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A theory developed by the author to describe macroscopic neocortical interactions demonstrates
that empirical values of chemical and electrical parameters of synaptic interactions establish several
minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The
number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-
neighbor columnar interactions are all consistent with well-established empirical rules of human short-
term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using
modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic
interactions.
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I. INTRODUCTION
One of the few well-established quantitative facts of neocortical information processing is that

human short-term memory (STM), on the order of seconds, is limited to retention of 7 ± 2 items [1]. This
is true even for apparently exceptional memory performers who, while they may be capable of more
efficient encoding and retrieval of long-term memories (LTM), and while they may be more efficient in
‘‘chunking’’ larger patterns of information into single items, nevertheless also are limited to a capacity of
7 ± 2 items in their STM [2-4].

Previous papers have dev eloped a theory of neocortical interactions [5-7], using modern methods of
nonlinear nonequilibrium classical statistical mechanics [8,9]. The Appendix outlines the derivation of
the key equations developed in these papers, but these papers should be consulted for extensive reference
lists and more information on the biological, physical and mathematical issues.

This development in previous papers [6,7] has demonstrated that multiple hierarchies of several
spatial-temporal scales of neocortical interactions can be consistently analyzed: Microscopic neuronal
synaptic interactions, consistent with anatomical observations, are first spatially averaged over
minicolumnar afferent and macrocolumnar efferent domains, defining a physiological ‘‘mesocolumn.’’
These spatially ordered domains retain intimate contact with the original physical synaptic parameters, are
consistent with observed columnar physiology, and are a suitable substrate for macroscopic spatial-
temporal regions described by a path-integral Lagrangian formalism of coupled excitatory-inhibitory
spatial-temporal firing states. Nearest-neighbor (NN) interactions among mesocolumns support regions
of alternating columnar structures. Long-ranged influences from extrinsic and inter-regional afferents
drive these short-ranged interactions, giving rise to columnar mechanisms affecting macroscopic activity.

Within neighborhoods of most-probable stationary firing minima determined by the Euler-Lagrange
equations, the linearized field equations give rise to dispersion relations relating firing frequencies and
spatial wav e vectors [7]. Typical electroencephalographic (EEG) rhythms, wav e numbers, and
propagation velocities are nontrivially derived using only reasonable synaptic parameters. These
mesoscopic relations are consistent with other studies which have derived similar macroscopic dispersion
relations and have shown them to have strong empirical support [10]. A confluence of these sets of
relations might represent an approximate linearized theory across several spatial scales which could be
verifiable by existing EEG and magnetoencephalographic (MEG) measurements. The formation,
stability, and interaction of spatial-temporal patterns of columnar firings can be explicitly calculated, to
test hypothesized mechanisms relating to information processing. A detailed scenario has been calculated
of columnar coding of external stimuli, short-term storage via hysteresis, and long-term storage via
synaptic modification. This development supports the possibility of parallel processing of local
information via microscopic circuits and of global patterned information via mesoscopic columnar
mechanisms.

Here, these methods are further extended, and it is derived that, quite generally for realistic
chemical and electrical synaptic parameters, the number of minima and the likely time scales of their
interaction coincides with the observed limits of capacity of 7 ± 2. It is also calculated that the nearest-
neighbor columnar interactions support the sustenance of these columnar firing patterns of information.
This is presented in Sec. II.

There have been previous suggestions that multiple roots of deterministic equations modeling
neural nets might somehow be correlated with mechanisms of STM, but no specific functional forms or
numerical estimates were made [11]. It is stressed in this theory [5,6] that there must be a consistent and
detailed development of (a) synaptic interactions, (b) statistics of empirically observed columnar
interactions, and (c) dynamics of the time evolution of this statistical nonlinear nonequilibrium system.
The basic hypothesis is that memories—whether represented by specific microscopic circuitries or by
relatively more global firing patterns—are encoded and secured in the environment of statistically
favorable columnar firings, derived to be represented by a path-integral Lagrangian which establishes
some important properties of STM capacity, duration, and interactions. There exists much support for the
existence and independence of these kinds of globally parallel and selectively serial information
processing [3,4,12-14].
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These statistical mechanical techniques are quite general [9]. For example, they hav e been applied
to study nucleon-nucleon velocity-dependent [15] Riemannian contributions to the binding energy of
nuclear matter [16,17], to study the possibility of similar mechanisms in frustrated ferromagnetic-
antiferromagnetic time-dependent interactions as encountered in spin-glasses [18], and to study the
nonlinear nonequilibrium dynamics of financial markets [19].

II. DERIVATION OF STM CAPACITY
A. STM stability

For simplicity, initially consider the macroscopic prepoint-discretized Lagrangian L derived in the
Appendix, expressing the statistical evolution of mesocolumnar neuronal firings MG for excitatory
(G = E) and inhibitory (G = I ) type neurons.

L = LE + LI , (2.1)

LG = (ṀG − gG)2/(2NgGG) + MGJG/(2Nτ ) − V ′G ,

gG = −τ −1(MG + NG tanh FG) ,

gGG = τ −1 NGsech2FG ,
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
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where NG is the number of neurons of type G in an afferent minicolumn, N = NE + NI ∼ 110, and
N* = N*E + N*I ∼ 103 N is the number of neurons in an efferent macrocolumn. {VG, vG

G′ , φG
G′ , AG

G′ , BG
G′ }

are mesocolumnar-averaged parameters derived from chemical and electrical synaptic parameters: VG∼ 10
mV is the axonal threshold potential; |vG

G′ |∼ 0. 1 mV and φG
G′ ∼ 0. 1 mV are the mean and variance of

potential distributed to the axonal trigger site of neuron G from interaction with neuron G′;
AG

G′ = A*G
G′ N*/N∼ 10−2—10−3 N*/N and BG

G′ = B*G
G′ N*/N∼

1

5
AG

G′ N
*/N are the conductivity and

spontaneous background across the synaptic cleft between neurons G and G′, consistently scaled to reflect
the scaling of M*G → MG (see Appendix). Note that the Einstein convention of summing over repeated
indices is not yet invoked in this section.

An examination of this derivation makes it clear that MG = M*GN/N* represents an efferent
mesocolumnar firing. MG = NG means all neurons in a mesocolumn are firing, MG = −NG means they
all are not firing. θ ṀG(t + θ ) = MG(t + θ ) − MG(t), θ ≤ τ , represents the change in the firing state of the
afferent mesocolumn, thereby also representing a change in efferent firings at t + θ . V ′G∝ (ρ∇ MG)2 are
NN interactions. τ ≈10 msec and ρ≈102 µm are the temporal and spatial extents of mesocolumns. JG are
constraints from intrinsic and extrinsic long-range fibers.

Three cases of neuronal firings are considered for further study. Since STM duration is still long
relative to τ , stationary solutions of L will be investigated to determine how many stable minima
<< MG >> may simultaneously exist within this duration. Also, primarily individual mesocolumns will be

studied. I.e., take the uniform limit of Ṁ
G

= 0 = ∇ MG. Although the Ṁ
G

= 0 limit should only be taken
for the midpoint-discretized Lagrangian LF , this is a small difference here, as will be demonstrated
subsequently.

