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14. Statistical mechanics of multiple scales of neocortical interactions

1. INTRODUCTION

1.1. General philosophy

In many complex systems, as spatial-temporal scales of observation are increased, new phenomena

arise by virtue of synergistic interactions among smaller-scale entities—perhaps more properly labeled

“quasientities”—which serve to explain much observed data in a parsimonious, usually mathematically

aesthetic, fashion (Haken, 1983; Nicolis and Prigogine, 1973). For example, in classical thermodynamics

of equilibrium systems, it is possible to leap from microscopic molecular scales to macroscopic scales, to

use the macroscopic concept of temperature to describe the average kinetic energy of microscopic molec-

ular activity, or to use the macroscopic concept of pressure to describe the average rate of change of

momentum per unit area of microscopic molecules bombarding the wall of a cavity.

However, many complex systems are in nonequilibrium, being driven by nonlinear and stochastic

interactions of many external and internal degrees of freedom. For these systems, classical thermodynam-

ics typically does not apply (Ma, 1985). For example, the description of weather and ocean patterns,

which attempt to include important features such as turbulence, rely on semiphenomenological meso-

scopic models, those in agreement with molecular theories but not capable of being rigorously derived

from them. Phase transitions in magnetic systems, and many systems similarly modeled (Ma, 1976; K.G.

Wilson, 1979; K.G. Wilson and Kogurt, 1974), require careful treatment of a continuum of scales near

critical points. In general, rather than having a general theory of nonequilibrium nonlinear process, there

are several overlapping approaches, typically geared to classes of systems, usually expanding on nonlinear

treatments of stochastic systems (Gardiner, 1983; Haken, 1983; Kuboet al, 1973; Nicolis and Prigogine,

1973; van Kampen, 1981). Many biological systems give rise to phenomena at overlapping spatial-tem-

poral scales. For example, the coiling of DNA is reasonably approached by blending microscopic molec-

ular-dynamics calculations with mesoscopic diffusion equations to study angular winding (Cartling,

1989). These approaches have been directed to study electroencephalography (EEG) (Basar, 1980), as

well as other biological systems (Goel and Richter-Dyn, 1974).
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Therefore, it should not be surprising that the complex human brain supports many phenomena

arising at different spatial-temporal scales. What is perhaps surprising is that it seems possible to study

truly macroscopic neocortical phenomena such as EEG by appealing to a chain of arguments dealing with

overlapping microscopic and mesoscopic scales. A series of papers has developed this statistical mechan-

ics of neocortical interactions (SMNI) (Ingber, 1981c; Ingber, 1982; Ingber, 1983b; Ingber, 1984b; Ingber,

1985c; Ingber, 1985d; Ingber, 1985e; Ingber, 1986b; Ingber, 1988a; Ingber, 1988b; Ingber, 1988c; Ingber,

1991b; Ingber, 1992; Ingber, 1996; Ingber and Nunez, 1990). This approach permits us to find models of

EEG whose variables and parameters are reasonably identified with ensembles of synaptic and neuronal

interactions. This approach has only recently been made possible by developments in mathematical

physics since the late 1970s, in the field of nonlinear nonequilibrium statistical mechanics. The origins of

this theory are in quantum and gravitational field theory.

As discussed in Chapter 10, many physical systems have varying degrees of theoretical support

leading to Fokker-Planck partial differential equation descriptions. Here, new problems arise in nonlinear

nonequilibrium systems, often requiring modeling with the introduction of a nonconstant coefficient of

the second-derivative “diffusion” term. The spatial second-derivative term usually represents the kinetic

energy, when the first derivative represents the momentum in the differential-equation description of a

system. It was early noticed that a similar treatment of the gravitational equation (DeWitt, 1957) required

a modification of the potential term of the corresponding Lagrangian. We now better understand the

mathematical and physical similarities between classical stochastic processes described by Fokker-Planck

equations and quantum processes described by the Schro¨dinger equation (Langoucheet al, 1982). The

Lagrangian, essentially equal to the kinetic energy minus the potential energy, to first order in an expan-

sion about the most likely state of a quantum or stochastic system, gives a global formulation and general-

ization of the well-known relation, force equals mass times acceleration (Feynmanet al, 1963). In the

neocortex, the velocity corresponds to the rate of firing of a column of neurons, and a potential is derived

which includes nearest-neighbor interactions between columns. The Lagrangian formulation also

accounts for the influence of fluctuations about such most likely paths of the evolution of a system, by use

of a variational principle associated with its development. The Lagrangian is therefore often more useful

than the Hamiltonian, essentially equal to the kinetic energy plus the potential energy, related to the

energy in many systems. As will be demonstrated, this is especially useful to obtain information about

the system without solving the time-dependent Fokker-Planck equation; however, we also will describe
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neocortical phenomena requiring the full solution.

In its differential form, the momentum is proportional to the derivative operator. For classical sys-

tems, the coefficient of the square of the momentum is twice the diffusion, e.g., the second moment of a

probability distribution describing some systems. The introduction of a nonconstant coefficient of even

the first-derivative term requires careful treatment. Such a problem arises for a charged particle in an

electromagnetic field (Schulman, 1981), which originally was treated by physical arguments to enforce

“minimal coupling,” whereby the momentump is simply replaced byp − Ae/c, whereA is the electro-

magnetic potential,e is the electric charge, andc is the speed of light. Minimal coupling excludes other

A2 terms from appearing in the equation of evolution, e.g., Schro¨dinger’s equation. Such problems are

related to the operator-ordering of the derivative operators with respect to their nonconstant coefficients.

For classical systems, the analogous expression toAe/c is the drift, e.g., the first moment of a probability

distribution describing some systems. In the neocortex, we derive nonlinear expressions for both the drift

and diffusion. The detailed mathematical relationships to the physical content of these issues was only

clarified in the late 1970s and early 1980s, and is relevant to the mathematics of the neocortex. The first

real breakthrough was achieved by noting how these issues should be treated in the context of classical

nonlinear nonequilibrium statistical mechanics (Graham, 1977a; Graham, 1977b).

While application has been made of these new mathematical physics techniques in quantum and

classical statistical mechanics (Ingber, 1983a; Ingber, 1984a; Ingber, 1986a), we are not merely bringing

over techniques to neuroscience from other disciplines out of curiousity. Indeed, the contention appears

to be well supported that a mathematical investigation of the neocortex reasonably demands these mathe-

matical techniques, to such an extent that it can be argued that, if the neocortex had been studied and suf-

ficient data collected prior to mathematical developments in quantum or gravitational theory, then these

mathematical techniques might have been developed in neuroscience first. The brain is sufficiently com-

plex that it requires the same tools used for similar very complex physical systems. In many ways, we

may consider the brain as the prototypical information processing system, and the mathematical tech-

niques used here may be rigorously viewed as filters to describe the processing of this information.

This statistical-mechanics approach, at many junctions in its development, may be intuitively com-

pared to the approach used in simple magnetic systems, a comparison made early in neuronal modeling

(Cragg and Temperley, 1954). While caution must be exercised to respect the integrity of the neocortical
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system, such comparisons can be useful pedagogically. The mathematical approach presented here also

has been useful to describe phenomena in social systems, ranging from military command, control and

communications (Ingber, 1991a; Ingber, 1993c; Ingber, Fujio, and Wehner, 1991; Ingber and Sworder,

1991), to political systems (Weidlich and Haag, 1983), to pricing bonds on financial markets (Ingber,

1984c; Ingber, 1990; Ingber, Wehneret al, 1991). In this context, it has been noted that the activity of

neurons may resemble the activity of a throng of people, in which interactions take place at multiple hier-

archical levels (Bullock, 1980). The numerical algorithms used in SMNI were developed in part in the

process of investigating these other systems.

1.2. Top-down versus bottom-up

There are at least two ways to present this admittedly complex technical approach. First, summa-

rizing material presented in Chapters 2 and 10, we will take the top-down approach, essentially examining

some macroscopic issues in EEG measurement. This will motivate us to then look to a bottom-up

approach, starting with microscopic synaptic activity and neuronal interactions, then scaling up through

mesocolumnar activity of columns of neurons, to finally achieve a reasonable macroscopic description of

EEG activity. The confluence of these approaches is expected to yield a tractable approach to EEG analy-

ses (Ingber, 1985c; Ingber, 1991b; Ingber and Nunez, 1990; Nunez, 1989).

This chapter’s org anization closely follows a more technical paper (Ingber, 1991b), where more

details and references can be found. Here, we attempt to convey the foundation, general description, and

verification of SMNI. The typical method of presentation in each section below is to first give an “execu-

tive summary” of the main concepts being developed, then to fortify this with some sampling of more

mathematical arguments; for more detail, the reader is invited to explore the references.

2. TOP-DOWN DIPOLE STRING MODEL

2.1. Modeling of observables

As discussed previously in Chapter 2, the string displacementΦ (potential within the cortex) is

given by the wav e equation
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∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ [ω2
0 + f (Φ)]Φ = 0 ,  (14.1)

in terms of the string displacementΦ, represented by its Fourier decomposition,

Φ(x, t) =
∞

n=1
Σ Gn(t) sinkn x , (14.2)

where we have assumed zero boundary conditions at the ends of the string for simplicity of presentation,

but our observed̂Φ (referenced asΦ† in the SMNI papers) is given by

Φ̂(x, t) =
M

n=1
Σ Gn(t) sinkn x . (14.3)

With respect to the cortical medium, we address the question: What can we say aboutΦ̂(x, t), the

macroscopic observable displacement potential on the scalp or cortical surface? On the basis of previous

studies of EEG dispersion relations (Ingber, 1985c; Nunez, 1981a), it would seem that we should be able

to describeΦ̂ as a linear or quasilinear variable, but influenced by the local nonlinear behavior that

crosses the hierarchical level from mesoscopic to macroscopic (columnar dipoles). How do we mathe-

matically articulate this intuition, for the purposes of consistent description as well as lay the foundation

for future detailed numerical calculations? We suggest answers to these questions in the “bottom-up”

approach part of this paper.

We examine these issues by taking reasonable synaptic parameters, developing the statistical

mechanics of neocortical interactions, and then determining whether they are consistent with observed

EEG data. In fact, here we report fits of multichannel human scalp EEG data to these algebraic forms. A

current project is investigating the response of the cortical system to given initial driving forces that match

or mismatch firing patterns of columnar firings possessed by a given set of synaptic parameters, and under

conditions of plastically changing synaptic parameters reflecting changes of these patterns. This should

help in clinical diagnoses using the EEG tool.

2.2. Outline of derivation of the nonlinear string model

We use a mechanical-analog model, the string model, derived explicitly for neocortical interactions

using SMNI (Ingber and Nunez, 1990). This defines a probability distribution of firing activity, which can
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be used to further investigate the existence of other nonlinear phenomena, e.g., bifurcations or chaotic

behavior, in brain states (Rappet al, 1989).

Previous studies have detailed that the predominant physics of short-term memory and of short-

fiber contribution to EEG phenomena takes place in a narrow “parabolic trough” inMG space, roughly

along a diagonal line (Ingber, 1984b). Here,G representsE or I , M E represents contributions to colum-

nar firing from excitatory neurons, andM I represents contributions to columnar firing from inhibitory

neurons. The object of interest within a short refractory time,τ , approximately 5 to 10 msec, is the

LagrangianL for a mesocolumn, detailed further below.τ L can vary by as much as a factor of 105 from

the highest peak to the lowest valley inMG space. Therefore, it is reasonable to assume that a single

independent firing variable might offer a crude description of this physics. Furthermore, the scalp poten-

tial Φ can be considered to be a function of this firing variable. (Here, “potential” refers to the electric

potential, not the potential term in the Lagrangian derived below.) In an abbreviated notation subscripting

the time-dependence,

Φt− << Φ >>= Φ(M E
t , M I

t ) ≈ a(M E
t − << M E >>) + b(M I

t − << M I >>) ,  (14.4)

wherea and b are constants, and <<Φ >> and <<MG >> represent typical minima in the trough. In the

context of fitting data to the dynamic variables, there are three effective constants,{ a, b,φ } ,

Φt − φ = aM E
t + bM I

t . (14.5)

We scale and aggregate the mesoscopic probability distributions,P, over this columnar firing space

to obtain the macroscopic conditional probability distribution over the scalp-potential space:

PΦ[Φ] = ∫ dM E dM I P[M E , M I ]δ [Φ − Φ′(M E , M I )] , (14.6)

in an abbreviated notation expanded on below. The parabolic trough described above justifies a form

PΦ = (2πσ2)−1/2 exp(−∆t ∫ dx LΦ) ,

LΦ =
α
2

|∂Φ/∂t|2 +
β
2

|∂Φ/∂x|2 +
γ
2

|Φ|2 + F(Φ) ,
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σ 2 = 2∆t/α , (14.7)

whereF(Φ) contains nonlinearities away from the trough,σ 2 is on the order of 1/N given the derivation

of L above, and the integral overx is taken over the spatial region of interest. In general, there also will

be terms linear in∂Φ/∂t and in∂Φ/∂x.

Previous calculations of EEG phenomena, described below (Ingber, 1985c), show that the short-

fiber contribution to the alpha frequency and the movement of attention across the visual field are consis-

tent with the assumption that the EEG physics is derived from an average over the fluctuations of the sys-

tem, e.g., represented byσ in the above equation. I.e., this is described by the Euler-Lagrange equations

derived from the variational principle possessed byLΦ (essentially the counterpart to force equals mass

times acceleration), more properly by the “midpoint-discretized” FeynmanLΦ, with its Riemannian

terms, as discussed below (Ingber, 1982; Ingber, 1983b; Ingber, 1988b). Hence, we can use the varia-

tional principle,

0 =
∂
∂t

∂LΦ

∂(∂Φ/∂t)
+

∂
∂x

∂LΦ

∂(∂Φ/∂x)
−

∂LΦ

∂Φ
. (14.8)

The result is

α
∂2Φ
∂t2

+ β
∂2Φ
∂x2

+ γ Φ −
∂F

∂Φ
= 0 .  (14.9)

If there exist regions in neocortical parameter space such that we can identifyβ /α = −c2, γ /α = ω2
0 (e.g.,

as explicitly calculated below),

1

α
∂F

∂Φ
= −Φ f (Φ) ,  (14.10)

and we takex to be one-dimensional, then we recover our nonlinear string, Eq. (14.1) above. Terms lin-

ear in∂Φ/∂t and in∂Φ/∂x in LΦ in Eq. (14.7) can make other contributions, e.g., giving rise to damping

terms as discussed in Chapter 10.

The path-integral formulation of the long-time evolution of the distributionPΦ has a utility beyond

its deterministic Euler-Lagrange limit. We hav e utilized this to explicitly examine the long-time evolution

of systems, to compare models to long-time correlations in simulation data (Ingber, 1993c; Ingber, Fujio,
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and Wehner, 1991), and to approach similar problems in finance (Ingber, 1990; Ingber, Wehneret al,

1991) and in EEG modeling as described here. Similar advantages of this approach are available for EEG

analyses.

