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Noninvasve Recordings of Brain Activity

There are several noninvasive experimental or clinical methods of recording
brain activity, e.g.,
electroencephalography (EEG)
magnetoencephalography (MEG)
magnetic resonance imaging (MRI)
positron-emission tomography (PET)
single-photon-emission-computed tomography (SPECT)

While MRI, PET, and SPECT offer better three-dimensional presentations of
brain activity, EEG and MEG offer superior temporal resolutions on the order of
neuronal relaxation times, i.e., milliseconds.

Recently, it also has been shown that EEG and MEG offer comparable spatial
resolutions on the order of several millimeters; a square millimeter is the
approximate resolution of a macrocolumn representing the activity of
approximately 1®neurons. This is not quite the same as possessing the ability to
discriminate among alternative choices of sets of dipoles giving rise to similar
electric fields.
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EEG Electrodes

A typical map of EEG electrode sites is given as below. Many neuroscientists
are becoming aware that higher electrode densities are required for many studies.
For example, if each site below represented 5 closely spaced electrodes, a
numerical Laplacian can offer relatively reference-free recordings and better
estimates of localized sources of activity.

FRONT

Inlon

TOP OF HEAD
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EEG Power Spectra

Limiting cases of linear (macroscopic) theories of intracortical interaction
predict local wave phenomena and obtain dispersion relations with typical wave
numbersk = 10 to 100 crit and dominant frequencies in the general range of
human spontaneous EEG (1-20 Hz).

However, human scalp potentials are spatially filtered by both distance and
tissue between cortical current sources and surface electrodes so that scalp EEG
power is attenuated to about 1%.

The “alpha mode” (9.5 Hz) is consistent with standing waves, whereas the
“mu mode” (8.0 Hz) is more consistent with posterior to anterior traveling waves
(ky) across the electrode array.
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High resolution estimate of spectral density functidtk|w)|* for EEG recorded

from an awake human subject (eyes closed) using 16 scalp recording sites over the
right hemisphere. (a) Mu rhythm at 8.0 Hz. (b) Alpha rhythm at 9.5 Hz from the
same 1 minute record.

Figure courtesy of Paul Nunez
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Single Electrode Recording of Dipole Activity

Macrocolumns may be considered as “point sources” of dipole-like
interactions, mainly due to coherent current flow of top-layer afferent interactions
to bottom-layer efferent interactions. However, there is a problem of non-
uniqueness of the electric potential that arises from such source activity; Laplacian
measurements can help to address this problem.

1-1.5cm

W

Figure courtesy of Paul Nunez
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EEG of Mechanical String

The mechanical string has linear properties and is connected to local nonlinear
oscillators. Local cortical dynamics in dipole layers is here considered analogous
to the nonlinear mechanical oscillators which influence global modes.
Macroscopic scalp potentials are analogous to the lower modes of string
displacement.

For purposes of illustration, a linear string with attached oscillators, e.g.,
nonlinear springs may be compared to a one-dimensional strip of neocortex:
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String Equation
The following equation describes the string displacerient
e, 0
ot? 0x?
for a linear array (length) of sensors (electrodes) of sige Thus, wave-numbers
in the approximate range
T T
—<ks—
I S

can be observed. If the center to center spacing of sensors & latsdls, where
M = (number of sensors - 1§,= 2n7/R for n={1, 2, 3, - -} (string forms closed
loop), and sensors span half the string (br&in)R/2, then

1<nsM

for some maximunM, which is on the order of 3 to 7 in EEG studies using 16 to
64 electrodes in two-dimensional arrays on the cortical surface.

For scalp recordings, the wavenumber restriction is more severe. For
example, a typical circumference of the neocortex following a coordinate in and
out of fissures and sulci R=100 cm (about 50 cm along the scalp surface). If
EEG power is mostly restricted to< 0.5 cmi?, only modesn < 4 are observed,
independent of the number of electrodes.

Theory should be able to be similarly “filtered,” e.g., in order to properly fit
EEG data.