A model of dominant inhibition describes how minicolumnar firings are suppressed by their
neighboring minicolumns. For example, this could be effected by developing NN mesocolumnar
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interactions [7], but here the averaged effect is established by inhibitory mesocolumns (IC) by setting
AI

E = AE
I = 2AE

E = 0. 01N*/N. Since there appears to be relatively little I − I connectivity, set
AI

I = 0. 0001N*/N. The background synaptic noise is taken to be BE
I = BI

E = 2BE
E = 10BI

I = 0. 002N*/N.
As minicolumns are observed to have ∼ 110 neurons (visual cortex appears to have approximately twice
this density) [20], and as there appear to be a predominance of E over I neurons [10], here take NE = 80
and NI = 30. Use N*/N = 103, JG = 0, and VG, vG

G′ , and φG
G′ as estimated previously. The ‘‘threshold

factors’’ FG
IC for this IC model are then

F E
IC =

(0. 5M I − 0. 25M E + 3. 0)

π1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

(2.2)

F I
IC =

(0. 005M I − 0. 5M E − 45. 8)

π1/2(0. 001M I + 0. 1M E + 11. 2)1/2
.

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly
the step-function forms tanh FG

IC in gG(t) in Eq. (2.1) change MG(t) to MG(t + θ ). F I
IC will cause afferent

M I to fire for most of its values, as M I ∼ − NI tanh F I
IC will be positive for most values of MG in F I

IC,
which is already weighted heavily with a term -45.8. Looking at F E

IC, it is seen that the relatively high
positive values of efferent M I require at least moderate values of positive efferent M E to cause firings of
afferent M E.

-- Figure 1 --

Figure 1 gives contour plots of LIC over MG space, but cut off at various values to permit
examination of various scales of resolution. The calculations presented here support the contention that
neocortex functions at multiple hierarchies: While specific LTM information most likely is coded at the
microscopic neuronal level, the mesoscopic scale most likely provides the context for multiple most-
probable firing patterns which process STM and which facilitates plastic synaptic encoding of LTM [7].
For example, the scale in Figure 1(a) is the smallest scale above which 2 stable regions of LIC can be
discerned. Higher cutoffs only would portray contours running across MG space or minima whose
valleys lie above these cutoffs. Previous papers have presented plots of similar Lagrangians at larger
cutoffs and without cutoffs. E.g., τ L can range from 0 to values > 103 [6,7]. As will be discussed
subsequently in Sec. II.2, realistic constraints on STM duration dictate that only values of τ L ≤ 0. 04 are
of interest here. Figure 1(b) is the largest scale at which one minimum can be discerned for all lower
cutoffs. Figure 1(c) confirms this at a smaller scale.

Detailed calculations demonstrate that L
E

or L
I

separately typically give rise to more multiple
minima, ≈10, than permitted by their sum L at this resolution. This ‘‘loss’’ of minima apparently is an
interesting consequence of E − I competition at the mesoscopic scale. For example, since L

G
scales as

NG/N for relatively large MG, L
E

dominates due to the larger M E in its means gE. For relatively small
MG, gG typically is small if there are several multiple minima in L

G
, since most of the minima are found

to cluster about the origin. Therefore, L
G

scales as (NG)−1 from the variances (gGG)−1, and L
I

dominates
for small MG due to the larger fluctuations of L

I
.

It is discovered that more minima of L are created, or ‘‘restored,’’ if the numerator of FG in Eq.
(2.1) contains terms only in MG, tending to center L about MG = 0. Of course, any mechanism
producing more as well as deeper minima is statistically favored. However, this particular ‘‘centering’’
mechanism has plausible support: MG(t + τ ) = 0 is the state of afferent firing with highest statistical
weight. I.e., there are more combinations of neuronal firings, σ j = ±1, yielding this state than any other
MG(t + τ ), e.g., ∼ 2NG+1/2(πNG)−1/2 relative to the states MG = ±NG. Similarly, M*G(t) is the state of
efferent firing with highest statistical weight. Therefore, it is natural to explore mechanisms which favor
common highly weighted efferent and afferent firings in ranges consistent with favorable firing threshold
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factors FG≈0. Another effect of this centering mechanism apparently is to shift minima of L
G

closer
together, permitting them to often cooperate instead of competing.

This centering effect of the IC model, labeled here as the IC′ model, is quite easy for neocortex to
accommodate. For example, this can be accomplished simply by readjusting the synaptic background
noise from BG

E to B′GE ,

B′GE =
[VG − (

1

2
AG

I + BG
I )vG

I NI −
1

2
AG

EvG
E NE]

vG
E NG

(2.3)

for both G = E and G = I . In general, BG
E and BG

I (and possibly AG
E and AG

I due to actions of
neuromodulators, and JG constraints from long-ranged fibers) are available to zero the constant in the
numerator, giving an extra degree(s) of freedom to this mechanism. (If B′GE would be negative, this leads
to unphysical results in the square-root denominator of FG. Here, in all examples where this occurs, it is
possible to instead find positive B′GI to appropriately shift the numerator of FG.) In this context, it is
empirically observed that the synaptic sensitivity of neurons engaged in selective attention is altered,
presumably by the influence of chemical neuromodulators on postsynaptic neurons [21].

By this centering mechanism, B′EE = 1. 38 and B′ II = 15. 3, and FG
IC is transformed to FG

IC′ ,

F E
IC′ =

(0. 5M I − 0. 25M E)

π1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

(2.4)

F I
IC′ =

(0. 005M I − 0. 5M E)

π1/2(0. 001M I + 0. 1M E + 20. 4)1/2
.

Note that, aside from the enforced vanishing of the constant terms in the numerators of FG
IC′ , the only

other changes in FG
IC′ in Eq. (2.4) relative to FG

IC in Eq. (2.2) is to moderately affect the constant terms in
the denominators. Figure 1(d) illustrates the increase of minima of τ LIC′ to 4. The 2 minima clustered
close to the origin are no longer discernible for τ LIC′ > 0. 03.

-- Figure 2 --

The other ‘‘extreme’’ of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (EC) by using the same parameters { BG

G′ , vG
G′ , φG

G′ , AI
I } as in the IC

model, but setting AE
E = 2AI

E = 2AE
I = 0. 01N*/N. This yields

F E
EC =

(0. 25M I − 0. 5M E − 24. 5)

π1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

(2.5)

F I
EC =

(0. 005M I − 0. 25M E − 25. 8)

π1/2(0. 001M I + 0. 05M E + 7. 24)1/2
.

The negative constant in the numerator of F I
EC inhibits afferent M I firings. Although there is also a

negative constant in the numerator of F E
EC, the increased coefficient of M E (relative to its corresponding

value in F E
IC), and the fact that M E can range up to NE = 80, readily permits excitatory firings throughout

most of the range of M E. This is illustrated in Figure 2(a), where 3 minima are possible.

Applying the centering mechanism to EC, B′EI = 10. 2 and B′ II = 8. 62. The net effect in FG
EC′ , in

addition to removing the constant terms in the numerators of FG
EC, is to change the constant terms in the

denominators: 12.3 in F E
EC is changed to 17.2 in F E

EC′ , and 7.24 in F I
EC is changed to 12.4 in F I

EC′ . Figure
2(b) illustrates that now 6 prominent minima are possible along a line through MG = 0, and 2 others are at
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MG = ±NG. Each pair of minima above and below the M I = 0 axis merge into single minima for
τ LEC′ > 0. 02, and these lose resolution for τ LEC′ > 0. 03.

