceBy wheree = 1. 602x 10°1° C. This
gives a nomentum contribution from on the order of 182 kg-m/s.

The mass of a Gaion is 1.33x 102 kg. Assumingspeeds of 4um/s, estimate the momentum of a
single ion is estimated to be about 50 kg-m/s.

This comparison ofp and A demonstrates it is possible for minicolumnar electromagnetic fields to
influence important ions uwolved in cognitve and afective pocesses in neocore Our estimate of
minicolumnar electric dipole is quite consative, and a factor of 10 would makthese effectsven more
dramatic. Sincehis effect acts on all Gaions, it may hee an even greater dfiect on C&" waves,
contrituting to their mean avefront movement. Consideringlower ion momenta would male this
comparison tA even doser.

Such a smoking gun for top-downfexfts avaits forensic in wo experimental erification, requiring
appreciating the necessity and due diligence of including true multiple-scale interactions across orders of
magnitude in the compteneocortical environment.

4.6. Microscopic Computation

This work simply shows that electromagnetalds within neurons can ha dfects outside of them, e.g.,

on ions that mediate interactions between and among neurons angtest(®ereira & Furlan, 2010;
Pereira & Furlan, 2009). Other work has shown the important computational effects of such interactions,
including consideration of magnetic influences per se (Banaclocha, 2007; BanadRimbikon &
Banaclocha, 2010).

5. Conclusion

This paper has focused on some specific approachesMikll and the vector potential of minicolumnar
electromagnetic adfity, to delve into influences of neocortical interactions and their possible influences
on cognitve ocessing, at multiple scalekven within this confined context, a case has been made that
it should not be expected that the proposed Holy Grail of neuroscience, i.e., to ultimplzily @l brain
processing in terms of a nonlinear science at molecular scales (Rabiebal, 2006), is at all realistic.

As with mary Crusades for some truths, other truths can be tramplbdre is much more work to be
done on STM at multiple scales (Ingh2012).
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