+[wh + f(P)P =0,
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String Observables
The string displacement (potential within the cortex) is given by
(00]
Pd(x,t) = 2 G,(t) sink, X,
n=1
but the observed is given by

M
DT (x, 1) = 3 G, (t) sinkyx .
n=1
In the linear case, where(®) = 0 (equal linear oscillators to simulate local
circuit effects in cortical columns), then
e L0,
-C +wi® =0,
ot2 ox2 0

00
® => A,cosw,tsink,x,
n=1

w? = Wi +c?K3,

giving a dispersion relatiow,(k,). For the nonlinear casé(®) # 0, the restoring

force of each spring is amplitude-dependent. In fact, local oscillators may undergo
chaotic motion.

What can be said about
M
dT(x,1) = 3 G, (t) sink,X ,
n=1

the macroscopic observable displacement potential on the scalp or cortical surface?

It would seem tha®' should be described as a linear or quasi-linear variable,
but influenced by the local nonlinear behavior which crosses the hierarchical level
from mesoscopic (columnar dipoles) to macroscopic.

How can this intuition be mathematically articulated, for the purposes of
consistent description as well as to lay the foundation for detailed numerical
calculations?
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SMNI DEVELOPMENT—*BOTTOM UP”
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Scales lllustrated

lllustrated are three biophysical scales of neocortical interactions: Jaa{g
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(C’) macroscopic
regions. In (a) synaptic interneuronal interactions, averaged over by
mesocolumns, are phenomenologically described by the mean and variance of a
distribution Y.  Similarly, in (a) intraneuronal transmissions are
phenomenologically described by the mean and variande. dflesocolumnar
averaged excitatoryE() and inhibitory () neuronal firings are represented in (a’).
In (b) the vertical organization of minicolumns is sketched together with their
horizontal stratification, yielding a physiological entity, the mesocolumn. In (b’)
the overlap of interacting mesocolumns is sketched. In (c) macroscopic regions of
neocortex are depicted as arising from many mesocolumnar domains. These are
the regions designated for study here. (c’) sketches how regions may be coupled
by long-ranged interactions.

102 um

3

T M >0

l M <0
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SMNI vs Artificial Neural Networks

Feature SMNI ANN

spatial unit minicolumn neuron

spatial scale 10- 10° neurons 18- 10° neurons

large sets of neurons | pre-analysis postanalysis

neuronal features statistical constraints neuronal mechanisms
columnar features columnar interactions  columnar formation
scalp EEG applicationg yes probably not
intra-cortical EEG yes yes

spike EEG no yes

While ANN models use simplified algebraic structures to represent real
neurons, SMNI models develop the statistics of large numbers of realistic neurons
representing huge numbers of synaptic interactions—there ate 10 synapses
per neuron. Furthermore, unlike most ANN approaches, SMNI accepts constraints
on all its macrocolumnar averaged parameters to be taken from experimentally
determined ranges of synaptic and neuronal interactions; there are no unphysical
parameters. The stochastic and nonlinear nature of SMNI development is directly
derived from experimentally observed synaptic interactions and from the
mathematical development of observed minicolumns and macrocolumns of
neurons.
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Microscopic Neurons

A derivation has been given of the physics of chemical inter-neuronal and
electrical intra-neuronal interactions. This derivation generalized a previous
similar derivation. The derivation yields a short-time probability distribution of a
given neuron firing due to its just-previous interactions with other neurons. Within
r;1b—10 msec, the conditional probability that neujdires (o; = +1) or does not
fire (0; = -1), given its previous interactions wikmeurons, is

0, = W= exp(—a,— Fj) |
: exp(F;) +expCF))
VJ —%ajDijk

F. =
j 7
("% e (Vik? + @c2))

1
A = Aok +1)+ Bj .

" represents the “intra-neuronal” probability distribution, e.g., of a
contribution to polarization achieved at an axon given activity at a synapse, taking
into account averaging over different neurons, geometries,Yetepresents the
“inter-neuronal” probability distribution, e.g., of thousands of quanta of
neurotransmitters released at one neuron’s postsynaptic site effecting a
(hyper-)polarization at another neuron’s presynaptic site, taking into account
interactions with neuromodulators, etc. This development is tru€ féoisson,
and for¥ Poisson or Gaussian.

Vj is the depolarization threshold in the somatic-axonal regignjs the
induced synaptic polarization & or | type at the axon, ang is its variance.
The efficacyaj, related to the inverse conductivity across synaptic gaps, is
composed of a contributioA, from the connectivity between neurons which is
activated if the impingind-neuron fires, and a contributiddy, from spontaneous
background noise.