-- Figure 3 --

Now it is natural to examine a balanced case intermediate between IC and EC, labeled BC. This is
accomplished by changing AE

E = AI
E = AE

I = 0. 005N*/N. This yields

F E
BC =

(0. 25M I − 0. 25M E − 4. 50)

π1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

(2.6)

F I
BC =

(0. 005M I − 0. 25M E − 25. 8)

π1/2(0. 001M I + 0. 050M E + 7. 24)1/2
.

Figure 3(a) illustrates that 3 minima are possible.

Applying the centering mechanism to BC, B′EE = 0. 438 and B′ II = 8. 62. The net effect in FG
BC′ , in

addition to removing the constant terms in the numerators of FG
BC, is to change the constant terms in the

denominators: 8.30 in F E
BC is changed to 7.40 in F E

BC′ , and 7.24 in F I
BC is changed to 12.4 in F I

BC′ . Figure
3(b) illustrates that now 10 minima are possible! The 9 minima along the diagonal line lose resolution for
τ LBC′ > 0. 01 above M I = 0 and for τ LBC′ > 0. 02 below M I = 0.

-- Figure 4 --

The effects of considering the full Feynman Lagrangian LF , including all the Riemannian and other
nonlinear corrections given in the Appendix, is illustrated in Figure 4(a) for BC′. The net effect is to
slightly raise the threshold at which minima dissipate, to about τ LBC′ ≥ 0. 03, which is relevant for the
duration of STM, discussed subsequently. Howev er, note that the minima structure is essentially the
same.

To demonstrate that multiple minima are not an effect of nonlinearities induced by the
denominators of FG, Figure 4(b) illustrates the net effect in LBC′ by dropping the MG terms in the
denominators of FG

BC′ . The valleys of minima are only slightly increased, i.e., they are not as deep relative
to those in Figure 3(b). However, these denominators are still important contributions derived from

synaptic interactions. E.g., even with the MG terms dropped, the denominators contribute factors of ∼
1

5
to FG

BC′ .

-- Figure 5 --

If N* is scaled larger or smaller, this effectively scales AG
G′ = A*G

G′ N*/N and BG
G′ = B*G

G′ N*/N,
disturbing the relatively sensitive balance that permits a few percent of efferent firings to affect their
afferents. Then, the number of possible minima is typically reduced to one or two. If N is scaled larger
or smaller, the number of minima is altered and the duration of STM is affected, as discussed
subsequently. Howev er, for N still in the range of a few hundred, the number of possible minima is not
severely reduced. Figure 5 illustrates the case N = 220, e.g., visual cortex: For model BC′, the number of
prominent minima found is 11. Note that the larger N sharpens the minima and therefore the resolution
of visual information processing.

These results are unchanged qualitatively for modest changes of any neocortical parameters.
However, it is reasonable to conjecture that more drastic abnormal changes in the neocortical parameters
might severely reduce the number of minima. This conjecture is based on calculations wherein FG do not
possess the relatively sensitive balances allowing a few percent of efferent neurons to control firings in
their afferents. In calculations using these unrealistic or abnormal parameters only one or two minima
survive.
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B. STM duration

A hysteresis study affords a measure of the time scales on which these minima may be
simultaneously present, e.g., before LTM mechanisms plastically change the columnar-averaged synaptic
parameters Z = { AG

G′ , BG
G′ , vG

G′ , φG
G′ , V

G} , or before other firing patterns become prominent due to external
stimulation JG [7].

For hysteresis to be prominent, the typical period within which synaptic parameters Z are altered by
∆Z should be much greater than the relaxation period of MG, but much less than the decay period for the
system to jump or fluctuate between competing minima << MG >>.

Time scales on which jumps between competing minima take place can be estimated by calculating
the time of first passage between competing minima of LF , giv en by ∫ dt ∫ dM P[M , t | << M >> , 0]. An
estimate of a stationary solution Pstat to the Fokker-Planck differential equation (see Appendix) for the
probability distribution P of MG firings for an uncoupled mesocolumn, i.e., V ′ = 0, is given by the
stationary limit of the short-time propagator,

Pstat≈Nstatg
1/2 exp(−CNτ L) ,  (2.7)

where Nstat and C are constant factors. This form is suggested because the minima of relevant examples,
e.g., BC′, essentially lie along a line in MG space, effectively reducing the relevant calculation to a one-
dimensional Fokker-Planck equation [22]. An estimate of the approximation made in Eq. (2.7) is made
by seeking values of constants C, such that the stationary Fokker-Planck equation is satisfied exactly. For
model BC′, detailed investigation of contour plots of C versus MG demonstrates that there exists real
positive C which may only range from ∼ 10−1 to ∼ 1, for which there exists unbroken contours of C which
pass through or at least border the line of minima. [At each point MG, Eq. (2.7) leaves a quadratic
equation for C to be solved.]

Thus, Eq. (2.7) defines a solution with potential N2L = ∫ AdM, drift A, and diffusion N/τ .

Stability, defined for δ MG about a stationary state by δ ṀG≈ − A,Gδ MG = −N2L,GGδ MG, is therefore
equivalent to << M >> being minima of L as required for Sec. IIA.

An interesting interpretation may be given to those trajectories along C < 1: Take C−1 to be close or
equal to some integer. If sev eral mesocolumns are considered to collectively carry a spatial pattern of
information, this may be described approximately by P\(dg

stat = ΠC−1
Pstat ∝ exp(−CNτ ΣC−1

L) ≈
exp(−Nτ L). Then P\(dg

stat , describing several mesocolumns within the reduced range
|M \(dgG| = |MG/C| ≤ NG, approximately satisfies the same Fokker-Planck equation along the line of its
minima as does Pstat describing a single mesocolumn along a solution trajectory with C < 1. Therefore,
there are conditions under which it is equally probable that STM may be processed by several
mesocolumns as by a single mesocolumn. In the following it is assumed that C = 1.

The time for first passage, tvp, is estimated in analogy to a one-dimensional system as [22]

tvp≈πN−2

|L,GG′(<< M >>p)| L,GG′(<< M >>v)



−1/2

(2.8)

× exp {CNτ [L(<< M >>p) − L(<< M >>v)]} ,

where << M >>v is the minimum at the valley of L in question, and << M >>p is the maximum at a peak
separating two minima. Eqs. (2.7) and (2.8) are reasonable but crude estimates, and future numerical
work must be done to detail the extent of their validity.