2.3. Macroscopic coarse graining and renormalization

We now are in a position to address the issue posed originally of how to mathematically justify the

intuitive coarse-graining ofΦ to getΦ̂. In LΦ above, consider terms of the form

∫ Φ2dx = ∫ dx
∞

n
Σ

∞

m
ΣGnGm sinkn x sinkm x

=
n
Σ

m
ΣGnGm ∫ dx sinkn x sinkm x

= (2π/R)
n
ΣG2

n . (14.11)

By similarly considering all terms inLΦ, we effectively define a short-time probability distribution for the

change in noden, defined by

pn[Gn(t + ∆t)|Gm(t)] , (14.12)

where we note that in general theF(Φ) term in LΦ will require coupling betweenGn(t + ∆t) andGm(t),

n ≠ m, likely including more than onem. Therefore, we can define

PΦ = p1 p2
. . . p∞ . (14.13)

We now physically and mathematically can define a coarse-graining,

PΦ̂ = ∫ dkM+1dkM+2
. . .dk∞ p1 p2

. . . pM pM+1 pM+2
. . . p∞ . (14.14)

I.e., since we have abona fide probability distributionPΦ, we can integrate over those fine-grained vari-

ables, which are not observed. This procedure is one contribution to algorithms used in “renormalization-

group” theory (Ma, 1976), to account for multiple intermediate scales of interactions. While other criteria

for use of that specific theory certainly are not present here, it is useful to recognize that this is a
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reasonable phenomenological approach to integrating over many scales of neocortical interactions.

The integration over the fine-grained wav e numbers tends to smooth out the influence of thekn ’s

for n > M , effectively “renormalizing”

Gn → G†
n ,

Φ → Φ̂ ,

LΦ → L†
Φ̂ . (14.15)

Eventually, laminar circuitry should be included in both the local and global models. Previous

papers have detailed how this can be realized, but more numerical study is needed to determine the degree

to which this can be accomplished. As reported here, the solutions are being tested by their goodness of

fit to existing EEG data using methods of very fast simulated reannealing (VFSR) (Ingber, 1989; Ingber,

1993b; Ingber and Rosen, 1992), the precursor to a more powerful code, adaptive simulated annealing

(ASA) (Ingber, 1993a).

3. BOTTOM-UP SMNI MODEL

3.1. Rationale

We begin our “bottom-up” approach by taking the viewpoint that, since there has been much

progress made in mathematically describing the physics at finer spatial-temporal scales, we should use

these descriptions to derive a dev elopment of the coarser EEG macroscopic scale described above. SMNI

has reasonably detailed a consistent physics which at least parallels, with striking numerical specificity,

short-term memory (STM) and EEG phenomena at the mesocolumnar scale of hundreds of neurons to the

macrocolumnar scale of hundreds of thousands of neurons, in terms of aggregated physics transpiring at

the single-neuronal level. The details of this SMNI development of STM and EEG will be used to sup-

port the “top-down” development described above.
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A major contribution of SMNI is its analytic treatment of minicolumns (Mountcastle, 1978). Mini-

columns are observed to span approximately 7× 102 µm2, as discussed in Chapter 2. Mesocolumnar

domains are defined here as physiological (functional) units, with input converging from an anatomical

(structural) macrocolumn extent of approximately 1000 minicolumns, and output diverging from an

anatomical minicolumn out to a macrocolumnar extent. Calculations support observations of periodically

alternating firings of columnar structures (Fitzpatrick and Imig, 1980; Goldman and Nauta, 1977; Hubel

and Wiesel, 1962; Hubel and Wiesel, 1977; Joneset al, 1978). As pictured in Fig. 14-1, this microscopic

scale is orders of magnitude larger than the molecular scale of membrane biophysics. Also note that

“macrocolumns” spanning roughly 7× 105 µm2 have been defined as another physiological entity

observed in the neocortex (Mountcastle, 1978), but the macroscopic regions considered here are orders of

magnitude larger than these. Mesocolumnar domains are sufficiently close to the scale of microscopic

neurons to allow direct dependence of this theory on neuronal chemical and electrical properties. The

proper stochastic treatment of their interaction permits their development into macroscopic regions

responsible for global neocortical information processing. “Thermodynamic” entities corresponding to

the “free-energy” potential, “temperature,” and order parameters of these macroscopic regions are derived

by a statistical-mechanics paradigm, but without recourse to any quasi-equilibrium limits (Landauet al,

1980).

Figure 14-1.

Relative to other biological entities, the intrinsic synaptic activity of the most highly evolved mam-

malian human neocortex functions via the most degenerate and the shortest-ranged neuronal interactions

(on the order of micrometers). Here, “degenerate” reflects the mesoscopic state of approximate redun-

dancy of connectivity among microscopic neurons, for purposes of describing this coarser scale. This

suggests that many collective aspects of this system may be fruitfully studied similarly to other collective

systems, e.g., including magnetic systems, lasers, and more general information-theoretic systems

(Haken, 1988; van Kampen, 1981). Collective effects, from clustering (Szenta´gothai, 1975; Szenta´gothai

and Arbib, 1974) or from statistical interactions (Katchalskyet al, 1974), are proposed to be mechanisms

of information processing, in addition to the “hard-wiring” mechanisms also possessed by other more

ordered cortical entities (Afifi and Bergman, 1978; Sommerhoff, 1974).
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Reasonable criteria for any physical approach to the neocortex should include the following three

basic features. These also serve to illustrate the appropriate analogies between the neocortex and other

collective physical systems.

i. Interactions. Short-ranged neuronal interactions over time periods of several milliseconds should

be derived from even more microscopic synaptic activities (Shepherd, 1979). [See Fig. 14-1(a).] Long-

ranged spatial interactions from specific neuronal pathways, primarily composed of the relatively low

population of long excitatory fibers from ipsilateral association, contralateral commissural, and thalamo-

cortical processes must be consistently treated. These long-ranged interactions are also important for col-

lective activity in the mammalian cortex (Braitenberg, 1978), and they are included in this study. Longer-

time, weaker and modulatory nonsynaptic influences arising from humoral and electrotonic interactions

(Dismukes, 1979; McGeeret al, 1978; Schmittet al, 1976) are included, only as their averaged properties

affect synaptic parameters.

ii. Statistics. Neurons separated by large distances, across 103 to 108 neurons, can be statistically

coupled via their short-ranged interactions. [See Fig. 14-1(c).] Order parameters, the underlying inde-

pendent variables at the appropriate scale of the theory, must be identified, and intrinsic fluctuations from

the microscopic synaptic and neuronal systems, diffusion effects, must be included. There also are fluctu-

ations of the mesoscopic system due to their aggregated neuronal interactions, derived here as gradient

couplings between neighboring mesoscopic cells. These spatially ordered mesoscopic domains respect

the observed anatomy and physiology of the neocortex (Szenta´gothai, 1975; Szenta´gothai and Arbib,

1974), complementing earlier theories hypothesizing random neural networks (Griffith, 1971; McCulloch

and Pitts, 1943).

iii. Dynamics. A viable formalism must be adopted to describe the statistical time evolution of the

macroscopic nonequilibrium system over scales of 102 to 104 msec.

Although cooperativity between distant neurons is typically quite low (Adey, 1978), except perhaps

in homologous regions of separate hemispheres, macroscopic regions reflect cooperative behavior, pro-

posed here to best be understood as initiated at the mesoscopic level of interaction. The existence of col-

lective spatial-temporal activity, embedded in a spontaneous noisy background, is supported by statistical

analyses of electroencephalographic and magnetoencephalographic recordings (John, 1972; Williamsonet

al, 1979). As long as collective mechanisms arising in a physical system characterized by the above three
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features are considered to be viable sources of collective neocortical phenomena, then these features must

be correctly formulated.

There is a large body of literature dealing with neuronal mechanisms that intuits phenomenological

differential equations from rates of change of average excitatory and inhibitory neuronal firings, and then

proceeds to search for collective behavior, limit cycles, and oscillatory behavior (Babloyantz and Kacz-

marek, 1979; Freeman, 1975; Kaczmarek and Babloyantz, 1977; H.R. Wilson, 1977; H.R. Wilson and

Cowan, 1972; H.R. Wilson and Cowan, 1973). Mechanisms are sought to explain varied phenomena such

as hysteresis in perception (H.R. Wilson, 1977), perception and learning (Hebb, 1949; Takeuchi and

Amari, 1979), and ontogenesis of columnar formation (Takeuchi and Amari, 1979; von der Marlsburg,

1979). Comparisons with applications of these techniques to those used in other physical systems

(Haken, 1983), illustrates that the pioneering application of these appropriate formalisms to the neocorti-

cal system still has much to offer. Much inspiration for these applications has come from work in

nonequilibrium thermodynamics, which has been applied to specific systems, e.g., chemical reactions,

lasers, magnetic systems, fluids, spin glasses, etc., as well as to the general formulation of complex non-

linear systems (Haken, 1983; Katchalskyet al, 1974; Kuboet al, 1973; Nicolis and Prigogine, 1973;

van Kampen, 1976).

This study also distinguishes between neuronal mechanisms the neocortex uses to process informa-

tion and the structures of information the neocortex processes. A Lagrangian is derived that operates on

firings of the system. When integrated over a time period, this yields the nonequilibrium equivalent of a

“thermodynamic potential.” This Lagrangian is derived, not conveniently defined or hypothesized, from

the short-time evolution of the probability distribution of columnar firing states. The exponential of

minus the Lagrangian, essentially this short-time distribution up to an important normalization factor,

operates as a weighting factor on all possible states, filtering or transforming (patterns of) input firings

into output firings. “Information” is a concept well defined in terms of the probability eigenfunctions of

electrical-chemical activity of this Lagrangian. The path-integral formulation presents an accurate intu-

itive picture of an initial probability distribution of patterns of firings being filtered by the (exponential of

the) Lagrangian, resulting in a final probability distribution of patterns of firing.

In the conclusion below is a brief summary of the advantages of the SMNI model in the context of

its practical application to enhancing the extraction of signal out of noise from EEG data.
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3.2. Microscopic neurons

3.2.1. General description

Figure 14-1(a) illustrates the microscopic neuronal interaction scale, on the order of several

micrometers. Neocortical neurons typically have many dendrites that receive quanta of chemical postsy-

naptic stimulation from many other neurons. The distribution of quanta transmitted across synapses takes

place on the scale of 10−2 µm, as illustrated in the inset of Fig. 14-1(a*). Each quantum has thousands of

molecules of chemical neurotransmitters that affect the chemically gated postsynaptic membrane. Chemi-

cal transmissions in the neocortex are believed to be either excitatory (E), such as glutamic acid, or

inhibitory (I ), such asγ aminobutyric acid. There exist many transmitters as well as other chemicals that

modulate their effects, but it is assumed that after millions of synapses between hundreds of neurons are

av eraged over, then it is reasonable to ascribe a distribution functionΨ with a mean and variance forE

andI interneuronal interactions.

Some neuroscientists do not accept the assumption that simple algebraic summation of excitatory

depolarizations and inhibitory hyperpolarizations at the base of the inner axonal membrane determines the

firing depolarization response of a neuron within its absolute and relative refractory periods (Shepherd,

1979), i.e., including the absolute refractory time after a firing during which no new spikes can be gener-

ated, and the relative refractory period during which spikes can be produced only at a decreased sensitiv-

ity (Sommerhoff, 1974). However, many other neuroscientists agree that this assumption is reasonable

when describing the activity of large ensembles of neocortical neurons, each one typically having many

thousands of synaptic interactions.

This same averaging procedure makes it reasonable to ascribe a distribution functionΓ with a mean

and variance forE and I intraneuronal interactions. A GaussianΓ is taken to describe the distribution of

electrical polarizations caused by chemical quanta impinging on the postsynaptic membrane. These

polarizations give a resultant polarization at the base of the neuron, the axon [extension in Fig. 14-1(a) cut

by the double broken line]. The base of the axon of a large fiber may be myelinated. However, smaller

neurons typically lack these distinguishing features. Experimental techniques are not yet sufficiently

advanced to attempt the explicit averaging procedure necessary to establish the means and variances ofΨ

and Γ, and their parameters,in vivo (Vu and Krasne, 1992). Differential attenuations of polarizations
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from synapses to the base of an axon are here only phenomenologically accounted for by including these

geometric and physiological effects intoΓ.

With a sufficient depolarization of approximately 10 to 20 mV at the soma, within an absolute and

relative refractory period of approximately 5 msec, an action potential is pulsed down the axon and its

many collaterals, affecting voltage-gated presynaptic membranes to release quanta of neurotransmitters.

Not detailed here is the biophysics of membranes, of thickness≈ 5 × 10−3 µm, composed of biomolecu-

lar leaflets of phospholipid molecules (Caille´ et al, 1980; Scott, 1975; von der Heydtet al, 1981). At

present,Ψ andΓ are taken to approximate this biophysics for use in macroscopic studies. The formalism

adopted in this study is capable of using new microscopic functional dependences, gleaned from other

experimental or theoretical investigations, and cranking them through to obtain similar macroscopic

descriptions. Chemical independence of excitatory depolarizations and inhibitory hyperpolarizations are

well established in the neocortex, and this independence is retained throughout this study.

It should be noted that experimental studies initially used to inferΨ andΓ (e.g., at neuromuscular

junctions) were made possible by deliberately reducing the number of quanta by lowering external cal-

cium concentrations (Boyd and Martin, 1956; Katz, 1966).Ψ was found to be Poissonian, but in that sys-

tem, where hundreds of quanta are transmittedin vivo, Ψ may well be otherwise; for example, Gaussian

with independent mean and variance. Current research suggests a binomial distribution, having a Poisson

limit (Ingber, 1982; Korn, Mallet, and Faber, 1981; Perkel and Feldman, 1979). Note that some investiga-

tors have shown a Bernoulli distribution to be more accurate in some cases (Ingber, 1982; Korn and Mal-

let, 1984; Perkel and Feldman, 1979), and that the very concept of quantal transmission, albeit that good

fits to experimental data are achieved with this concept, is under review. In the neocortex, probably small

numbers of quanta are transmitted at synapses, but other effects, such as nonuniformity and nonstationar-

ity of presynaptic release sites, and nonlinear summation of postsynaptic potentials, may detract from a

simple phenomenological Poisson description (Shepherd, 1979). This short description serves to point

out possible differences inΨ resulting from many sources. However, the derivation of synaptic interac-

tions given here makes it plausible that for reasonable neuronal parameters, the statistical folding ofΨ

andΓ is essentially independent of the functional form assumed forΨ, just requiring specification of its

numerical mean and variance.
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The result of this analysis is to calculate the transition probability of the firing of neuronj, pσ j
,

given its interaction with its neighbors that also may fire or not fire. The result is given as the tabulated

error function. Within the range where the total influences of excitatory and inhibitory firings match and

exceed the average threshold potential of a given neuron, the probability of that neuron firing receives its

major contribution to increase from 0 towards 1. A step function derived as tanhFG is defined by the

“threshold factor”F j . That is, forFG >> 1, tanhFG → 1, while for FG << 1, tanhFG → − 1, and so the

threshold region of−1 < FG < 1  sensitively controls this important tanhFG contribution to the drifts, the

driving terms, in the Lagrangian. The mesoscopic development discussed below retains this sensitivity.