The exponential factor in Eq (2.8) can be quite large in some instances, and quite small in others.
As noted previously [7], differences in L from valleys to peaks are still large relative to the Riemannian
correction terms and relative to differential spatial-temporal contributions, thereby permitting this simpler
analysis. However, values of τ L at maxima separating the far minima may be >1, thereby yielding a very
large tvp, typical of many physical systems undergoing hysteresis [7]. Relaxation times tr about this
stationary state are estimated by |gG

,G|−1 [22], and are on the order of τ .
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For changes ∆Z in synaptic parameters Z = { A*
jk , B*

jk , Vj , v jk , φ jk , N*G} that transpire within a ∆t
of several tenths of a second to seconds, e.g., during typical attention spans, hysteresis is more probable
than simple jumps between minima if the following inequalities are satisfied. These estimates necessarily
require more details of the system in addition to tr and tvp [22].





tr ∆t N2∆L,G

∆Z





−1
N

2
>>

∆Z

∆t
>>





Nτ tvp ∆L

∆Z





−1

. (2.9)

For ∆Z approximately corresponding to a significant increase in the synaptic efficacy of one neuron per
minicolumn, this typically leads to

∆Z

tr
>>

∆Z

∆t

?
>>

∆Z

tvp
, (2.10)

where the last inequality may or may not hold, depending on the value of tvp used in Eq. (2.9).

Therefore, it is possible for hysteresis to be highly more probable than simple jump behavior to
another firing state. This provides a mechanism whereby an extended temporal firing patterns of
information can be processed beyond the time scale of relaxation periods, e.g., reverberation among
several local minima. It is to be expected that the effects of JG(r ; t) on ∆Z(r ; t) create more complex
examples of spatial-temporal hysteresis. These sustaining mechanisms may serve to permit other
biochemical processes to store information for longer time periods as stable synaptic modifications, e.g.,
LTM. As detailed previously [7], changes in synaptic parameters ∆Z may duplicate the effects of JG,
providing a mechanism whereby columnar firings encode long-range firing constraints. If this encoding
of firing patterns can establish itself on short enough time scales, then columnar coding of long-range
firings could be a precursor mechanism initiating the centering mechanism above, especially across large
regions of neocortex. Then, there would be a more uniform gradation of mechanism(s) establishing STM
and LTM.

However, to address the issue of limited capacity of STM, it is reasonable to require that within
time spans of tenths of a second to tens of seconds, simple jumps among minima are more probable than
hysteresis. This permits all minima to be readily accessible during STM duration, in any ordering [2], at
least more so than if hysteresis were more probable. In agreement with this empirical requirement, as
detailed in the previous contour plots, it is found that τ [L(<< M >>p) − L(<< M >>v)]∼ 0. 01—0. 03 for
these models using empirical values for synaptic parameters. Then for |τ L,GG′ |∼ 10−3, tvp∼ 10τ —100τ , on
the order of several tenths of a second to a second. Use of the full Feynman Lagrangian LF increases tvp
slightly. For these relatively short tvp the second inequality in Eq. (2.10) is violated, and simple jumps are
more probable than hysteresis, as required for STM.

Under conditions of serial processing [23], the deeper valleys of L representing the more likely
firing states will be occupied first. In all cases considered here, several valleys are less likely than the
others. This implies that the last several items in STM should be harder to encode (learn) and retain, with
the possible exception of the last one or two items which represent the most recent shifting of firing
patterns MG to these minima << M >>v of L. These conclusions are consistent with empirical
observations [23], and are obtained independent of any other rehearsal mechanisms which may exist.

-- Table I --

Calculations in these models establish that the prefactor in Eq. (2.8) most often is ∼ τ . Table I
demonstrates this by virtue of the fact that the determinant of the Hessian for points lying close to the
diagonal in Figure 3(b) is a very smooth function. However, note that points close to the corners
MG = ±(NE, NI ) hav e much more rapid variations. Therefore, minima at these corners, even when
τ L(<< M >>p)∼ 0. 01—0. 03, because of their sharp peaks, typically have tvp on the order of tens of
seconds to jump to minima clustered on the diagonal. This is within the range where hysteresis is more
probable for these minima. Therefore, minima at the corners of MG space most likely do not contribute
to STM, bringing the number of available minima down to 7 ± 2 as empirically observed.



Statistical Mechanics of Neocortical ... -9- Lester Ingber

This is a very sensitive calculation. If N were a factor of 10 larger, or if τ L(<< M >>p)∼ 0. 1, then
tvp is on the order of hours instead of seconds, becoming unrealistic for STM durations. Oppositely, if tvp
were much smaller, i.e., less than ∼ 5τ , this would be inconsistent with empirical time scales necessary for
formation of any memory trace [24]. In this context, also note that FG scales as (N* N)1/2, demanding
that both macrocolumnar divergence and minicolumnar convergence of mesocolumnar firings be tested by
these calculations.

These results pose serious problems for other models, such as ‘‘mean-field’’ theories or reductionist
doctrines. The mean-field approach essentially sets N = 1 and N* is effectively taken by some
investigators to be ∼ 105, the size of a macrocolumn, but others even consider it to be as large as 1010, the
total number of neurons in neocortex. The reductionist doctrine claims that only circuitries among a few
to several neurons are responsible for neocortical function, and this effectively sets N ≈ N*, on the order
of a few neurons. It is hard to understand how both the capacity and duration of STM can be explained by
these other models, even assuming they were or could be derived with realistic synaptic interactions and
correct statistical dynamics.

C. Nearest-neighbor interactions

It also is of interest to investigate the NN interactions, e.g., to determine if coefficients of (∇ MG)2

in L lead to excitation or inhibition of similar patterns of firings in nearby mesocolumns.

NN interactions are repulsive if (∇ MG)2 contributions are −(∇ M E)2 or +(∇ M I )2 in L. I.e.,
neighboring mesocolumns tend to fire differently, sharpening the pattern of each mesocolumn. This
would be useful for memories contained in a single mesocolumn. If (∇ MG)2 contributions are attractive,
+(∇ M E)2 or −(∇ M I )2 in L, neighboring mesocolumns tend to fire the same. This might facilitate the
formation or chunking of larger patterns encompassing several to many mesocolumns.

It should be noted that in mature neocortex, other structures most likely influence NN interactions.
Therefore, NN terms as derived here, while possibly being a component of these interactions, may not be
the full NN interactions. In any case, note that (ρ∇ MG)2 and τ ṀG contributions, a product of their
coefficients and gradual spatial-temporal variations of MG, are small compared to values of L at
peaks [7], so that these minima persist in the presence of spatial-temporal fluctuations.

-- Figure 6 --

Figure 6 illustrates contours of the coefficients of (∇ MG)2 for model BC′. The (∇ M E)2

coefficients are positive and relatively large, ∼ 0.03, along the main line of the minima in Figure 3(b). The
coefficients of (∇ M I )2 are also positive, and are closer to zero along this line of the minima. The net
result is an attractive NN interaction, supporting a scenario of several mesocolumns encoding STM. Note
that for other variations of synaptic parameters, this circumstance is not necessarily a typical result. For
example, other synaptic parameters yield repulsive NN interactions which may be a contributory
mechanism during columnar development [7].

III. CONCLUSION
A detailed derivation has been given of spatial-temporal properties of stationary minima of

mesocolumnar neocortical firing patterns. The numerical results, i.e., number of clear minima, their likely
periods of simultaneous interaction, and nearest-neighbor columnar interactions, all coincide with
empirical observations. More detailed calculations will be done: using wider ranges of possible synaptic
and columnar parameters, including more laminar circuitry, and testing more global estimates of the time
of first passage.

Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern
methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic
interactions.
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APPENDIX
At least to establish notation and key equations, an outline of the derivation of the statistical

mechanics of neocortical interactions is given [6,7].

1. Microscopic neurons

The microscopic probability pσ j
for neuron j firing (σ j = +1 if j fires, σ j = −1 if it does not) is

derived from folding a process Ψ for the distribution of q chemical quanta transmitted across a synaptic
cleft, with a Gaussian process Γ for the distribution of the net effect of postsynaptic interaction as it
affects the electrical activity at the axonal trigger zone. Each quanta contains thousands of molecules of
neurotransmitter. The probability pσ j

is essentially the same for Ψ taken to be a Poisson or a Gaussian
distribution [6]. For a Poisson-distributed Ψ, the mean efficacy is giv en as

a*
jk =

1

2
A*

jk(σ k + 1) + B*
jk , (A1)

where A*
jk is the activity induced if the presynaptic neuron k fires, and B*

jk is a spontaneous background.
A*

jk and B*
jk are on the order of 0.001—0.01, and for a ‘‘typical’’ neuron there may be as many as

N*∼ 104—105 presynaptic neurons, most emanating locally from within the the range of a macrocolumn
of spatial extent ∼ 1 mm. The distribution Γ has mean qvjk and variance √  qφ jk , where v jk and φ jk are the
net electrical potential and its variance, resp., at the trigger zone; |v jk | and φ jk are ∼ 0.1 mV, where v jk is
positive for excitatory interactions and is negative for inhibitory interactions. Neuron j most likely fires if
the threshold potential Vj is exceeded within a neuronal relaxation time of τ n∼ 5—10 msec. pσ j

is derived
to be

pσ j
≈

exp(−σ j F j )

exp F j + exp(−F j )
, (A2)

F j =
Vj −

k
Σa*

jk v jk




π

k′
Σa*

jk ′(v jk ′
2 + φ jk ′

2)




1/2 .

2. Mesoscopic domains

A mesoscopic probability distribution P is developed for an afferent minicolumn of N∼ 102

neurons, with spatial extent ρ∼ 102 µm and temporal relaxation τ ≥ τ n, having excitatory (E) firing M E

and inhibitory (I ) firing M I , −NG ≤ MG ≤ NG, where G = E or I . P is a response to efferent input
within the extent of a macrocolumn of N* neurons. As minicolumns are sensitive to one to several
neuronal afferents within τ n, the relaxation time τ for mesocolumns is of the same order as the relaxation
time τ n for neurons. E and I type neurons have chemically independent synaptic interactions in
neocortex, although the firing of a neuron is affected by the contribution from G = E and I neurons. A
mesocolumn is defined as this afferent minicolumn and efferent macrocolumn scaled down to
minicolumnar size, expressing the convergence and divergence of neocortical interactions. The extreme
efferent-to-afferent divergence of neocortex, N*: N, enables efficient columnar spatial interactions within
only 1 to few τ n periods. Nearest-neighbor (NN) mesocolumnar interactions are defined by overlapping
efferent macrocolumnar domains, with centers offset within the extent of a minicolumn. The net effect is
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to average over the jk neurons, yielding GG′ columnar interactions. To date, no account has been taken
of columnar interactions arising from more specific circuitry among the six laminae stratifying all
columns. The efferent scaling of M*G macrocolumnar efferent firings to MG = (N/N*)M*G is done for
convenience only, not affecting algebra or numerics, by simultaneously scaling A*

jk → (N/N*)Ajk and
B*

jk → (N/N*)Bjk .

P =
G
Π PG[MG(r ; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 jE
Σσ j − M E(r ; t + τ )




δ



 jI
Σσ j − M I (r ; t + τ )





N

j
Π pσ j

≈
G
Π (2πτgGG)−1/2 exp(−Nτ LG) ,

(A3a)

LG = (ṀG − gG)2/(2NgGG) + MGJG/(2Nτ ) − V ′G ,

V ′G →
G′
ΣV ′′GG′(ρ∇ MG′)2 ,

V ′G = −(2NgGG)−1gG(gG + 2MG/τ )dFG ,

gG = −τ −1(MG + NG tanh FG) ,

gGG = τ −1 NGsech2FG ,

FG =
[VG −

G′
ΣaG

G′ v
G
G′ N

G′ −
G′
Σ 1

2
AG

G′ v
G
G′ M

G′]



π

G′
Σ[(vG

G′)
2 + (φG

G′)
2](aG

G′ N
G′ +

1

2
AG

G′ M
G′)



1/2 ,

aG
G′ =

1

2
AG

G′ + BG
G′ ,

where JG are constraints on MG from long-ranged fibers.

The NN differential interactions are further specified as

dFG = − tanh FG( f *
n dFG

1 − 2 f *
n

2
dFG

2 tanh FG) ,  (A3b)

dFG
1 = ρ NG

G′z
Σ FG

,G′ M
G′
:z ε̂ z

+
1

2
ρ2 NG

G′G′′ zz′
Σ FG

,G′G′′ M
G′
:z MG′′

:z′ ε̂ zε̂ z′

+
1

2
ρ2 NG

G′zz′
Σ FG

,G′ M
G′
:zz′ ε̂ zε̂ z′ ,

dFG
2 = ρ2 NG

G′G′′ zz′
Σ FG

,G′ F
G
,G′′ M

G′
:z MG′′

:z′ ε̂ zε̂ z′ ,
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[. . .]:z ≡
∂[. . .]

∂z
= ε̂ ẑ ⋅ ∇ r [. . .] ,

[. . .],G ≡
∂[. . .]

∂MG
,

ε̂ =
ε
|ε |

=
(r − r ′)
|r − r ′|

,

r = (x, y) , z = { x, y} ,

ṀG(t) = τ −1[MG(t + τ ) − MG(t)] ,

∇ MG(x, y) = ρ−1[MG(x + ρ, y) − MG(x, y)] ̂x

+ρ−1[MG(x, y + ρ) − MG(x, y)] ̂y .

An integration by parts is performed in the MG′
:zz′ NN terms to give a form (∇ MG)(∇ MG′). The

numerical factor f *
n depends on the spatial dimension n, and arises from considering Σ j Σk≠ j in F j to

establish how much overlap all NN domains at r ′ ≤ r + ρ make with domain r : If N* were to equal N,
e.g., as in the mathematically similar frustrated magnetic system [18], f1 = 1/4 = 0. 25,
f2 = (3/4)3/2π−1 = 0. 207, f3 = 17/64 = 0. 266. (Of course, the amount of overlap per nearest-neighbor
fn/nNN decreases as n increases from 1 to 2 to 3, where nNN is the number of NN.)