This is similar to the mathematical result obtained by others (Little, 1974; Little and Shaw, 1978;

Shaw and Vasudevan, 1974) who have modeled the neocortex after magnetic systems (Cragg and Temper-

ley, 1954). However, the following is derived more generally, and has the neural parameters more specifi-

cally denoted with different statistical significances given toΨ andΓ, as described above.

3.2.2. Conditional probability

Consider 102 < N < 103 neurons, labeled byk, interacting with a given neuronj. Each neuron may

contribute many synaptic interactions to many other neurons. A neuron may have as many as 104 − 105

synaptic interactions. Within timeτ n ≈ 5 msec,Ψ is the distribution ofq quanta of chemical transmitter

released from neuronk to neuronj (k ≠ j) with meana jk , where

a jk = A jk(σ k + 1)/2 + B jk . (14.16)

A jk is the conductivity weighting transmission of polarization, dependent onk firing,

σ k =




1,

−1,

k fires,

k does not fire
(14.17)

and B jk is a background including some nonsynaptic and long-range activity. Of course,A and B are

highly complicated functions ofkj. This definition ofσ k permits a decomposition ofa jk into two differ-

ent physical contributions. At this point there is a reasonable analogy to make with magnetic systems,

whereσ k might represent a unit spin. However, the details of the interactions between neurons differ

from those between magnetic spins, and this greatly affects such comparisons.
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Further SMNI development yields the conditional probability,pσ j
, of neuron j firing given previ-

ous firings withinτ of other neuronsk:

pσ j
= π−1

2

∞

(σ j F j√ π/2)
∫ dz exp(−z2)

= 1
2 [1 − erf(σ j F j√ π/2)],

F j =
V j −

k
Σ a jk v jk

((π
k ′
Σ a jk ′(v

2
jk ′ + φ2

jk ′)))
1
2

. (14.18)

“erf” is the tabulated error function, simply related to the normal probability function (Mathews and

Walker, 1970). FG
j is a “threshold factor,” aspσ j

increases from 0 to 1 between∞ >σ j F j > − ∞ sharply

within the range ofF j ≈ 0.

If

|σ j F j | < 1, (14.19)

then an asymptotic expression forpσ j
is

pσ j
≈

exp(−σ j F j)

exp (F j) + exp(−F j)
. (14.20)

3.3. Mesoscopic domains

3.3.1. General description

As is found for most nonequilibrium systems, e.g., for lasers, chemical systems, fluids, and ecologi-

cal systems (Haken, 1983; van Kampen, 1981), a mesoscopic scale is required to formulate the statistical

mechanics of the microscopic system, from which the macroscopic scale can be developed (Haken, 1983).

The neocortex is particularly interesting in this context in that a clear scale for the mesoscopic system

exists, both anatomically (structurally) and physiologically (functionally). “Minicolumns” of about
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N≈110 neurons (about 220 in the visual cortex) comprise modular units vertically oriented relative to the

warped and convoluted neocortical surface throughout most, if not all, regions of the neocortex (Gilbert

and Wiesel, 1983; Goldman and Nauta, 1977; Hubel and Wiesel, 1962; Imig and Reale, 1980; Joneset al,

1978; Mountcastle, 1978). Clusters of about 100 neurons have been deduced to be reasonable from other

considerations as well (Bullock, 1980). Since the short-ranged interactions between neurons take place

within ∼ 1 mm, which is the extent of a “macrocolumn” comprising∼ 103 minicolumns ofN ∗ ≈105 neu-

rons, and since macrocolumns also exhibit rather specific information-processing features, this theory has

retained the divergence-convergence of macrocolumn-minicolumn, efferent-afferent interactions by con-

sidering domains of minicolumns as having similar synaptic interactions within the extent of a macrocol-

umn. This macrocolumnar-averaged minicolumn is designated in this theory as a “mesocolumn.”

This being the observed situation, it is interesting thatN≈102 is just the right order of magnitude to

permit a formal analysis using methods of mathematical physics just developed for statistical systems in

the late 1970s (Graham, 1977a; Langoucheet al, 1982). N is small enough to permit nearest-neighbor

interactions to be formulated, such that interactions between mesocolumns are small enough to be consid-

ered gradient perturbations on otherwise independent mesocolumnar firing states. This is consistent with

rather continuous spatial gradient interactions observed among columns (Dykes, 1983), and with the basic

hypothesis that nonrandom differentiation of properties among broadly tuned individual neurons coexists

with functional columnar averages representing superpositions of patterned information (Erickson, 1982).

This is a definite mathematical convenience; otherwise, a macrocolumn of∼ 103 minicolumns would have

to be described by a system of minicolumns with up to 16th-order next-nearest neighbors. (Consider

1000 minicolumns spread out in a two-dimensional grid about 33 by 33 minicolumns, and focus attention

on the center minicolumn.) Also,N is large enough to permit the derived binomial distribution of afferent

minicolumnar firing states to be well approximated by a Gaussian distribution, a luxury not afforded an

“average” neuron, even in this otherwise similar physical context. Finally, mesocolumnar interactions are

observed to take place via one to several relays of neuronal interactions, so that their time scales are simi-

larly τ ≈ 5 − 10 msec.

Even after statistically shaping the microscopic system, the parameters of the mesoscopic system

are still macrocolumnar-averaged synaptic parameters, i.e., reflecting the statistics of millions of synapses

with regard to their chemical and electrical properties. Explicit laminar circuitry, and more complicated
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synaptic interactions, e.g., dependent on all combinations of presynaptic and postsynaptic firings, can be

included without loss of detailed analysis (Ingber, 1983b).

The mathematical development of mesocolumns establishes a mesoscopic LagrangianL, which

may be considered as a “cost function” with variablesMG , ṀG , and∇ MG , and with parameters defined

by the macrocolumnar-averaged chemical-electrical entities developed below. (See Fig. 14-2.)

The Einstein summation convention is used for compactness, whereby any index appearing more

than once among factors in any term is assumed to be summed over, unless otherwise indicated by verti-

cal bars, e.g., |G|. The mesoscopic probability distributionP is given by the product of microscopic prob-

ability distributionspσ i
, constrained such that the aggregate mesoscopic excitatory firingsM E= Σ j ∈ E σ j ,

and the aggregate mesoscopic inhibitory firingsM I = Σ j ∈ I σ j .

P =
G
Π PG [MG(r; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 j ∈ E

Σ σ j − M E (r; t + τ )




δ


 j ∈ I
Σ σ j − M I (r; t + τ )





N

j
Π pσ j

≈
G
Π (2πτ gGG)−1/2 exp(−Nτ LG) ,  (14.21)

where the final form is derived using the fact thatN > 100. G represents contributions from bothE andI

sources. This defines the Lagrangian, in terms of its first-moment driftsgG , its second-moment diffusion

matrix gGG′ , and its potentialV ′, all of which depend sensitively on threshold factorsFG ,

P≈(2πτ)−1/2g1/2 exp(−Nτ L) ,

L = T − V ,

T = (2N )−1(ṀG − gG)gGG′(ṀG′ − gG′) ,

V = V ′ − MG JG /(2Nτ ) ,
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V ′ =
G
ΣV ′′ G

G′(ρ∇ MG′)2 ,

gG = −τ −1(MG + N G tanhFG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1N Gsech2FG

g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

((π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
,

aG
G′ =

1

2
AG

G′ + BG
G′ , (14.22)

where AG
G′ and BG

G′ are macrocolumnar-averaged interneuronal synaptic efficacies,vG
G′ andφG

G′ are aver-

aged means and variances of contributions to neuronal electric polarizations, and nearest-neighbor inter-

actionsV ′ are detailed in other SMNI papers (Ingber, 1982; Ingber, 1984b).MG′ and N G′ in FG are

afferent macrocolumnar firings, scaled to efferent minicolumnar firings byN /N ∗ ∼ 10−3, whereN ∗ is the

number of neurons in a macrocolumn. Similarly,AG′
G andBG′

G have been scaled byN ∗ /N ∼ 103 to keepFG

invariant. This scaling is for convenience only. This mathematical description defines the mesocolumn

concept introduced previously.

Figure 14-2.

At this stage, severe approximation in modeling is typically required in order to proceed towards

solutions. However, advantage can be taken of experimentally observed columnar structure to first

attempt to analytically scale the neuronal system into mesoscopic domains that are still relatively micro-

scopic compared to the macroscopic regions to be described (Fitzpatrick and Imig, 1980; Goldman and

Nauta, 1977; Hubel and Wiesel, 1977; Joneset al, 1978; Mountcastle, 1978; Takeuchi and Amari, 1979).

For purposes of macroscopic description, the minicolumnar structure effectively spatially averages the
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neuronal interactions within one to several firing periods.

The following development is proposed, which: (1) reasonably includes and averages over millions

of synaptic interactions that exist between groups of hundreds of neurons, (2) analytically establishes the

integrity of columnar domains and specifies their interactions, and (3) prepares the formulation of (1) and

(2) to foresee their analytic inclusion into studies of macroscopic regions.

For purposes of detailing anatomical or physiological properties of neurons, it is simply incorrect to

postulate an “average” neuron. However, for the purpose of macroscopic brain function, when consider-

ing millions of neurons, we repeat that it is reasonable to at least respect the incredibly similar modular

structure present in all regions of the neocortex (Gilbert and Wiesel, 1983; Goldman and Nauta, 1977;

Hubel and Wiesel, 1962; Imig and Reale, 1980; Joneset al, 1978; Mountcastle, 1978), still allowing for

the differentiation among the laminar structure of individual modules and among neurons active at differ-

ent temporal and spatial scales.

In this context, the neocortex has about 5× 1010 neurons distributed rather uniformly over approxi-

mately 5× 108 minicolumns. (The visual cortex has double this density.) Within these minicolumns, a

“vertical” structure is defined perpendicular to six highly convoluted laminae of total thickness

≈ 2. 5× 103 µm, principally by the efferent pyramidal cells. They exhibit vertical apical bundling of their

dendrites in the upper laminae, and some of their recurrent axonal collaterals also ascend to upper lami-

nae. A number of other fusiform, Martinotti, and stellate cells (granule cells in the sensory cortex and

basket cells in the motor cortex) also contribute to this vertical organization. In general, laminae I to IV

are afferent and laminae V and VI are efferent (Afifi and Bergman, 1978).

However, “horizontal” dendritic basal arborizations (treelike structures) of the pyramidal cells, tan-

gential to the laminae, horizontal axonal collaterals of the pyramidal cells, and horizontal processes of

stellate, Martinotti, and neonatal horizontal cells, all impart horizontal stratification to columnar interac-

tions. Therefore, although the columnar concept has anatomical and physiological support, the mini-

columnar boundaries are not so clearly defined (Dykes, 1978). If this stratification and other long-ranged

afferent input to groups of minicolumns are incorporated, then it is possible that future work may have to

define a physiological unit that encompasses a mesocolumn consisting of one to perhaps several mini-

columns outputting to a macrocolumar extent. This study formalizes these circumstances by defining a

mesocolumn with extent greater than 102 µm, as an intermediate integral physiological unit
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encompassing one minicolumn. [See Fig. 14-1(b).] Dynamic nearest-neighbor interactions between

mesocolumns are analytically defined by their overlapping neuronal interactions, in accordance with the

observed horizontal columnar stratifications outlined above. [See Fig. 14-1(b’).] This approach permits

future analytic modifications, as differences between inter- and intra-minicolumnar interactions and cir-

cuitries become experimentally clarified.

The resulting picture of columnar interactions is relatively simpler than a mass of interacting neu-

rons, but not so simple to the point of uselessness. A collection of average excitatory and inhibitory neu-

ronal firings, as depicted in Fig. 14-1(a’), now define a continuum of mesocolumnar firings. A zero-order

binomial distribution is easily intuited: LetG denoteE or I firings. Using the magnetic analogy, consider

E as a spin-up andI as a spin-down magnet. A column ofN G neurons can have a total firing ofNnG ,

within timeτ , wherenG is the fraction firing, ranging by 2’s between−N G ≤ NnG ≤ N G . (Count firing as

+1, nonfiring as −1.) For convenience, assumeNnG > 0, which arises fromNnG firings plus

1
2 (N G − NnG) cancelling pairs of firings and nonfirings. This gives a total of

1
2 (N G − NnG) + NnG = 1

2 (N G + NnG) firings andN G − 1
2 (N G + NnG) nonfirings. The degeneracy fac-

tor, as a function of the firing rateNnG , is the number of waysN G neurons can produce a given firing pat-

tern, i.e., the binomial distribution. Note that the binomial coefficient is unity for states of all firing or all

nonfiring, and peaks asN G!/[(N G /2)!]2 ≈ 2NG+1
2 (πN G)−1

2 for NnG =0. In the rangeNnG ≈ 0, there is

maximal degeneracy of information encoded by mesocolumnar firings. This argument analytically articu-

lates the meaning of “neuronal degeneracy” and also of the ubiquitous, often ambiguous “average neu-

ron.” Howev er, reasonable properties of mesocolumns, not of average neurons, are developed here for

macroscopic study.

The properly calculated distribution contains nearest-neighbor mesocolumnar interactions

expressed as spatial-derivative correction terms. This verifies that in macroscopic activity, where patterns

of mesocolumnar firing vary smoothly over neighboring mesocolumns, it is consistent to approximate

mesocolumnar interactions by including only second-order gradient correction terms. We calculate

macroscopic states of mesocolumnar firings, which are subject to these constraints. Excitatory and

inhibitory sensitivity to the neuronal parameters survives, similar to the sensitivity encountered by single

neurons.
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Nearest-neighbor interactions are “induced” between minicolumns in the following way. The bulk

of short-ranged interactions engaging the neurons in a minicolumn do not take place within the minicol-

umn, but rather within a spatial extent the size of a macrocolumn, comprising roughly 1000 minicolumns.

If we consider the area of influence of a minicolumn as extending out to a macrocolumn’s reach, then the

area of interactions engaged by nearest-neighbor minicolumns has an offset circle of influence (Ingber,

1984b). (See Fig. 14-3.) Therefore, within one or two epochs spanning the refractory periods of a typical

neuron, interactions engaged by a given minicolumn can be extended out to areas of influence engaged by

their nearest neighbors. This is what physically is being calculated by a careful mathematical treatment of

overlapping interactions. In this manner, microscopic degrees of freedom of many types of neurons

(many of which are only crudely classified by the above definitions), synapses, neurotransmitters, cellular

architecture, and circuitries, may be practically weighted and averaged for macroscopic considerations.

Figure 14-3.

In the steps outlined above, the mesocolumnar conditional probability that a given mesocolumn will

fire is calculated, given its direct interactions with other mesocolumns just previously fired. Thus a transi-

tion rate from one state of mesocolumnar firing to another state closely following the first state is

obtained. A string, or path of these conditional probabilities connects the mesocolumnar firings at one

time to the firing at any time afterwards. Many paths may link the same initial and final state. In this way

the long-time conditional probability of all possible mesocolumnar firings at any giv en time is obtained.

A Lagrangian is thereby derived which explicitly describes the time evolution of the neocortical region in

terms of its initial distribution of firings, and expressed in terms of its mesoscopic order parameters which

retain a functional form derived from microscopic neuronal interactions. A major benefit derived from

this formalism is a variational principle that permits extrema equations to be developed. This also makes

it possible to draw analogies to the “orienting field” and “temperature” of other collective systems.

3.3.2. Further development of mesocolumn model

As pointed out in this derivation (Ingber, 1982; Ingber, 1983b), this microscopic scale itself repre-

sents a high aggregation of submicroscopic scales, aggregating effects of tens of thousands of quanta of
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chemical transmitters as they influence the 5× 10−3 µm scale of biomolecular leaflets of phospholipid

molecules. This microscopic scale has been aggregated up to the mesoscopic scale, again using the gen-

eral property of probability distributions, that the aggregated distributionPq of variableq is calculated

from the joint distributionPq1q2
of underlying variablesq1 andq2,

Pq(q) = ∫ dq1dq2Pq1q2
(q1, q2) δ ((q − (q1 + q2))) .  (14.23)

To summarize up to this point, the mathematical development of mesocolumns establishes a meso-

scopic LagrangianL, defining the short-time probability distribution of firings in a minicolumn, com-

posed of∼ 102 neurons (Gilbert and Wiesel, 1983; Goldman and Nauta, 1977; Hubel and Wiesel, 1962;

Imig and Reale, 1980; Joneset al, 1978; Mountcastle, 1978; Szenta´gothai, 1978), given its just previous

interactions with all other neurons in its macrocolumnar surround.

P =
G
Π PG [MG(r; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 jE
Σσ j − M E (r; t + τ )





δ


 jI
Σσ j − M I (r; t + τ )





N

j
Π pσ j

≈
G
Π (2πτ gGG)−1/2 exp(−Nτ LG) ,

P≈(2πτ)−1/2g1/2 exp(−Nτ L) ,  (14.24)

where L is defined in terms of its drift, diffusion, and potential, all of which depend sensitively on the

threshold factorFG ,

FG =
V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′

{ π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)} 1/2
. (14.25)

In the first SMNI papers, long-ranged interactions were included inL by adding potential terms simulat-

ing these constraints, i.e., addingJG MG to L, whereJG was numerically adjusted to account for these

interactions.
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In order to more properly include long-ranged fibers (i.e., cortico-cortical axons, as discussed in

Chapter 2), so that interactions among macrocolumns may be included in the numerical EEG studies, the

JG terms are dropped, and more realistically replaced by a modified threshold factorFG ,

FG =
V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′ − a‡|G|

G′ v|G|
G′ N‡|G|′ −

1

2
A‡|G|

G′ v|G|
G′ M‡G′

((π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′ + a‡|G|
G′ N‡G′ +

1

2
A‡|G|

G′ M‡G′)))1/2
,

A‡I
E = A‡E

I = A‡I
I = B‡I

E = B‡E
I = B‡I

I = 0 ,

a‡E
E =

1

2
A‡E

E + B‡E
E . (14.26)

Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have

been added, whereN‡E might be on the order of 10% ofN ∗ : Nearly every pyramidal cell has an axon

branch that makes a cortico-cortical connection; i.e., the number of cortico-cortical fibers may be as high

as 1010 (Braitenberg, 1978).

At this point, attention is also drawn to the similar algebraic structure of the threshold factors in

Eqs. (14.18) and (14.26), illustrating common forms of interactions between their entities, i.e., neurons

and columns of neurons, respectively. The nonlinear threshold factors are defined in terms of electrical-

chemical synaptic and neuronal parameters all lying within their experimentally observed ranges.

The net short-time probability distribution can be folded over and over (multiplied) in time incre-

ments∆t to yield a path-integral algorithm for calculating the long-time probability distribution (Lan-

goucheet al, 1982). This result depends on the use of the Markov property of our distribution, wherein

the short-time evolution of the system at timet + τ depends only on the state of the system at timet. For

example, in a very compacted notation, labelingu intermediate time epochs bys, i.e., ts = t0 + s∆t, in the

limits u → ∞ and∆t → 0, and assumingMt0 = M(t0) andMt = M(t ≡ tu+1) are fixed,

P[Mt |Mt0] = ∫ . . . ∫ dMt−∆t dMt−2∆t
. . .dMt0+∆t

×P[Mt |Mt−∆t ]P[Mt−∆t |Mt−2∆t ] . . . P[Mt0+∆t |Mt0] ,
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P[Mt |Mt0] = ∫ . . . ∫ DM exp

−

u

s=0
Σ ∆t Ls




,

DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s∆t)−1/2dMs . (14.27)

Similarly, the short-time probability distributionP can be folded over and over at each pointr, to giv e a

field-theoretic Lagrangian,L(r, t). The above “prepoint-discretization” representation ofL derived for

the neocortex, e.g.,gG
s = gG [MG(t0 + s∆t)], disguises the Riemannian geometry induced by the noncon-

stant metricgGG′ , discussed further below.

3.4. Macroscopic development

3.4.1. General description

Inclusion of all the above microscopic and mesoscopic features of the neocortex permits a true non-

phenomenological Gaussian-Markovian formal development for macroscopic regions encompassing∼

5 × 103 macrocolumns of spatial extent∼ 5 × 109 µm2, albeit one that is still highly nonlinear and

nonequilibrium. The development of mesocolumnar domains presents conditional probability distribu-

tions for mesocolumnar firings with spatially coupled nearest-neighbor interactions. The macroscopic

spatial folding of these mesoscopic domains and their macroscopic temporal folding of tens to hundreds

of τ , with a resolution of at leastτ /N (Ingber, 1984b), yields a true path-integral formulation, in terms of

a macroscopic Lagrangian possessing a variational principle for most-probable firing states. At this point

in formal development, no continuous-time approximation has yet been made; this is done, with clear jus-

tification, only for some applications discussed below. Much of this algebra is greatly facilitated by, but

does not require, the use of Riemannian geometry to develop the nonlinear means, variances, and “poten-

tial” contributions to the Lagrangian (Langoucheet al, 1982).

This formalism can also be recast in several other representations (Langoucheet al, 1982), perhaps

more familiar to other investigators, and sometimes more useful for particular calculations. For example,

a Hamiltonian formulation can be obtained, one that does not permit simple “energy”-type conservation

approximations, but one that does permit the usual time-evolution picture. The time-dependent
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differential macroscopic probability distribution, or “propagator,” is found to satisfy a true Fokker-Planck

second-order partial-differential equation, expressing the rate of change of the distribution as the sum of

contributions from nonlinear drifts and diffusion in the space ofE and I firings. With respect to a refer-

ence stationary state, a well-defined information, or “entropy,” can be formulated. Also, a set of Langevin

rate equations forE and I firings can be obtained, expressing the rate of change of firings as the sum of

drifts and multiplicative noise. The most-probable firing states derived variationally from the path-inte-

gral Lagrangian as the Euler-Lagrange equations represent a reasonable average over the noise in the

Langevin system; the noise cannot be indiscriminately neglected. Because of the presence of multiplica-

tive noise, the Langevin system differs in its Itoˆ (prepoint) and Stratonovich (midpoint) discretizations.

Furthermore, there exists a midpoint-discretized covariant description, in terms of the Feynman

LagrangianLF , which is defined such that (arbitrary) fluctuations occur about solutions to the Euler-

Lagrange variational equations. In contrast, the usual Itoˆ and corresponding Stratonovich discretizations

are defined such that the path integral reduces to the Fokker-Planck equation in the weak-noise limit.

Using the Lagrangian formulation, a systematic numerical procedure has been developed for fitting

parameters in such stochastic nonlinear systems to data using methods of ASA (Ingber, 1989; Ingber,

1993a; Ingber, 1993b), and then integrating the path integral using a non-Monte Carlo technique espe-

cially suited for nonlinear systems (Wehner and Wolfer, 1983a; Wehner and Wolfer, 1983b; Wehner and

Wolfer, 1987). This numerical methodology has been applied with success to military modeling (Ingber,

Fujio, and Wehner, 1991; Ingber and Sworder, 1991) and to financial markets (Ingber, 1990; Ingber,

Wehneret al, 1991), and, as discussed further below, we are using it in this neocortical system to correlate

EEG to behavioral states (Ingber, 1991b; Ingber and Nunez, 1990).

3.4.2. Riemannian geometry

A series of papers has recognized that a few of the most popular Riemannian-geometric transforma-

tion properties possessed by physics systems might be advantageous for a theory of cortical interactions,

i.e., most specifically in the cerebellum, and they hav e gone further to postulate this geometry as the

essential component of their theory (A. Pellionisz and Llina´s, 1979; A. Pellionisz and Llina´s, 1980; A.J.

Pellionisz, 1984).
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As developed most notably by Einstein (Einsteinet al, 1923), Riemannian geometry has been

firmly established as a necessary component of the foundations of physics. There are still two viable

camps of opinions, considering this geometry itself as a basic foundation (Misneret al, 1973), or consid-

ering the physical entities on which its transformations operate as the basic foundation (Weinberg, 1972).

However, there is unanimous agreement that Riemannian geometry is an essential theoretical construct to

explain some observed physical phenomena. The existence of Riemannian geometry also is a natural

mathematical consequence of properties possessed by quite general stochastic systems, including those

models of neural systems assumed or endorsed by most investigators (Arbib and Amari, 1985). These

properties have been stressed in the SMNI series of papers.

It is the purpose here to stress these general properties, and to make the short but important obser-

vation that there is indeed mathematical support on which to conjecture possible neural mechanisms that

might exist as a result of invariance under Riemannian-geometric transformations. This observation then

leads us back to the spirit, if not the essence, of other neuroscience investigators. However, whereas they

hypothesize a Riemannian metricbetween cortical regions, SMNIderives a Riemannian metricwithin

each cortical region orwithin an aggregate set of interacting cortical regions, quite a physical distinction.

Corresponding to the differential-operator ordering problem in the Fokker-Plank equation is the dis-

cretization problem in the path integral and in the Langevin rate equations, both of which are equivalent

mathematical representations of the Fokker-Plank equation (Dekker, 1980; Grabert and Green, 1979; Gra-

ham, 1977a; Graham, 1977b; Langoucheet al, 1982; Schulman, 1981). An overview of these equations is

required to at least note where the Riemannian geometry enters. The appendix of an SMNI paper pro-

vides a brief derivation (Ingber, 1991b).

It must be emphasized that the output need not be confined to complex algebraic forms or tables of

numbers. BecauseLF possesses a variational principle, sets of contour graphs, at different long-time

epochs of the path-integral ofP, integrated over all its variables at all intermediate times, give a visually

intuitive and accurate decision aid to view the dynamic evolution of the scenario. For example, this

Lagrangian approach permits a quantitative assessment of concepts usually only loosely defined.
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Concept Lagrangian equivalent

Momentum ΠG =
∂LF

∂(∂MG /∂t)

Mass gGG′ =
∂LF

∂(∂MG /∂t)∂(∂MG′ /∂t)

Force
∂LF

∂MG

F = ma δ LF = 0 =
∂LF

∂MG
−

∂
∂t

∂LF

∂(∂MG /∂t)

(14.28)

These physical entities provide another form of intuitive, but quantitatively precise, presentation of these

analyses (Ingber, 1991a).

The key issue is that Riemannian geometry is not required to derive the mathematics of multiplica-

tive Gaussian-Markovian systems. More interestingly, after this derivation, it can be demonstrated that

the space of random variables actually induces a Riemannian geometry, obtained explicitly by simply (in

hindsight) reorganizing terms in their defining equations. Then, the differential and path-integral repre-

sentations can be rewritten only in terms of functionsf (M) of random variablesM that are tensor invari-

ant under quite generally nonlinear point transformations, i.e.,M ′ = M ′(M).

The derived probability distribution also is invariant under an equivalence class of discretizations.

This is not the same as incorporatingbona fide physical delays, e.g., those that can give rise to EEG wav e

propagation, in local circuits as emphasized in SMNI, or in long-ranged circuits (Nunez, 1981a).

The possibility of rewriting any theory or model of neural systems, which can be described by mul-

tiplicative Gaussian-Markovian dynamics, into an algebraic form invariant under Riemannian-geometric

transformations, does not require that neural systems develop or elect mechanisms to take advantage of

these transformations. However, the most obvious candidate for a physical consequence of invariance

under such transformations is the informationϒ, dev eloped in SMNI, sometimes loosely referred to as the

“entropy” of the system. The invariance ofϒ implies that, although different cortical regions may have

different anatomical features and superficially appear to have quite different sets of firing states, they may
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indeed share, encode, or decode the same information using their own specific anatomy and physiology to

develop their own sets of firing states, related to each other by (nonlinear) transformations.

This possibility is in the original spirit of other authors, who were attracted to the use of Rieman-

nian geometry to explain how information in sensory regions might be transmitted to motor regions, albeit

that their neural properties differ in many respects. SMNI develops columnar interactions, and here too it

has been tempting to conjecture that local and global processing of columnar firing patterns is enhanced,

if not primarily effected, by transmitting blocks of information that are invariant under nonlinear transfor-

mations of firing states.

Ultimately, these issues must be decided by experiment. There is presently no evidence, pro or con,

to bear on the issue of the explicit Riemannian-geometric nature of information processing of neural fir-

ings. In principle, this could be accomplished by numerically fitting neuronal firing data to Lagrangians

describing regions behaviorally proven to be processing similar information, similar to fits to data pro-

posed for other artificial intelligence systems (Ingber, 1985b).

3.4.3. Information, potential, and long-ranged interactions

There have been attempts to use information as an index of EEG activity (Gersch, 1987; Mars and

Lopes da Silva, 1987). However, these attempts have focused on the concept of “mutual information” to

find correlations of EEG activity under different electrodes. The SMNI approach at the outset recognizes

that, for most brain states of late latency, at least a subset of regions being measured by several electrodes

is indeed to be considered as one system, and their interactions are to be explicated by mathematical or

physical modeling of the underlying neuronal processes. Then, it is not relevant to compare joint distribu-

tions over a set of electrodes with marginal distributions over individual electrodes. The concept of infor-

mation, as expressed below, may yet prove to be auseful valid measure to compare different subjects

within certain categories.