For neocortex, f *
2 ≈(2/3π)(N/N*)1/2 = 0. 212(N/N*)1/2∼ 0. 00671 should appear in dFG. f *

2 appears

instead of f2 because in this problem the double sum to be considered is ΣN
j=1 ΣN*

k=1, where ΣN
j =

1

2
π ρ2

and N* ≈ 103 N. For isotropically interacting domains with spatially uncorrelated species E and I ,
contributions to L̃ from the linear term in ε̂ z av erage to zero, and

zz′
Σ ∫ dnr M G′

:z MG′′
:z′ ε̂ zε̂ z′ =

1

n z
Σ ∫ dnr δ G′

G′′ M
G′
:z MG′′

:z . (A4)

The number of neuronal parameters may be significantly reduced, without drastically altering the
conclusions of these studies, by further averaging of GG′ and setting AG

G′ , BG
G′ , vG

G′ = vG, φG
G′ = φG, all to

be considered as static with respect to time scales used for STM calculations. As discussed
previously [7], these parameters do change when LTM is considered. Then, FG is reduced to

FG = β G(γ G − α GM−)/(1 + α GM+)1/2 , (A5)

α G = N*G A*G/(2N* NGa*G) << 1 ,

a*G =
1

2
A*G + B*G ,

β G = 

N*a*G[1 + (φG/vG)2π]−1



1/2
< N*1/2 ,

γ G = VG/(a*GvGN*) − N*−/N* ,

M− = M E − M I , M+ = M E + M I ,

N*− = N*E − N*I , N* ≡ N*+ = N*E + N*I .

For neocortex, it is found that |γ G|∼ 0. 1, α G∼ 0. 005 and β G∼ 5.
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[Note that this calculation corrects previous papers [6,7], which made an estimate of NN in two

dimensions, but which neglected the (N/N*)1/2 factor in f *
2 . Apart from errors in writing

1

2
β G instead of

β G in dFG
1 , and in an extra factor of

1

2
in dFG

2 , these changes are not large enough to invalidate any

conclusions of that study. The net effect is to correct the most important term in Eq. (2.2) of Ref7. with
dFG

1 proportional to β G(∇ 2 M−) by a factor of 12 f *
2 ≈0. 0805. A salutary effect is to lower the

propagation velocity of the dispersion relations derived from the Euler-Lagrange equation to ∼ 1 cm/sec,
taking typical wav e numbers to correspond to macrocolumnar distances of ∼ 30ρ. Calculated frequencies
are on the order of EEG frequencies ∼ 102 sec−1. These mesoscopic propagation velocities permit
processing of mesoscopic interactions of several minicolumns within ∼ 10−1 cm, simultaneous with
processing of macroscopic interactions over tens of centimeters via association fibers with macroscopic
propagation velocities ∼ 600—900 cm/sec. I.e., both can occur within ∼ 10−1 sec.]

3. Macroscopic regions

As calculated above to resolution τ , firings of MG(t + θ ) for 0 ≤ θ ≤ τ arise due to interactions
within memory τ as far back as MG(t + θ − τ ). I.e., firings of afferents MG(t + τ ) at time t + τ have been
calculated from interactions MG(t) at the τ -averaged efferent firing time t. With equal likelihood
throughout time τ , any of the N* uncorrelated efferent neurons can contribute to change the
mesocolumnar mean firings and fluctuations of their N uncorrelated afferents. Therefore, for θ ≤ τ , at
least to resolution θ ≥ τ /N and to order θ /τ , it is reasonable to assume that efferents effect a change in
afferent mean firings of θ ṀG = MG(t + θ ) − MG(t)≈θ gG with variance θ gGG. Indeed, columnar firings
(e.g., as measured by averaged evoked potentials) are observed to be faithful continuous probabilistic
measures of individual neuronal firings (e.g., as measured by poststimulus histograms) [25]. Defining
Pθ = P[MG(r ; t + θ )|MG(r ′; t)] as a Gaussian distribution similar to Pτ = P[MG(r ; t + τ )|MG(r ′; t)] in
Eq. (A3a), Pθ satisfies the Markovian Chapman-Kolmogorov equation Pθ+θ ′ = ∫ Pθ Pθ ′ , consistent with

considering Pτ to be Markovian and as evolving from Pθ . It is thereby conjectured that requiring MG to
be continuous at this resolution, albeit not necessarily differentiable, and prepoint discretized Pτ to be
Markovian, suffice to reasonably define Pθ at the mesoscopic scale for θ ≤ τ . E.g., the same result should
be approximately obtained if mesoscopic distributions Pθ of variables MG were extracted after
considering microscopic σ j contributions to pσ j

to have a temporal distribution within τ , e.g., Poisson,
still respecting postsynaptic delays ∼ τ n ≤ τ . This argument permits construction of a path integral at a
finer resolution θ << τ , although a resolution of θ ≈ τ would suffice for this study.

The main problem addressed by this theory is to reasonably extract the mesoscopic variables from
the microscopic ones, in a form sufficiently tractable for further macroscopic development. The
macroscopic probability P̃[M̃(t)|M̃(t0)] is developed by folding Λ∼ 5 × 105 mesocolumns of spatial extent
Ω ≈ 5 × 109 µm2, labeled by ν (ν = Λ + 1 ≡ 1), and folding the differential propagator Pθ for u + 1 time
periods, spanning time t − t0 = sθ , each period of duration θ ≤ τ labeled by s. With boundary conditions
M̃u+1 = M̃(t) and M̃0 = M̃(t0), and defining M̃ = { MGν } ,

P̃[M̃ |M̃0] = ∫ . . . ∫ DM̃ exp(−NS̃)δ 

M̃ = M̃(t)


δ 


M̃0 = M̃(t0)


, (A6)

S̃ =
t

t0

∫ dt′ L̃ ≡ θ
u+1

s=1
Σ L̃ ,

L̃ = ΛΩ−1 ∫ d2rL ≡ 1
Λ

ν =1
Σ L ,

L = LE + LI =
1

2N



1

θ
(MGν

s+1 − MGν
s ) − gGν

s


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×gν
GG′s




1

θ
(MG′ν

s+1 − MG′ν
s ) − gG′ν

s



+
1

2Nτ
MGν

s Jν
Gs

−ρ2

G
ΣV ′′GG′(M

G′ν +1
s − MG′ν

s )2 ,

DM̃ =
Λ

ν =1
Π

E,I

G
Π

u+1

s=1
Π [(2πθ)−1/2(gν

s)1/4]
u

s′=1
Π dMGν

s′ ,

gν
s = ||gν

GG′s|| = det(gν
GG′s) = gν

EEsg
ν
IIs ,

gν
GG′s = (gGG′ν

s )−1 ,

where the Einstein convention of summing over factors with repeated G indices is henceforth assumed,
except when vertical bars appear on an index, e.g., |G|.

The prepoint discretization of L(M), θ ṀG(t ′) → MG
s+1 − MG

s and MG(t ′) → MG
s , is derived from

the biophysics of neocortex. This is not equivalent to the Stratonovich midpoint discretization of a proper

Feynman Lagrangian LF , θ ṀG(t ′) → MG
s+1 − MG

s and MG(t ′) →
1

2
(MG

s+1 + MG
s ) [9]. The discretization

and the Lagrangian (and g) must be defined consistently to give an inv ariant scalar g1/2P[M]. The
covariant Feynman Lagrangian is defined in terms of a stationary principle, and the transformation to the
Stratonovich discretization permits the use of the standard calculus.