With reference to a steady stateP(M̃), when it exists, an analytic definition of the information gain

ϒ̂ in stateP̃(M̃) is defined by (Graham, 1978; Haken, 1983)

ϒ̂[ P̃] = ∫ . . . ∫ DM̃ P̃ ln(P̃/P), (14.29)
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where again a path integral is defined such that all intermediate-time values ofM̃ appearing in the folded

short-time distributions̃P are integrated over. This is quite general for any system that can be described

as Gaussian-Markovian (Haken, 1988), even if only in the short-time limit, e.g., the SMNI theory. (As

time evolves, the distribution likely no longer behaves in a Gaussian manner, and the apparent simplicity

of the short-time distribution typically must be supplanted by numerical calculations.) Althoughϒ̂ is well

defined and useful for discussing macroscopic neocortical activity, it may not be as useful for all applica-

tions. Certainly many important local changes of information effected by the neocortical system are a

function of the microscopic degrees of freedom already averaged over for the purposes of this study.

However, it should also be noted that the path integral represents an enormous number of spatial-temporal

degrees of freedom of the mesoscopic system. For example, even neglecting specific coding of presynap-

tic and postsynaptic membranes, detailed neuronal circuitry, and the dynamics of temporal evolution, in a

hypothetical region of 109 neurons with 1013 synapses: considering each synapse as only conducting or

not conducting, there are≈ exp(7× 1012) possible synaptic combinations; considering only each neuron as

firing or not firing, there are≈ exp(7× 108) neuronal combinations; considering only each mesocolumn as

having integral firings between−100 and 100, there are≈ exp(5× 107) mesocolumnar combinations.

T , defined as the “kinetic-energy” V -independent part ofL in Eq. (14.22), is scale independent of

N . Therefore, the small scale of the neocortical system, about which the system fluctuates, is derived to

be N−1, the inverse of the number of neurons in a mesocolumn. This is interpreted as the effective “tem-

perature” or inherent noise of the system. Thus, STM defines a rather “hot” and volatile system, wherein

the relevant activity takes place on the same order asN−1. By contrast, some long-term-memory calcula-

tions described below (Ingber, 1983b) are consistent with the interpretation of transpiring at a much lower

temperature taking place in a locally more stable environment.

4. VERIFICATION OF SMNI

It is relevant to the use of the SMNI model to fit experimental data that there is some justification

for considering this approach a viable description of the real neocortex. As outlined below, the meso-

scopic scale developed by SMNI has been verified by calculations detailing some properties of short-term

memory. (Of course, this does not preclude some other theories from possessing similar numerical verifi-

cation.) The macroscopic scale developed by SMNI has been verified by calculations detailing some
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properties of phenomena associated with EEG measurements. The aggregate calculations suggest mecha-

nisms for long-term storage of memories via synaptic modifications.

4.1. Short-term memory

4.1.1. General description

The most detailed and dramatic application of the theory outlined here is to predict stochastic

bounds for the phenomena of human STM capacity during focused selective attention (Ingber, 1972; Ing-

ber, 1981b; Ingber, 1984b; Ingber, 1985a; Ingber, 1985d), transpiring on the order of tenths of a second to

seconds, limited to the retention of 7± 2 items (Miller, 1956). This is true even for apparently exceptional

memory performers who, while they may be capable of more efficient encoding and retrieval of STM, and

while they may be more efficient in “chunking” larger patterns of information into single items, neverthe-

less they also are limited to a STM capacity of 7± 2 items (Ericsson and Chase, 1982). This “rule” is ver-

ified for acoustical STM, but for visual or semantic STM, which typically require longer times for

rehearsal in an hypothesized articulatory loop of individual items, STM capacity appears to be limited to

two to four (Zhang and Simon, 1985). This STM capacity-limited chunking phenomenon also has been

noted with items requiring varying depths and breadths of processing (Ingber, 1972; Ingber, 1976; Ingber,

1981a; Ingber, 1981b; Ingber, 1985a). Another interesting phenomenon of STM capacity explained by

this theory is the primacy versus recency effect in STM serial processing, wherein first-learned items are

recalled most error-free, with last-learned items still more error-free than those in the middle (Murdock,

1983).

The basic assumption being made is that a pattern of neuronal firing that persists for manyτ cycles

is a candidate to store the “memory” of activity that gav e rise to this pattern. If several firing patterns can

simultaneously exist, then there is the capability of storing several memories. The short-time probability

distribution derived for the neocortex is the primary tool to seek such firing patterns. Since this distribu-

tion is exponentially sensitive to (minus) the Lagrangian functionL, it is more convenient to deal directly

with L, whereby its minima specify the most likely states that can be sustained at a given time. Then,

several important features of these patterned states can be investigated, as is done for other physical sys-

tems (Haken, 1983), e.g., the evolution of these states, the “time of first passage” to jump from one state
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to another state, hysteresis between states that have different depths (values of the Lagrangian at these

local minima), the stability of each state under external forces, etc.

We define the “stationary” (sometimes referred to as the “uniform”) Lagrangian,L, by setting to

zero all temporal and spatial derivatives ofMG , e.g., as appearing in Eq. (14.22). Contour plots of the

stationary Lagrangian,L, for typical synaptic parameters balanced between predominately inhibitory and

predominately excitatory firing states are examined at many scales when the background synaptic noise is

only modestly shifted to cause both efferent and afferent mesocolumnar firing states to have a common

most-probable firing, centered atM*G = MG = 0 (Ingber, 1984b). Within the range of synaptic parame-

ters considered, for values ofτ L∼ 10−2, this “centering” mechanism causes the appearance of from 5 to 10

or 11 extrema for values ofτ L on the order of∼ 10−2. The centering mechanism is achieved by modestly

shifting BG
G′ to cause (V G − a|G|

G′ v|G|
G′ N G′) to go to zero, thereby driving the threshold factorFG to zero.

(Note that atFG = 0, the mesoscopic derivation of GaussianL breaks down, so that we can only consider

a finite region, heavily weighted byN , about this point.) In the absence of external constraints and this

centering mechanism, no stable minima are found; i.e., the system either shuts down, with no firings, or it

becomes epileptic, with maximal firings at the upper limits of excitatory or of excitatory and inhibitory

firings. The appearance of these extrema due to the centering mechanism is clearly dependent on the non-

linearities present in the derived Lagrangian, stressing competition and cooperation among excitatory and

inhibitory interactions at columnar as well as at neuronal scales. (See Fig. 14-4.)

Figure 14-4.

It must be stressed that these numbers of minima are determined when the resolution of the con-

tours is commensurate with the resolution of columnar firings, i.e., on the order of five to ten neuronal fir-

ings per columnar mesh point. If the resolution is forced to go down to one neuronal firing per columnar

mesh point, then typically only about half these minima are found. The coarser resolution, in fact, is the

one appropriate for numerical solution of the derived time-dependent path integral: Most important contri-

butions to the probability distributionP come from ranges of the time sliceθ and the “action”N L, such

thatθ N L ≤ 1. By considering the contributions to the first and second moments of∆MG for small time

slicesθ , conditions on the time and variable meshes can be derived (Wehner and Wolfer, 1983a). The
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time slice is determined byθ ≤ (N L)−1 throughout the ranges ofMG giving the most important contribu-

tions to the probability distributionP. The variable mesh, a function ofMG , is optimally chosen such

that ∆MG is measured by the covariancegGG′ (diagonal in the neocortex due to the independence ofE

and I chemical interactions) or∆MG ∼ (gGGθ )1/2 in the notation of the SMNI papers. ForN ∼ 102 and

L∼ 10−2/τ , it is reasonable to pickθ∼ τ . Then it is calculated that optimal meshes are∆M E ∼ 7 and∆M I ∼ 4,

essentially the resolutions used in the published SMNI coarse contour plots.

Since the extrema of the Lagrangian appear to lie fairly well along a line in the two-dimensional

MG space, and since coefficients of slowly varyingdMG /dt terms in the nonstationaryL are noted to be

small perturbations onL (Ingber, 1983b), a solution to the stationary probability distribution was hypothe-

sized to be proportional to exp(−Φ/D), whereΦ = CN2L, the diffusionD = N /τ , andC is a constant.

Surprisingly, at least until more recent research has shown the generality of such results (Coletet al,

1989), along the line of the extrema, forC≈1, this is determined to be an accurate solution to the full two-

dimensional Fokker-Planck equation (Ingber, 1985d). A weak-noise high-barrier regime defined by

∆Φ/D > 1, where∆Φ is the difference inΦ from minima to maxima, can be assumed for further analyses

(Shenoy and Agarwal, 1984). This is extremely useful, as a linear stability analysis shows that stability

with respect to mesocolumnar fluctuations induced by several neurons changing their firings is determined

by the second derivatives of−Φ (Agarwal and Shenoy, 1981); here this just measures the parabolic curva-

ture of L at the extrema. Thus, all the extrema of the stationary Lagrangian are determined to be stable

minima of the time-dependent dynamic system. Note however, that it is unlikely that a true potential

exists over allMG space (Graham, Roekaerts, and Te´l, 1985; Graham and Te´l, 1984).

This stationary solution is also useful for calculating the time of first passage,tvp, to fluctuate out of

a valley in one minimum over a peak to another minimum (Agarwal and Shenoy, 1981). It turns out that

the values ofτ L∼ 10−2 for which the minima exist are just right to givetvp on the order of tenths a second

for about nine of the minima when the maximum of 10 to 11 are present. The other minima givetvp on

the order of many seconds, which is large enough to cause hysteresis to dominate single jumps between

other minima (Ingber, 1984b). Thus, 7± 2 is the capacity of STM, for memories or new patterns that can

be accessed in any order during tenths of a second, all as observed experimentally (Ericsson and Chase,

1982). When the number of neurons per minicolumn is taken to be∼ 220, modeling the visual neocortex

(Ingber, 1984b), then the minima become deeper and sharper, consistent with sharper depth of processing,
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but sev eral minima become isolated from the main group. This effect might be responsible for the lower-

ing of STM capacity for visual processing, as mentioned above. I.e., the statistical time of passage

between clusters becomes many hours, longer than STM, while the time between minima within a cluster,

now with only 2 to 4 minima per cluster, is on the order of tenths of a second, as observed. This effect

also serves to illustrate that the “practical” number of emergent mesoscopic stable states does not neces-

sarily increase with an increasing number of microscopic units. (See Fig. 14-5.)

Figure 14-5.

This estimate of the number of minima involves a very sensitive calculation. That is, ifN were a

factor of 10 larger, or ifτ L∼ 0. 1 at the minima, thentvp is on the order of hours instead of seconds,

becoming unrealistic for STM durations. Alternatively, iftvp were much smaller, i.e., less than∼ 5τ , this

case would be inconsistent with observed time scales necessary for formation of any memory trace (Libet,

1982). In this context, it is noted that the threshold factor of the probability distribution scales as

(N ∗ N )1/2, demanding that both the macrocolumnar divergence and minicolumnar convergence of meso-

columnar firings be tested by these calculations.

These results pose serious problems for other models, such as “mean-field” theories or reductionist

doctrines. The mean-field approach essentially setsN = 1, andN ∗ is effectively taken by some investiga-

tors to be∼ 105, the size of a macrocolumn, but others even consider it to be as large as∼ 1010, the total

number of neurons in the neocortex. The reductionist doctrine claims that only circuitries among a few to

several neurons are responsible for a specific pattern of neocortical function, and this effectively sets

N ≈ N ∗ , on the order of a few neurons. It is hard to understand how both the capacity and duration of

STM can be explained by these other models, even assuming they were or could be derived with realistic

synaptic interactions and correct statistical dynamics.

The statistical nature of this storage and processing also explains the primacy versus recency effect:

The deepest minima of the Lagrangian are more likely accessed than the others of this probability distri-

bution, and these valleys are sharper than the others. I.e., they are more readily accessed and sustain their

patterns against fluctuations more accurately than the relatively more shallow minima. The more recent

memories or newer patterns may be presumed to be those having synaptic parameters more recently tuned
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and/or more actively rehearsed. Thus, both the nonlinearities and the statistical nature of this theory are

tested by STM capacity. These insights have helped to correct the notions of some experimentalists who

claimed they could not find this effect in the visual cortex: Their experimental paradigms were testing the

visual cortex using rules of auditory capacity (i.e., they were testing 7± 2 instead of 4± 2) and therefore

they were washing out this effect.

These calculations give experimental support to the derivation of the mesoscopic probability distri-

bution, yielding similar algebraic structures of the threshold factors in Eqs. (14.18) and (14.26), illustrat-

ing common forms of interactions between their entities, i.e., neurons and columns of neurons, respec-

tively. The nonlinear threshold factors are defined in terms of electrical-chemical synaptic and neuronal

parameters all lying within their experimentally observed ranges.

4.1.2. STM calculation

Three cases of neuronal firings were considered (Ingber, 1984b). That reference is recommended

for several figures that exhibit the minima structures algebraically described below. Since STM duration

is still long relative toτ , stationary solutions ofL, derived from L in Eq. (14.24), were investigated to

determine how many stable minima, << MG >>, may simultaneously exist within this duration. Also,

individual mesocolumns were studied, i.e., taking the uniform limit ofṀ
G

= 0 = ∇ MG . Although the

Ṁ
G

= 0 limit should only be taken for the midpoint-discretized LagrangianLF , this is a small difference

here (Ingber, 1984b).

A model of dominant inhibition describes how minicolumnar firings are suppressed by their neigh-

boring minicolumns. For example, this could be effected by developing nearest-neighbor (NN) meso-

columnar interactions (Ingber, 1983b), but here the averaged effect is established by inhibitory meso-

columns (IC) by settingAI
E = AE

I = 2AE
E = 0. 01N * /N . Since there appears to be relatively littleI − I

connectivity, set AI
I = 0. 0001N * /N . The background synaptic noise is taken to be

BE
I = BI

E = 2BE
E = 10BI

I = 0. 002N * /N . As minicolumns are observed to have∼ 110 neurons (the visual

cortex appears to have approximately twice this density) (Mountcastle, 1978), and as there appear to be a

predominance ofE over I neurons (Nunez, 1981a), here takeN E = 80 andN I = 30. UseN * /N = 103,

JG = 0 (absence of long-ranged interactions), andV G , vG
G′ , andφG

G′ as estimated previously, i.e.,V G = 10

mV, |vG
G′ | = 0. 1 mV,φG

G′ = 0. 1 mV. The “threshold factors”FG
IC for this IC model are then
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F E
IC =

0. 5M I − 0. 25M E + 3. 0

π1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

F I
IC =

0. 005M I − 0. 5M E − 45. 8

π1/2(0. 001M I + 0. 1M E + 11. 2)1/2
. (14.30)

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly

the “step functions” tanhFG
IC in gG(t) changeMG(t) to MG(t + θ ). F I

IC will cause afferentM I to fire for

most of its values, asM I ∼ − N I tanhF I
IC will be positive for most values ofMG in F I

IC, which is already

weighted heavily with a term -45.8. Looking atF E
IC, it is seen that the relatively high positive values of

efferentM I require at least moderate values of positive efferentM E to cause firings of afferentM E .

The calculations presented here support the contention that the neocortex functions at multiple hier-

archies. While specific long-term memory (LTM) information is most likely coded at the microscopic

neuronal level, the mesoscopic scale most likely provides the context for multiple most-probable firing

patterns which process STM and which facilitate plastic synaptic encoding of LTM (Ingber, 1983b). E.g.,

τ L can range from 0 to values greater than 103 (Ingber, 1982; Ingber, 1983b). However, realistic con-

straints on STM duration dictate that only values ofτ L ≤ 0. 04 are of interest here. Detailed mesoscalar

calculations demonstrate that only this range exhibits sufficient nonlinear structure to support STM phe-

nomena.

It is discovered that more minima ofL are created, or “restored,” if the numerator ofFG contains

terms only inMG , tending to centerL aboutMG = 0. Of course, any mechanism producing more as well

as deeper minima is statistically favored. However, this particular “centering” mechanism has plausible

support:MG(t + τ ) = 0 is the state of afferent firing with highest statistical weight. I.e., there are more

combinations of neuronal firings,σ j = ±1, yielding this state than any otherMG(t + τ ); e.g.,

∼ 2NG+1/2(πN G)−1/2 relative to the statesMG = ±N G . Similarly, M *G(t) is the state of efferent firing with

highest statistical weight. Therefore, it is natural to explore mechanisms that favor common highly

weighted efferent and afferent firings in ranges consistent with favorable firing threshold factorsFG≈0.

Detailed calculations demonstrate that eitherL
E

or L
I

separately typically give rise to more multi-

ple minima,≈10, than permitted by their sumL at this resolution. This “loss” of minima apparently is an
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interesting consequence ofE − I competition at the mesoscopic scale.On one hand, sinceL
G

scales as

N G /N for relatively large MG , L
E

dominates due to the larger M E in its meangE . On the other hand, for

relatively small MG , gG typically is small if there are several multiple minima inL
G

, since most of the

minima are found to cluster about the origin.Therefore,L
G

scales as (N G)−1 from the variances (gGG)−1,

andL
I

dominates for smallMG .

The centering effect of the IC model of dominant inhibition, labeled here as the IC′ model, is quite

easy for the neocortex to accommodate. For example, this can be accomplished simply by readjusting the

synaptic background noise fromBG
E to B′GE ,

B′GE =
V G − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

E vG
E N E

vG
E N G

(14.31)

for both G = E and G = I . This is modified straightforwardly when regional influences fromM‡E are

included, as in in Eq. (14.26). In general,BG
E andBG

I (and possiblyAG
E and AG

I due to actions of neuro-

modulators, andJG or M‡E constraints from long-ranged fibers) are available to force the constant in the

numerator to zero, giving an extra degree(s) of freedom to this mechanism. (IfB′GE would be negative,

this leads to unphysical results in the square-root denominator ofFG . Here, in all examples where this

occurs, it is possible to instead find positiveB′GI to appropriately shift the numerator ofFG .) In this con-

text, it is experimentally observed that the synaptic sensitivity of neurons engaged in selective attention is

altered, presumably by the influence of chemical neuromodulators on postsynaptic neurons (Mountcastle

et al, 1981).

By this centering mechanism,B′EE = 1. 38 andB′ II = 15. 3, andFG
IC is transformed toFG

IC′ ,

F E
IC′ =

0. 5M I − 0. 25M E

π1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

F I
IC′ =

0. 005M I − 0. 5M E

π1/2(0. 001M I + 0. 1M E + 20. 4)1/2
. (14.32)

Note that, aside from the enforced vanishing of the constant terms in the numerators ofFG
IC′ , the only

other change inFG
IC′ relative toFG

IC is to moderately affect the constant terms in the denominators. This
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increases the number of minima ofτ LIC′ to 4. The two minima clustered close to the origin are no longer

discernible forτ LIC′ > 0. 03.

The other “extreme” of normal neocortical firings is a model of dominant excitation, effected by

establishing excitatory mesocolumns (EC) by using the same parameters{ BG
G′ , vG

G′ ,φG
G′ , AI

I } as in the

IC model, but settingAE
E = 2AI

E = 2AE
I = 0. 01N * /N . This yields

F E
EC =

0. 25M I − 0. 5M E − 24. 5

π1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

F I
EC =

0. 005M I − 0. 25M E − 25. 8

π1/2(0. 001M I + 0. 05M E + 7. 24)1/2
. (14.33)

The negative constant in the numerator ofF I
EC inhibits afferentM I firings. Although there is also a neg-

ative constant in the numerator ofF E
EC, the increased coefficient of M E (relative to its corresponding

value inF E
IC), and the fact thatM E can range up toN E = 80, readily permits excitatory firings throughout

most of the range ofM E . This permits three minima.

Applying the centering mechanism to EC,B′EI = 10. 2 andB′ II = 8. 62. The net effect inFG
EC′ , in

addition to removing the constant terms in the numerators ofFG
EC, is to change the constant terms in the

denominators: 12.3 inF E
EC is changed to 17.2 inF E

EC′ , and 7.24 inF I
EC is changed to 12.4 inF I

EC′ . Now

six prominent minima are possible along a line throughMG = 0, and two others are atMG = ±N G . Each

pair of minima above and below the M I = 0 axis merge into single minima forτ LEC′ > 0. 02, and these

lose resolution forτ LEC′ > 0. 03.

Now it is natural to examine a balanced case intermediate between IC and EC, labeled BC. This is

accomplished by changingAE
E = AI

E = AE
I = 0. 005N * /N . This yields

F E
BC =

0. 25M I − 0. 25M E − 4. 50

π1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
BC =

0. 005M I − 0. 25M E − 25. 8

π1/2(0. 001M I + 0. 050M E + 7. 24)1/2
. (14.34)
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Three minima are possible, on the boundaries ofMG space.

Applying the centering mechanism to BC,B′EE = 0. 438 andB′ II = 8. 62. The net effect inFG
BC′ , in

addition to removing the constant terms in the numerators ofFG
BC, is to change the constant terms in the

denominators: 8.30 inF E
BC is changed to 7.40 inF E

BC′ , and 7.24 inF I
BC is changed to 12.4 inF I

BC′ . Now

ten minima are possible. The nine minima along the diagonal line lose resolution forτ LBC′ > 0. 01 above

M I = 0 and forτ LBC′ > 0. 02 below M I = 0.

The effects of using the full Feynman LagrangianLF were considered, including all the Rieman-

nian and other nonlinear corrections, discussed below. The net effect is to slightly raise the threshold at

which minima dissipate, to aboutτ LBC′ ≥ 0. 03, which is relevant for the duration of STM, discussed sub-

sequently. Howev er, note that the minima structure is essentially the same. (See Fig. 14-4.)

To demonstrate that multiple minima are not an effect of nonlinearities induced by the denomina-

tors of FG , the net effect in LBC′ by dropping theMG terms in the denominators ofFG
BC′ is such that the

valleys of minima are only slightly increased. However, these denominators are still important contribu-

tions derived from synaptic interactions. E.g., even with the MG terms dropped, the denominators con-

tribute factors of∼ 1/5 toFG
BC′ .

If N * is scaled larger or smaller, this effectively scalesAG
G′ = A*G

G′ N * /N and BG
G′ = B*G

G′ N * /N , dis-

turbing the relatively sensitive balance that permits a few percent of efferent firings to affect their affer-

ents. Then, the number of possible minima is typically reduced to one or two. IfN is scaled larger or

smaller, the number of minima is altered and the duration of STM is affected. However, forN still in the

range of a few hundred, the number of possible minima is not severely reduced. The caseN = 220, e.g.,

the visual cortex was considered: For model BC′, the number of prominent minima found is 11, but they

form clusters, with higher peaks between clusters than between minima within a cluster. Note that the

larger N sharpens the minima and therefore the resolution of visual information processing. (See Fig.

14-5.)

Note that the sharpness of the tanhFG step-function contribution to the mean firing is sensitive to a

factor of N
1
2 in FG . Additionally, the strength of coupling between mesocolumns scales asN3/2. Thus

the neuronal size of mesocolumns directly affects the breadth and depth of the information processing

capability of the neocortex. It is interesting to note that the human visual cortex, which may be assumed
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to require the finest tuning in the neocortex, is unique in having twice the number of neurons per minicol-

umn than other regions of the neocortex (Mountcastle, 1978).

These results are unchanged qualitatively for modest changes of any neocortical parameters. How-

ev er, it is reasonable to conjecture that more drastic abnormal changes in the neocortical parameters might

severely reduce the number of minima. This conjecture is based on calculations whereinFG do not pos-

sess the relatively sensitive balances allowing a few percent of efferent neurons to control firings in their

afferent neurons. In calculations using these unrealistic or abnormal parameters only one or two minima

survive.

4.1.3. STM stability and duration

The calculation of stability and time of duration in most likely states of firing starts by using the dif-

ferential-equation Hamiltonian formulation of the path-integral Lagrangian, called the Fokker-Planck

equation. For future reference, when EEG’s are discussed below in the context of considering a given

local minimum, note that the time-dependent differential macroscopic probability distributionP̃ = Πr P,

or “propagator,” is found to satisfy a true Fokker-Planck equation, but one with nonlinear drifts and diffu-

sions in the space ofE andI firings. The Fokker-Planck equation for the regionΩ is

∂P̃

∂t
≈Ω−1 ∫ d2r[

1

2
(gGG′ P̃),GG′ − (gG P̃),G + NV ′ P̃] ,

(. . .),G ≡ ∂(. . .)/∂MG . (14.35)

The true Fokker-Planck equation is actually more general, e.g., if long-ranged spatial structures are

included, where the independent variablesMG are fields which themselves may depend on space and time

coordinates. The above equation is derived in the nearest-neighbor approximation from the general equa-

tion using functional derivatives (Ingber, 1984b),

∂(. . .)/∂MG → δ (. . .)/δ MG ,

δ (. . .)/δ MG = (. . .),G − ∇ i(. . .),∇ iG + ∇ 2
i (. . .),∇ 2

i G , (14.36)

where we have used the compacted notation introduced previously (Ingber, 1984b).
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An estimate of a stationary solutionPstat to the Fokker-Planck differential equation for the probabil-

ity distributionP of MG firings for an uncoupled mesocolumn, i.e.,V ′ = 0, is given by the stationary limit

of the short-time propagator,

Pstat≈Nstatg
1/2 exp(−CNτ L) ,

g = det(gGG′)−1 ≡ det(gGG′) = gEE gII , (14.37)

whereNstat andC are constant factors. An estimate of the approximation made is estimated by seeking

values of constantsC, such that the stationary Fokker-Planck equation is satisfied exactly. Contour plots

of C versusMG demonstrate that there exists real positiveC which may only range from∼ 10−1 to ∼ 1, for

which there exists unbroken contours ofC which pass through or at least border the line of minima (Ing-

ber, 1985d). Ateach pointMG , this leaves a quadratic equation forC to be solved. Dropping theg1/2

factor results inC not being real throughout the domain ofMG .

Thus we have defined a solution with potentialN2L = ∫ A dM , drift A, and diffusionN /τ . Stability

of transient solutions, defined forδ MG about a stationary state by

δ ṀG≈ − A,Gδ MG = −N2L,GGδ MG , (14.38)

is therefore equivalent to << M >> being a minimum ofL.

Since the minima of the Lagrangian lie deep in a valley along a line, the time for first passage,tvp,

is estimated in analogy to a one-dimensional system as (Agarwal and Shenoy, 1981)

tvp≈πN−2[|L,GG′(<< M >>p)| L,GG′(<< M >>v)]−1/2

×exp { CNτ [L(<< M >>p) − L(<< M >>v)] } , (14.39)

where << M >>v is the minimum at the valley of L in question, and << M >>p is the maximum at a peak

separating two minima. These equations are reasonable but crude estimates, and future numerical work

must be done to detail the extent of their validity.
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The exponential factor can be quite large in some instances, and quite small in others. As noted

previously (Ingber, 1983b), differences inL from valleys to peaks are still large relative to the Rieman-

nian correction terms and relative to differential spatial-temporal contributions, thereby permitting this

simpler analysis. However, values ofτ L at maxima separating the far minima may be greater than 1,

thereby yielding a very largetvp, typical of many physical systems undergoing hysteresis (Ingber, 1983b).

Relaxation timestr about this stationary state are estimated by |gG
,G |−1 (Agarwal and Shenoy, 1981), and

are on the order ofτ .

It is possible for hysteresis to be highly more probable than simple jump behavior to another firing

state. This provides a mechanism whereby an extended temporal firing pattern of information can be pro-

cessed beyond the time scale of relaxation periods, e.g., reverberation among several local minima. It is

to be expected that the effects of long-ranged influences on mesoscopic synaptic parameters, e.g., as cal-

culated in previous SMNI papers (Ingber, 1983b), can create more complex examples of spatial-temporal

hysteresis. These sustaining mechanisms may serve to permit other biochemical processes to store infor-

mation for longer time periods as stable synaptic modifications, e.g., LTM. As detailed previously (Ing-

ber, 1983b), changes in synaptic parameters may duplicate the effects of long-ranged interactions, provid-

ing a mechanism whereby columnar firings encode long-range firing constraints. If this encoding of firing

patterns can establish itself on short enough time scales, then columnar coding of long-range firings could

be a precursor mechanism initiating the centering mechanism above, especially across large regions of the

neocortex. Then, there would be a more uniform gradation of mechanism(s) establishing STM and LTM.

However, to address the issue of limited capacity of STM, it is reasonable to require that within

time spans of tenths of a second to tens of seconds, simple jumps among minima are more probable than

hysteresis. This permits all minima to be readily accessible during STM duration, in any ordering (Erics-

son and Chase, 1982), at least more so than if hysteresis were more probable. In agreement with this

empirical requirement, as detailed in the previous studies, it is found that

τ [L(<< M >>p) − L(<< M >>v)]∼ 0. 01—0. 03 for these models using empirical values for synaptic param-

eters. Then for |τ L,GG′ |∼ 10−3, tvp∼ 10τ —100τ , on the order of several tenths of a second to a second. Use

of the full Feynman LagrangianLF increasestvp slightly. For these relatively shorttvp the second

inequality above isviolated, and simple jumps are more probable than hysteresis, as required for STM.
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Under conditions of serial processing, the deeper valleys of L representing the more likely firing

states will be occupied first. In all cases considered here, some valleys are deeper than the others. This

implies that the last several items in STM should be harder to encode (learn) and retain, with the possible

exception of the last one or two items, which represent the most recent shifting of firing patternsMG to

these minima << M >>v of L. These conclusions are consistent with empirical observations, and are

obtained independent of any other rehearsal mechanisms that may exist.

Calculations in these models establish that the prefactor most often is∼ τ . Howev er, points close to

the cornersMG = ±(N E , N I ) hav e much more rapid variations. Therefore, minima at these corners, even

whenτ L(<< M >>p)∼ 0. 01—0. 03, because of their sharp peaks, typically havetvp on the order of tens of

seconds to jump to minima clustered on the diagonal. This is within the range where hysteresis is more

probable for these minima.Therefore, minima at the corners ofMG space most likely do not contribute

to STM, bringing the number of available minima down to 7± 2 as empirically observed.