S̃F = min ΛΩ−1 ∫ dt′ ∫ d2r L F , (A7a)

LF =
1

2
N−1(ṀG − hG)gGG′(Ṁ

G′ − hG′) − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

V = V ′ − (
1

2
hG

;G + R/6)/N ,

V ′ = V ′E + V ′ I − MGJG/(2Nτ ) ,

hG
;G = g−1/2(g1/2hG),G ,

where ‘‘min’’ specifies that the short-time propagator is evaluated by expanding about that path which
makes the action S̃F stationary. The Riemannian curvature R arises from the nonlinear inverse variance
gGG′ , which is a bona fidemetric of this parameter space,

R = g−1(gEE,II + gII ,EE) (A7b)

−
1

2
g−2[gII (gEE,EgII ,E + gEE,I

2)

+gEE(gII ,I gEE,I + gII ,E
2)] .

It also should be noted that the Feynman Lagrangian does not define the most-probable short-time
propagator, in the sense of a WKB expansion, when R ≠ 0 [9]. (When comparing the short-time
propagators PF and PWKB, an R/12 first-order WKB correction appears in LWKB instead of R/6 in LF ,
and the prefactor of the exponential in PWKB includes the van Vleck determinant, ∝ g1/2, multiplied by
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g1/4∝ 1 + R/12, which essentially accounts for the difference between LF and LWKB.) However, for the
system of interest here, the scalar Feynman Lagrangian is more useful because of its variational principle.

4. Other representations

To first order in (∇ MG)2, the differential evolution of P̃ corresponding to Eq. (A6) or Eq. (A7) is
given by the Schr̈odinger-type equation

∂P̃

∂t
= Ω−1 ∫ d2r [

1

2
δ̂Gδ̂G′(g′GG′ P̃) − δ̂G(g′GP̃)]

≈Ω−1 ∫ d2r [
1

2
(gGG′ P̃),GG′ − (gGP̃),G + NV′ P̃] ,  (A8a)

τ g′G = τ gG − dF|G| N |G| tanh F |G| ,

τ g′GG′ = τ gGG′ + δ G′
G dFGNGsech2FG ,

δ̂G[. . .] =
δ 

 ∫ d2r ′[. . .](MG′ , ∇′ MG′ , ∇′ 2 MG′)


δ MG(r )

= [. . .],G − ∇ z[. . .],∇ zG + ∇ z
2[. . .],∇ z

2G

≡ [. . .],G − [. . .],G:z:z + [. . .],G:zz:zz ,

[. . .],G:z:z = [. . .],G:zG′ M
G′

:z

+[. . .],G:zG′:z MG′
:zz ,

where the Einstein convention is extended to z indices. The Fokker-Planck functional differential
equation, i.e., with respect to δ̂G and possessing no potential term, corresponds to the derivation of NN
interactions in L [6]. However, the simpler partial differential equation arises from expansion of the
∇ MG perturbations, yielding a Schr̈odinger-type equation with a V ′ potential of NN interactions.

A Hamiltonian operator Ĥ and commutation relations are derived by defining an evolution operator
U(t, t0) [9]. In a firing state basis |MG >,

P̃[M̃ |M̃0] =< M̃ |Ũ(t, t0)|M̃0 > ,  (A8b)

i
∂Ũ(t, t0)

∂t
= ˆ̃HŨ(t, t0) ≡ Ω−1 ∫ d2r Ĥ

ν
Π U(t, t0) ,

Ĥ( p̂, M̂) = −
i

2
p̂G p̂G′ g

GG′(M̂) + p̂GgG(M̂)

+iN V′(M̂) ,

M̂
G

|MG >= MG|MG > ,

p̂G|MG >= −i∂/∂MG|MG > ,

[M̂
G

, p̂G′] = iδ G
G′ ,

[M̂
G

, M̂
G′

] = [ p̂G , p̂G′] = 0 ,
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p̂G(t) = U−1(t) p̂GU(t) ,

M̂
G

(t) = U−1(t)M̂
G

U(t) ,

U(t) ≡ U(t, 0) = [U \(dg(t)]−1 ,

˙̂pG = i[Ĥ( p̂, M̂) ,  p̂G] ,

˙̂M
G

= i[Ĥ( p̂, M̂) , M̂
G

] .

From this representation, with the use of U(t + θ , t)≈1 − iθ Ĥ + O(θ 2), < M ′|M >= δ (M ′ − M), and
< M |p >= (2π)−1 exp(ipGMG), (M , p)-phase-space path-integral representations can be derived in terms
of Hamiltonian functions H(p, M) corresponding to the previous Lagrangian functions L(Ṁ , M) in the
M-coordinate basis [9].

The Langevin rate equations, with MGJG simulated by boundary conditions, in the Stratonovich
representation, are

ṀG = g′G −
1

2
δ jk ĝG′

j ĝG
k,G′ + ĝG

j η j , (A9)

ĝG
j ĝG′

k δ jk = g′GG′ /τ ,

< η i (t) >= 0 ,

< η i (t)η j (t ′) >= δij δ (t − t ′) ,

where η j represents Gaussian white noise arising from the microscopic neuronal system labeled by j , and
the Einstein convention is extended to jk indices. Because of these derivations, it is reasonable to take
ĝG

j ≈δ G
G′[g′GG′ /(NGτ )]1/2, j = 1, . . . , N, and j ∈ G; ĝG

j = 0, j ∈ G′ ≠ G.

The ‘‘information’’ contained in this description is well defined as

ϒ̂[P̃] = ∫ . . . ∫ DM̃ P̃ ln(P̃/P) ,  (A10)

where P is a reference stationary state. Although many microscopic synaptic degrees of freedom have
been averaged over, many degrees of freedom are still present, as measured by dMGν

s [7].

Another common set of equations derived from the other above differential equations consists of
the Euler-Lagrange variational equations associated with LF . The minimum (extrema) condition leads to
a set of 12 coupled first-order differential equations, with coefficients nonlinear in MG, in the 12 variables
{ MG, ṀG, M̈G, ∇ MG, ∇ 2 MG} in (r ; t) space. In the neighborhood of extrema << MG >>, LF can be
expanded as a Ginzburg-Landau polynomial. To inv estigate first-order linear oscillatory states, only
powers up to 2 in each variable are kept, and from this the variational principle leads to a relatively simple
set of coupled linear differential equations with constant coefficients:

0 = δ̂ LF = LF ,Ġ:t − δ̂GLF

≈ − f |G| M̈
|G| + f 1

GṀG¬

− g|G|∇
2 M |G| + b|G| M

|G| + b MG¬
, (A11)

G¬ ≠ G ,

[. . .],Ġ:t = [. . .],ĠG′ Ṁ
G′ + [. . .],ĠĠ′ M̈

G′ ,

MG = MG− << MG >> ,

f 1
E = − f 1

I ≡ f .
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These equations are then Fourier transformed and the resulting dispersion relation is examined to
determine for which values of the synaptic parameters Z and of ξ , the conjugate variable to r , can
oscillatory states, ω(ξ ), persist [6,7].

5. Chaotic behavior and spin-glass analogy

Several investigators have drawn analogies between neocortical interactions and
spin-glasses [26,27]. However, these comparisons have been made considering only simple functional
forms for ‘‘average’’ neurons, neglecting the proper development mentioned in the Introduction, that
requires consistent realistic treatment of (a) synaptic interactions, (b) columnar statistics, and (c)
dynamics of their evolution. Essentially, quadratic Hamiltonians have been assumed without theoretical
justification or empirical specificity. A quadratic form would require (unspecified) additional assumptions
beyond the centering mechanism in the text and linearization about MG = 0.