4.2. EEG dispersion relations

4.2.1. General description

Linear expansions about specific extrema, specified by the Euler-Lagrange variational equations,

permit the development of stability analyses and dispersion relations in frequency-wav e-number space

(Ingber, 1982; Ingber, 1983b; Ingber, 1985c). Of course, such linear expansions are justified only after

the nonlinear problem, e.g., such as that encountered for STM, is solved for locations of minima. It is

noted in this regard that the corresponding wav e propagation velocities pace interactions over sev eral

minicolumns, in order to be of magnitude sufficient to permit simultaneous information processing within

∼ 10−1 sec with interactions mediated by long-ranged fibers possessing much greater propagation veloci-

ties ∼ 600−900 cm/sec (Ingber, 1985c). E.g., detailed auditory and visual processing can feed information

to the association cortex where it can be processed simultaneously, possibly giving feedback to the pri-

mary sensory regions. The propagation velocities calculated by SMNI,∼ 1 cm/sec, also are consistent

with observed movements of attention (Tsal, 1983) and of hallucinations (Cowan, 1982) across the visual

field. This strongly suggests that nearest-neighbor mesocolumnar interactions as developed here are an

important mechanism in these movements. These velocities scale strongly with the values of MG
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minima, increasing with their distance fromMG ∼ 0, the range of maximal firing combinations. This effect

remains to be further investigated; the appropriate calculations should test the nearest-neighbor spatial

dependence of the SMNI theory.

These mesoscopic dispersion relations also are consistent with global macroscopic dispersion rela-

tions derived and fitted to EEG data (Nunez, 1981a), yielding oscillatory solutions consistent with the

alpha rhythm, i.e.,ω ≈ 102 sec−1, equivalent toν = ω/(2π) ≈ 16 cps (Hz). This suggests that these com-

plementary local and global theories may be confluent, considered as a joint set of dispersion relations

ev olving from the deterministic limit of a joint Lagrangian, referred to as the “equations of motion,” but

linearly simplified in neighborhoods of minima of the stationary Lagrangian.

Other researchers have dev eloped quite different approaches to investigating macroscopic neocorti-

cal activity, e.g., stressing that systematics of rhythmic EEG (alpha rhythm, sleep delta, etc.) can be mod-

eled by resonant modes of macroscopic dipole-layered firing patterns of the neocortex (Nunez, 1974;

Nunez, 1981a; Nunez, 1981b; Nunez, 1981c), as discussed in Chapter 10. These resonances, in linearized

coupled excitatory-inhibitory spatial-temporal integral equations describing dipole-layered sources, give

rise to a macroscopic dispersion relation relating firing frequencies to spatial wav e vectors, consistent

with experimental observations. While many other investigators also accept dipole layers to model EEG

activity, at least to the extent of recognizing activity perpendicular to laminae, they also demonstrate that

there are respectable candidates for mechanisms that might fundamentally be responsible for macroscopic

activity, other than those proposed here which detail synaptic dynamics of mesocolumnar interactions

(Amari, 1983; Anninoset al, 1983; Basar, 1980; Freeman, 1978; Klemm and Sherry, 1981; Steriade,

1981; Traub and Llina´s, 1979). For example, given the present lack of experimental knowledge, it is pos-

sible to formulate macroscopic neocortical activity in terms of statistics of either membrane or synaptic

microscopic neuronal activities, albeit that these two are obviously dependent on each other (Dudeket al,

1980). Therefore, the results of this statistical theory derived earlier (Ingber, 1985c) might be interpreted

either as suggesting that mesocolumnar activity instigates macroscopic activity, or rather as suggesting

that mesocolumnar activity strongly interacts with ongoing macroscopic activity that is instigated or sus-

tained by other mechanisms.

The two approaches outlined above, i.e., local mesocolumnar versus global non-mesocolumnar,

give rise to the important alternative conjectures suggested previously in this paper. Other studies also
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have proposed that EEG may be due to a combination of short-ranged and long-ranged interactions,

which combine to form a single dispersion relation with multiple branches (Nunez, 1989), as discussed in

Chapter 10.

It is plausible that studies of the origin of rhythmic EEG will give direct insight into related mecha-

nisms underlying evoked potentials. However, in contrast to the alpha rhythm and other gross EEG phe-

nomena being gauges of general alertness to process information, the time-locked averaged evoked poten-

tials appear to be a gauge of more selective attention to information being processed. Therefore, to derive

a plausible picture of the nature of evoked potentials, it is more likely that more details of local interaction

among columnar interactions must be included, such as those given below.

The first SMNI approach to scalp EEG assumed that the Euler-Lagrange variational limit of the

stochastic Lagrangian was a suitable averaging procedure over masses of neurons contributing to this rela-

tively coarse spatial phenomenon (Ingber, 1985c).

It should be noted that at this point in the development of our ‘bottom-up” description we have

overlapped with our initial “top-down” description, and therefore have provided a relatively first-princi-

ples approach to better understand these issues. We also show that most likely trajectories of the meso-

scopic probability distribution, representing averages over columnar domains, give a description of the

systematics of macroscopic EEG in accordance with experimental observations.

4.2.2. Euler-Lagrange variational equations

This calculation begins by considering the LagrangianLF , the Feynman midpoint-discretized

Lagrangian. The Euler-Lagrange variational equation associated withLF leads to a set of 12 coupled

first-order differential equations, with coefficients nonlinear inMG , in the 12 variables {

MG , ṀG , M̈G , ∇ MG , ∇ 2MG } in (r; t) space. In the neighborhood of extrema << MG >>, LF can be

expanded as a Ginzburg-Landau polynomial, i.e., in powers ofM E andM I . To inv estigate first-order lin-

ear oscillatory states, only powers up to 2 in each variable are kept, and from this the variational principle

leads to a relatively simple set of coupled linear differential equations with constant coefficients:

0 = δ LF = LF ,Ġ:t − δG LF
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≈ − f |G|M̈
|G| + f 1

G ṀG¬

− g|G|∇
2M |G| + b|G|M

|G| + b MG¬
, G¬ ≠ G ,

(. . .),Ġ:t = (. . .),ĠG′ Ṁ
G′ + (. . .),ĠĠ′ M̈

G′ ,

MG = MG− << MG >> , f 1
E = − f 1

I ≡ f . (14.40)

These equations are then Fourier transformed and the resulting dispersion relation is examined to

determine for which values of the synaptic parameters and of the normalized wav e-numberξ , the conju-

gate variable tor, can oscillatory states,ω(ξ ), persist. E.g., solutions are sought of the form

MG = ReMG
oscexp[−i(ξ ⋅ r − ωt)] ,

MG
osc(r, t) = ∫ d2ξ dω M̂

G
osc(ξ ,ω) exp[i(ξ ⋅ r − ωt)] . (14.41)

For instance, a typical example is specified by extrinsic sourcesJE = −2. 63 and JI = 4. 94,

N E = 125, N I = 25, V G = 10 mV, AG
E = 1. 75, AG

I = 1. 25, BG
G′ = 0. 25, andvG

G′ = φG
G′ = 0. 1 mV. The

synaptic parameters are within observed ranges (Shepherd, 1979), and theJG ’s are just those values

required to solve the Euler-Lagrange equations at the selected values ofMG . The global minimum is at

M E = 25 andM I = 5. This set of conditions yields (dispersive) dispersion relations

ωτ = ± { − 1. 86+ 2. 38(ξ ρ )2; −1. 25i + 1. 51i(ξ ρ )2 } , (14.42)

whereξ = |ξ |. The propagation velocity defined bydω/dξ is ∼ 1 cm/sec, taking typical wav enumbersξ to

correspond to macrocolumnar distances∼ 30ρ. Calculated frequenciesω are on the order of EEG fre-

quencies∼ 102 sec−1, equivalent toν = ω/(2π)= 16 cps (Hz). These mesoscopic propagation velocities

permit processing over sev eral minicolumns∼ 10−1 cm, simultaneous with the processing of mesoscopic

interactions over tens of centimeters via association fibers with propagation velocities∼ 600−900 cm/sec.

I.e., both intraregional and interregional information processing can occur within∼ 10−1 sec. Note that

this propagation velocity is not “slow”: Visual selective attention moves at∼ 8 msec/deg (Tsal, 1983),

which is ∼ 1/2 mm/sec, if a macrocolumn of∼ mm2 is assumed to span 180 deg. This suggests that near-

est-neighbor interactions play some part in disengaging and orienting selective attention.
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5. DIRECT FIT OF SMNI TO EEG

SMNI can give an even more detailed description of EEG than that using the Euler-Lagrange limit

of the Lagrangian. The full SMNI probability distribution can be brought to bear on raw stochastic EEG

data. A pilot project gav e explicit details on how this can be accomplished (Ingber, 1991b). We used the

collection of EEG spontaneous and averaged evoked potential (AEP) data from a multi-electrode array

under a variety of conditions. We fit data collected under a project sponsored by the National Institute on

Alcohol Abuse and Alcoholism (NIAAA) project (Holden, 1991; Porjesz and Begleiter, 1990).

5.1. Algebraic development

We take Eq. (14.6) as the basic probability distribution to fit this data. We also take advantage of

and extend the results gained for the STM analysis discussed previously, e.g., the nature of the parabolic

well of the Lagrangian. Accordingly, we assume a linear relationship (about minima to be fit to data)

between theMG firing states and the measured scalp potentialΦν , at a giv en electrode siteν representing

a macroscopic region of neuronal activity:

Φν − φ = aM E + bM I , (14.43)

where { φ, a, b } are constants determined for each electrode site. In the prepoint discretization, the

postpointMG(t + ∆t) moments are given by

m ≡< Φν − φ >= a < M E > +b < M I >

= agE + bgI ,

σ 2 ≡< (Φν − φ)2 > − < Φν − φ >2= a2gEE + b2gII , (14.44)

where theMG-space driftsgG , and diffusionsgGG′ , hav e been derived above. Note that the macroscopic

drifts and diffusions of theΦ’s are simply linearly related to the nonlinear mesoscopic drifts and diffu-

sions of theMG ’s. For the prepointMG(t) firings, we assume the same linear relationship in terms of{

φ, a, b } .



Statistical mechanics of multiple scales ... -49- Lester Ingber

The data we are fitting are consistent with invoking the “centering” mechanism discussed above.

Therefore, for the prepointM E (t) firings, we also take advantage of the parabolic trough derived for the

STM Lagrangian, and take

M I (t) = cM E (t) ,  (14.45)

where the slopec is determined for each electrode site. This permits a complete transformation fromMG

variables toΦ variables.

Similarly, as appearing in the modified threshold factorFG given in Eq. (14.26), each regional

influence from electrode siteµ acting at electrode siteν , giv en by afferent firingsM‡E , is taken as

M‡E
µ→ν = dν M E

µ (t − Tµ→ν ) ,  (14.46)

wheredν are constants to be fitted at each electrode site, andTµ→ν is the delay time estimated for inter-

electrode signal propagation, based on current anatomical knowledge of the neocortex and of velocities of

propagation of action potentials of long-ranged fibers, typically on the order of one to several multiples of

τ = 5 msec. Some terms in whichd directly affects the shifts of synaptic parametersBG
G′ when calculating

the centering mechanism also contain long-ranged efficacies (inverse conductivities)B∗ E
E ′ . Therefore, the

latter were kept fixed with the other electrical-chemical synaptic parameters during these fits. In future

fits, we will experiment taking theT ’s as parameters.

This defines the conditional probability distribution for the measured scalp potentialΦν ,

Pν [Φν (t + ∆t)|Φν (t)] =
1

(2πσ2∆t)1/2
exp(−Lν ∆t) ,

Lν =
1

2σ 2
(Φ̇ν − m)2 , (14.47)

wherem andσ have been derived just above. As discussed above in defining macroscopic regions, the

probability distribution for all electrodes is taken to be the product of all these distributions:

P =
ν
Π Pν ,
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L =
ν
Σ Lν . (14.48)

Note that we are also strongly invoking the current belief in the dipole or nonlinear-string model.

The model SMNI, derived forP[MG(t + ∆t)|MG(t)], is for a macrocolumnar-averaged minicolumn;

hence we expect it to be a reasonable approximation to represent a macrocolumn, scaled to its contribu-

tion to Φν . Hence we useL to represent this macroscopic regional Lagrangian, scaled from its meso-

scopic mesocolumnar counterpartL. Howev er, the above expression forPν uses the dipole assumption to

also use this expression to represent several to many macrocolumns present in a region under an electrode

of extent on the order of cm: A macrocolumn has a spatial extent of about a millimeter. A scalp electrode

has been shown, under extremely favorable experimental circumstances, to have a resolution as small as

several millimeters, directly competing with the spatial resolutions under similar circumstances attributed

to magnetoencephalography (Cohenet al, 1990), but often most data collected under typical conditions

represents a resolution more on the order of up to several centimeters, many macrocolumns. Still, it is

often argued that typically at least several tens of macrocolumns firing coherently account for the electric

potentials measured by one scalp electrode (Nunez, 1990). Then, we are testing this model to see if the

potential will scale to a representative region of many macrocolumns. The results presented here seem to

confirm that this approximation is in fact quite reasonable.

6. MESOSCOPIC NEURAL NETS

As noted early in this development (Ingber, 1981c; Ingber, 1985b), basing information processing at

macroscopic scales on processes at mesoscopic scales leads to new kinds of computational algorithms,

such as proposed here. This approach is consistent with the view that many complex nonlinear nonequi-

librium systems develop mesoscopic intermediate structures, e.g., to develop a Gaussian-Markovian

statistics to maximize the flow of information (Graham, 1978; Haken, 1983). Viewing the neocortex as

the prototypical information processor, a mesoscopic-neural-network (MNN) algorithm can be developed

to store and predict patterns of activity inherent in many such nonlinear stochastic multivariate systems.
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6.1. SMNI-MNN

While the development of nearest-neighbor interactions into a potential termV ′ was useful to

explore EEG dispersion relations (Ingber, 1984b; Ingber, 1985c), for present purposes this is not neces-

sary and, as permitted in the development of SMNI, we simply incorporate nearest-neighbor interactions

with firings M†G by again redefiningFG in Eq. (14.26).

FG =
V G − v|G|

G′ T
|G|
G′

((π[(v|G|
G′ )

2 + (φ|G|
G′ )

2]T |G|
G′ ))1/2 ,

T |G|
G′ = a|G|

G′ N G′ +
1

2
A|G|

G′ MG′ + a†|G|
G′ N†G′ +

1

2
A†|G|

G′ M†G′ + a‡|G|
G′ N‡G′ +

1

2
A‡|G|

G′ M‡G′ ,

a†G
G′ =

1

2
A†G

G′ + B†G
G′ ,

A‡I
E = A‡E

I = A‡I
I = B‡I

E = B‡E
I = B‡I

I = 0 , a‡E
E =

1

2
A‡E

E + B‡E
E . (14.49)

This result presents an SMNI-MNN as a set of nodes, each described by a short-time probability

distribution interacting with the other nodes. A set of 1000 such nodes represents a macrocolumn, scaled

to represent a “dipole” current source (Ingber, 1991b). A circuitry among patches of macrocolumns rep-

resents a typical circuit of activity correlated to specific behavioral states as recorded by EEG under spe-

cific experimental or clinical conditions. We are applying SMNI-MNN to learn patterns of an individual’s

EEG, and then to predict possible future states of brain activities or anomalies, etc. The methodology

used is quite general, and will be described generically.

6.2. Generic MNN

We now generalize this SMNI-MNN, generated from Eq. (14.22), to model other large-scale non-

linear stochastic multivariate systems, by considering general drifts and diffusions to model such systems,

now lettingG represent an arbitrary number of variables. Ideally, these systems inherently will be of the

Fokker-Planck type,
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∂P

∂t
=

∂(−gG P)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ . (14.50)

The topology, geometry, and connectivity of MNN can of course be generalized. E.g., we need not be

restricted to nearest-neighbor interactions, although this is simpler to implement especially on parallel

processors. Also, we can include “hidden layers” to increase the complexity of MNN, although the inclu-

sion of nonlinear structure in the driftsgG and diffusionsgGG′ may make this unnecessary for many sys-

tems. A detailed presentation of using “learning” and “prediction” of information has been given for

these systems (Ingber, 1992).

7. CONCLUSION

7.1. Extracting signal from noise

There are several factors in the SMNI development that support optimism for extracting more sig-

nal from noise than is currently possible.

7.1.1. Logical and testable development across multiple scales

In the course of a logical, nonlinear, stochastic development of aggregating neuronal and synaptic

interactions to larger and larger scales, opportunities are taken to use techniques of mathematical physics

to overcome several technical hurdles. Paradigms and metaphors from other disciplines do not substitute

for logical SMNI development.

7.1.2. Validity across multiple scales

The SMNI theoretical model has independent validity in describing EEG dispersion relations, sys-

tematics of short-term memory, velocities of propagation of information across neocortical fields, recency

versus primacy effects, etc. Fits of such models to data should do better in extracting signal from noise

thanad hoc phenomenological models.
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7.1.3. Use of ASA and PATHINT on nonlinear stochastic systems

ASA enables the fitting of quite arbitrary nonlinear stochastic models to such data as presented by

EEG systems. This means that functional dependences in the noise itself (the diffusion matrix) as well as

the functional dependences in the driving terms (the drift vector) can be fit directly. A new C-language

code, PATHINT, has been developed to handlen-dimensional Fokker-Planck-type systems, using the

algorithm mentioned previously. Once fitted, PATHINT can evolve the system, testing long-time correla-

tions between the model(s) and the data, as well as serving to predict events.

7.1.4. Inclusion of short-range and long-range interactions

SMNI proposes that models to be fitted to data include models of activity under each electrode, e.g.,

due to short-ranged neuronal fibers, as well as models of activity across electrodes, e.g., due to long-

ranged fibers.

7.1.5. Riemannian invariants

Yet to explore are the ramifications of using the derived (not hypothesized) Riemannian metric

induced by multivariate Fokker-Plank-type systems (Ingber, 1982; Ingber, 1983b; Ingber, 1988a). This

seems to form a natural invariant measure of information, that could/should be used to explore flows of

information between neocortical regions.

7.1.6. Renormalization of attenuated frequencies

The SMNI approach shows how to “renormalize” the spatial activity to get a model that more

closely matches the experimental situation of scalp measurement, wherein there is attenuation of ranges

of wav e numbers (Nunez, 1981a). While SMNI is most logically tested using data collected from brain

surface recordings, the necessity and utility of performing non-invasive EEG scalp recordings argues

strongly for further developing SMNI to extract better signal out of noise from scalp recordings.
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7.2. Importance of modeling at multiple scales

To learn more about complex systems, we inevitably must form functional models to represent huge

sets of data. Indeed, modeling phenomena is as much a cornerstone of 20th century science as is collec-

tion of empirical data (Jammer, 1974). The ability to fit data to these particular SMNI functional forms

goes beyond nonlinear statistical modeling of data. The plausibility of the SMNI model, as emphasized in

this and previous SMNI papers, as spanning several important neuroscientific phenomena, suggests that

the fitted functional forms may yet help to explicate some underlying biophysical mechanisms responsible

for the normal and abnormal behavioral states being investigated, e.g., excitatory and/or inhibitory influ-

ences, background electromagnetic influences from nearby firing states (by using SMNI synaptic conduc-

tivity parameters in the fits).

Analyzing, understanding, and attempting to predict neocortical phenomena at the spatial scales

encountered in EEG scalp recordings involves measuring firings from millions of neurons; in intracortical

measurements at least tens of thousands of neurons are involved. SMNI approaches such scales as new

systems with emergent phenomena. Just as physics and chemistry could not have progressed this century

if all theoretical and experimental research were inappropriately constrained to be understood at the level

of quantum mechanics (or quarks or strings), so neuroscience must soon accept that all brain phenomena

is not best understood or perhaps understood at all at the level of simple neuron-neuron interactions (or

membrane dynamics or macromolecular interactions). Different scales present new complex systems that

must be approached as such and often with different approaches.

For example, both artificial neural networks (ANN) and SMNI structures are represented in terms

of units with algebraic properties greatly simplifying specific realistic neuronal components. Of course,

there is a clear logical difference between considering a small ensemble of simple ANN units (each unit

representing an “average” neuron) to study the properties of small ensembles of neurons, versus consider-

ing distributions of interactions between model neurons to develop a large ensemble of units (each unit

representing a column of neurons) developed by SMNI to study properties of large ensembles of columns;

only the latter has a chance for any statistical justification. Unlike SMNI, ANN models may yield

insights into specific mechanisms of learning, memory, retrieval, information processing among small

ensembles of model neurons, etc. However, consider that there are several million neurons located under

a cm2 area of neocortical surface. Current estimates are that 1 to several percent of coherent neuronal
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firings can account for the amplitudes of electric potential measured on the scalp. This translates into

measuring firings of hundreds of thousands of neurons as contributing to activity measured under a typical

electrode. Even when EEG recordings are made directly on the brain surface, tens of thousands of neu-

rons are contributing to activity measured under electrodes. ANN models cannot approach the order of

magnitude of neurons participating in phenomena at the scale of EEG, just as neither ANN nor SMNI can

detail relatively smaller scale activity at the membrane or atomic levels. Attempts to do so likely would

require statistical interpretations such as are made by SMNI; otherwise the output of the models would

just replace the data collected from huge numbers of neuronal firings—a regression from 20th century

Science back to Empiricism.

While ANN models use simplified algebraic structures to represent real neurons, SMNI models

develop the statistics of large numbers of realistic neurons representing huge numbers of synaptic interac-

tions—there are 104 to 105 synapses per neuron. Furthermore, unlike most ANN approaches, SMNI

accepts constraints on all its macrocolumnar averaged parameters to be taken from experimentally deter-

mined ranges of synaptic and neuronal interactions; there are no unphysical parameters. The stochastic

and nonlinear nature of SMNI development is directly derived from experimentally observed synaptic

interactions and from the mathematical development of observed minicolumns and macrocolumns of neu-

rons. SMNI has required the use of mathematical physics techniques first published in the late 1970’s in

the context of developing an approach to multivariate nonlinear nonequilibrium statistical mechanics.

7.3. Modelling EEG with SMNI

In order to detail such a model of EEG phenomena we found it useful to seek guidance from “top-

down” models; e.g., the nonlinear string model representing nonlinear dipoles of neuronal columnar activ-

ity. In order to construct a more detailed “bottom-up” model that could give us reasonable algebraic func-

tions with physical parameters to be fit by data, we then needed to bring together a wealth of empirical

data and modern techniques of mathematical physics across multiple scales of neocortical activity. At

each of these scales, we had to derive and establish reasonable procedures and submodels for climbing

from scale to scale. Each of these submodels could then be tested against some experimental data to see

if we were on the right track. For example, at the mesoscopic scale we checked the consistency of SMNI

with known aspects of visual and auditory short-term memory; at the macroscopic scale we checked
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consistency with known aspects of EEG and the propagation of information across the neocortex. Here,

we have demonstrated that the currently accepted dipole EEG model can be derived as the Euler-Lagrange

equations of an electric-potential Lagrangian.

The theoretical and experimental importance of specific scaling of interactions in the neocortex has

been quantitatively demonstrated: We hav e shown that the explicit algebraic form of the probability distri-

bution for mesoscopic columnar interactions is driven by a nonlinear threshold factor of the same form

taken to describe microscopic neuronal interactions, in terms of electrical-chemical synaptic and neuronal

parameters all lying within their experimentally observed ranges; these threshold factors largely determine

the nature of the drifts and diffusions of the system. This mesoscopic probability distribution has success-

fully described STM phenomena and, when used as a basis to derive the most likely trajectories using the

Euler-Lagrange variational equations, it also has described the systematics of EEG phenomena. More

recently, we hav e taken the mesoscopic form of the full probability distribution more seriously for macro-

scopic interactions, deriving macroscopic drifts and diffusions linearly related to sums of their (nonlinear)

mesoscopic counterparts, scaling its variables to describe regional interactions correlated with observed

electrical activities measured by electrode recordings of scalp EEG, with apparent success. These results

give strong quantitative support for an accurate intuitive picture, portraying neocortical interactions as

having common algebraic or physics mechanisms that scale across quite disparate spatial scales and func-

tional or behavioral phenomena, i.e., describing interactions among neurons, columns of neurons, and

regional masses of neurons.

The SMNI methodology also defines an algorithm to construct a mesoscopic neural network

(MNN), based on realistic neocortical processes and parameters, to record patterns of brain activity and to

compute the evolution of this system. Furthermore, this new algorithm is quite generic, and can be used

to similarly process information in other systems, especially, but not limited to, those amenable to model-

ing by mathematical physics techniques alternatively described by path-integral Lagrangians, Fokker-

Planck equations, or Langevin rate equations. This methodology is made possible and practical by a con-

fluence of techniques drawn from SMNI itself, modern methods of functional stochastic calculus defining

nonlinear Lagrangians, very fast simulated reannealing (ASA), and parallel-processing computation.
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7.4. Work in progress

There is much more work to be done. We hav e not yet addressed the “renormalization” issues

raised, which are based on the nature of EEG data collection and which are amenable to this framework.

While the fitting of these distributions certainly compacts the experimental data into a reasonable alge-

braic model, a prime task of most physical theory, in order to be useful to clinicians (and therefore to give

more feedback to theory) even more data reduction must be performed. We must experiment with path-

integral calculations and some methods of “scientific visualization” to determine what minimal, or at least

small, set of “signatures” might suffice, which would be faithful to the data yet useful to clinicians. We

also must examine the gains that might be made by putting these codes onto a parallel processor, which

might enable real-time diagnoses based on noninvasive EEG recordings.

It seems reasonable to speculate on the evolutionary desirability of developing Gaussian-Markovian

statistics at the mesoscopic columnar scale from microscopic neuronal interactions, and maintaining this

type of system up to the macroscopic regional scale. I.e., this permits maximal processing of information

(Graham, 1978), an entity which can be codified as invariants in a Riemannian geometry induced by the

stochastic system. This concept must be tested against experimental data.

There is much work to be done, but we believe that modern methods of statistical mechanics have

helped to point the way to promising approaches.
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FIGURE CAPTIONS

FIG. 14-1. Scales illustrated. Illustrated are three biophysical scales of neocortical interactions:

(a), (a* ), (a’) microscopic neurons; (b) and (b’) mesocolumnar domains; (c) and (c’) macroscopic regions.

In (a* ) synaptic interneuronal interactions, averaged over by mesocolumns, are phenomenologically

described by the mean and variance of a distributionΨ. Similarly, in (a) intraneuronal transmissions are

phenomenologically described by the mean and variance ofΓ. Mesocolumnar averaged excitatory (E)

and inhibitory (I ) neuronal firings are represented in (a’). In (b) the vertical organization of minicolumns

is sketched together with their horizontal stratification, yielding a physiological entity, the mesocolumn.

In (b’) the overlap of interacting mesocolumns is sketched. In (c) macroscopic regions of the neocortex

are depicted as arising from many mesocolumnar domains. These are the regions designated for study

here. (c’) sketches how regions may be coupled by long-ranged interactions.

FIG. 14-2. Minima structure of nonlinear Lagrangian. Examination of the minima structure of the

spatially averaged and temporally averaged Lagrangian provides some quick intuitive details about the

most likely states of the system. This is supported by further analysis detailing the actual spatial-temporal

minima structure. Illustrated is the surface of the static (time-independent) mesoscopic neocortical

LagrangianL over the excitatory-inhibitory firing plane (M E − M I ), for a specific set of synaptic parame-

ters. All points on the surface higher than 5× 10−3/τ have been deleted to expose this fine structure.

FIG. 14-3. Nearest neighbors. Nearest-neighbor interactions between mesocolumns are illustrated.

Afferent minicolumns of∼ 102 neurons are represented by the inner circles, and efferent macrocolumns of

∼ 105 neurons by the outer circles. Illustrated are the nearest-neighbor interactions between a mesocol-

umn, represented by the thick circles, and its nearest neighbors, represented by thin circles. The area out-

side the outer thick circle represents the effective number of efferent macrocolumnar nearest-neighbor

neurons. I.e., these neurons outside the macrocolumnar area of influence of the central minicolumn are

contacted through interactions with neurons in the central macrocolumn.

FIG. 14-4. Valleys of STM. Contours of the Lagrangian illustrate “valleys” that trap firing-states of

mesocolumns. (τ LBC can be as large as 103.) These valleys are candidates for short-term memories.

Detailed calculations support the identification of the inner valleys with stable short-term-memory states

having durations on the order of tenths of a second. (a) Contours for values less than 0.04 are drawn for
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τ LBC, where BC designates the balanced case of firing states being at a moderate level of excitatory and

inhibitory firings. The M E axis increases to the right, from−N E = −80 to N E = 80. The M I axis

increases to the right, from−N I = −30 to N I = 30. In each cluster, the smaller values are closer to the

center. Note the absence of any closed contours in the interior space. (b) Contours for values less than

0.04 are drawn forτ LBC′ , where BC′ designates that the “centering mechanism” has been turned on. A

right brace} signifies enclosure of other nested closed contours above and to the left of this brace.

FIG. 14-5. Modeling the visual cortex STM. WhenN = 220, modeling the number of neurons per

minicolumn in the visual neocortex, then only clusters containing 2−4 up to 5−6 minima are found, con-

sistent with visual STM. These minima are narrower, consistent with the sharpness required to store

visual patterns.
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