Since it is highly speculative that spin-glass transitions could occur from short-ranged
interactions [28], such analogies for neocortex, if they exist, should be confined to the long-ranged
interactions, or to possible long-ranged dipole-dipole interactions derived from short-ranged interactions.
Columnar interactions often may be considered as dipole-dipole interactions arising from the highly
populous vertically oriented pyramidal neurons. E.g., EEG and MEG are often modeled as arising from a
dipole layer of cortical tissue [10], the top laminae considered to be prominent sites of excitatory
pyramidal efferents interacting with afferent dendrites, and the lower laminae considered to be prominent
sites of axonal discharge of pyramidal afferents. However, it is not very plausible that columnar
interactions should be considered as having random interactions at mesoscopic resolutions, a condition
assumed for spin-glass modeling, even granted that columnar distribution is somewhat askew. In
neocortex the long-ranged neuronal interactions appear independent of and highly organized relative to
the short-ranged neuronal interactions, so it is unlikely that they could be a source of random interactions
to these firing dipoles. Furthermore, for neocortex, it is not necessary to assume a random connectivity of
A*

jk in Eq. (A1) for the short-ranged synaptic interactions. Although it might be possible to learn about
neocortex from spin-glass Hamiltonians, oppositely, reasonable (currently accepted) Hamiltonians or
Lagrangians for frustrated ferromagnetic-antiferromagnetic interactions might be developed into
nonlinear nonequilibrium statistical magnetic domain-interactions, using the mathematical formalism
being applied to neocortex [18].

Other investigators have also made analogies between spin-glass and neocortical systems [27],
drawing conclusions regarding chaotic behavior from the simple functional mean-field form

mG = tanh[a + b(mE − mI )] , (A12)

where mG = MG/N here. In addition to the difficulties mentioned in making these analogies, Eq. (A12)
corresponds to considering all members of a simple Ising-type system approximating neurons or spins
interacting with each other, a mean-field limit. Note that for neocortical domains, a and b scale as N1/2,
and since the mean-field limit requires 105—1010 neurons or even more spins for magnetic domains, the
tanh function essentially would be a sharp step function in (mE − mI ).

Although there is some evidence for chaotic behavior in neocortex [7], these other studies do not
reinforce this possibility regarding Eq. (A12) because this assumed functional form is not derived from
any underlying theory, and a and b are not further specified. Furthermore, this functional form does not
appear to be the appropriate limit of this theory given here. However, it can be shown that Eq. (A12)
could describe chaotic behavior under some specific assumptions. This demonstration is useful as it gives
more insight into possible mechanisms that may occur in neocortex or spin-glass. It first would have to be
proven that to study chaotic behavior, measurements most typically should be made at discrete times on
the order of θ ≤ τ , and that for some additional reason the system would be required to follow the path of
most probable transition states, for a series of transitions, from a fixed prepoint to the most probable
postpoint of each transition.

The transition path is developed from the short-time path-integral as [29]

ṀG = gG −
1

2
g1/2(g−1/2gGG′),G′ . (A13)
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Clearly, this equation is not another representation of deterministic Langevin rate equations, e.g., as
derived from Eq. (A9). (Note the order of exponents of the factors of g.) Equation (A13) holds more
generally than for just the midpoint discretization if it is rewritten in terms of [29]

M̂
G = MG

i + r∆G , 0 ≤ r ≤ 1 ,

∆G = MG
f − MG

i ,

MG
i = MG(t) ,

MG
f = MG(t + θ ) ,

[. . .],G = ∂[. . .]/∂MG
f = r∂[. . .]/∂M̂

G
. (A14)

Since it is usually desirable for computations to have maps that are easily iterated to study chaotic
behavior [30,31], it is most convenient to use the prepoint discretization, r = 0, whereby the right-hand
side of Eq. (A14) is evaluated at MG(t), and the left-hand side is discretized as
ṀG = θ−1[MG(t + θ ) − MG(t)]. I.e., ṀG → gG, or

MG(t + θ ) = −N |G| tanh F |G|(t) .  (A15)

Thus, using Eq. (A14), then, but only then, Eq. (A13) reduces to Eq. (A15). Then the results
previously obtained for chaotic behavior for the ansatz of Eq. (A12) are seen to hold quite generally, but
for domains of mesocolumnar extent. This is an important clarification, since domains are larger systems
than individual spins or neurons, and therefore are more amenable to experimental study.
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TABLE CAPTIONS

TABLE I. Tabulated, for values of MG spanning the diagonal from MG = −NG to MG = NG, are
the corresponding values of the Lagrangian τ LBC′ and the determinant of its Hessian ||τ LBC′,GG′ ||.

FIGURE CAPTIONS

FIG. 1. (a) Contours for values less than 1 are drawn for τ LIC. The M E axis increases to the right,
from −NE = −80 to NE = 80. The M I axis increases upwards, from −NI = −30 to NI = 30. The
resolution is defined by considering five values of the contours at equally spaced values between 0 and the
cutoff, which is 1 here, drawn by linearly interpolating between MG calculated at 20 values each for G =
E and I . In each cluster, the smaller values are closer to the center. (b) Contours for values less than 0.1
are drawn for τ LIC. (c) Contours for values less than 0.04 are drawn for τ LIC. (d) Contours for values
less than 0.1 are drawn for τ LIC′ .

FIG. 2. (a) Contours for values less than 0.04 are drawn for τ LEC. (b) Contours for values less
than 0.04 are drawn for τ LEC′ . A right brace ‘‘} ’’ signifies enclosure of other nested closed contours
above and to the left of this brace.

FIG. 3. (a) Contours for values less than 0.04 are drawn for τ LBC. (b) Contours for values less
than 0.04 are drawn for τ LBC′ .

FIG. 4. (a) Contours for values less than 0.02 are drawn for τ LFBC′ . (b) Contours for values less
than 0.04 are drawn for τ LBC′ , but where MG terms in the denominators of FG have been left out.

FIG. 5. Contours for values less than 0.04 are drawn for values of parameters in τ LBC′ , but where
N = 220. Note that the MG axes are accordingly stretched by a factor of 2 relative to the previous figures.

FIG. 6. (a) Contours for values less than 1.0 are drawn for the coefficients of (ρ∇ M E)2 in τ LBC′ .
(b) Contours for values less than 1.0 are drawn for the coefficients of (ρ∇ M I )2 in τ LBC′ .
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(M E, M I ) τ LBC′ ||τ LBC′,GG′ ||
(-80,-30) 7.23×10−5 0.138
(-64,-24) 2.87 -5.95×10−4

(-48,-18) 1.18 -5.22×10−5

(-32,-12) 0.386 -4.53×10−6

(-16,-6) 0.0760 -1.30×10−7

(0,0) 0.0 1.07×10−7

(16,6) 0.0520 -2.28×10−7

(32,12) 0.162 -1.30×10−6

(48,18) 0.233 -3.54×10−6

(64,24) 0.146 -5.08×10−6

(80,30) 7.71×10−3 2.93×10−5

Table I. Lester Ingber