Even at the microscopic scale of an individual neuron, with sedfa um,
this conceptual framework assumes a great deal of statistical aggregation of
molecular scales of interaction, e.g., of the biophysics of membranes, of thickness
~5x 10 um, composed of biomolecular leaflets of phospholipid molecules.
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Mesoscopic Aggregation

This microscopic scale itself represents a high aggregation of sub-microscopic
scales, aggregating effects of tens of thousands of quanta of chemical transmitters
as they influence the 103 um This microscopic scale is aggregated up to the
mesoscopic scale, using

Pq(q) = j doh dopPy,q,(A1, 92)0[d — (a1 + 02)] -

The first papers using this approach to aggregate neuronal interactions
appeared idournal of Social and Biological Structures 1981, inPhysica Din
1982, and irPhysical Review & 1983.

The SMNI approach can be developed without recourse to borrowing
paradigms or metaphors from other disciplines. Rather, in the course of a logical,
nonlinear, stochastic development of aggregating neuronal and synaptic
interactions to larger and larger scales, opportunities are taken to use techniques of
mathematical physics to overcome several technical hurdles. After such
development, advantage can be taken of associated collateral descriptions and
intuitions afforded by such mathematical and physics techniques as they have been
used in other disciplines, but paradigms and metaphors do not substitute for logical
SMNI development.
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Mesoscopic Interactions

Microscopic Scale
Retain independence of excitatogy) @nd inhibitory () interactions
Retain nonlinear development of probability densities
Mesoscopic Scale
Convergence<->Divergence — minicolumnar<->macrocolumnar
Nearest-neighbor (NN) interactions summariZzé\interactions
Macroscopic scale
Include long-ranged interactions, constraints on mesocolumns

For the purposes of mesoscopic and macroscopic investigation, this biological
picture can be cast into an equivalent network. However, theeaspects must
not be simply cast away.
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Mathematical Development

A derived nesoscopic Lagrangiah,, defines the short-time probability
distribution of firings in a minicolumn, composed @0’ neurons, given its just
previous interactions with all other neurons in its macrocolumnar surrdansd.
used to represent excitator§)(and inhibitory () contributions. G designates
contributions from bothe andl .

Pu _|'| PGIMC(r;t+1)MC(r';t)]

N
=20 aj—ME(r;t+r)gfgzaj—|v|'(r;t+r)D|‘|pa.
o OE i oy
~H(angGG) 2 expNrL$)

Pu=(2r7) g2 exp-NrLy) ,

—

=Ly +Ly =(@2N) 1(|V| _gG)gGG(M —gG') +MCJg/(2NT) - V',

=3 V"&(pIM®)?,
G

|<

g° = r7Y(M® + N® tanhF°) ,

0°¢ = (goe) 1 = 08 " INCsechKFC |

g = det@ca) .

(VG - QlSVISING - % ASNEIM®)

FC = |
(m[(vISH2 + (#Sh2)(alSINC + % A|GG,|MG'))1/2

= } Ag, + BG, ,
2

where Ag and Bg, are minicolumnar-averaged inter-neuronal synaptic efficacies,
vg andgg are averaged means and variances of contributions to neuronal electric
polarizations. M® and N€ in F® are afferent macrocolumnar firings, scaled to
efferent minicolumnar firings byN/N * (110", where N * is the number of
neurons in a macrocolumilo®. Similarly, AS and BS have been scaled by
N */NL0® to keepF € invariant.
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Inclusion of Macroscopic Circuitry

The most important features of this development are described by the
LagrangianL® in the negative of the argument of the exponential describing the
probability distribution, and the “threshold factoF® describing an important
sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to
numerically include interactions among macrocolumns, lJgeterms can be
dropped, and more realistically replaced by a modified threshold fa€tor

’ 1 ! ! 1 I
G G|\ ,IGI NG G|, ,/G|Ipng G tE| E nIE tE\,E npIE
(V€ - aSVSING - 5 ASNVEIME - alvE N¥E - S ApVEMTE)

FC =
T 1 T T 1 T !
(m[(vISH2 + (#Sh2)(alSINC + ; ACIMG + afF N¥E' + 5 AFEMHE))L2

1 _ 1 pME |, piE
aEr _EAEI +BE1 .

Here, afferent contributions fromN*E long-ranged excitatory fibers, e.g.,
cortico-cortical neurons, have been added, wi¢te might be on the order of
10% of N": Of the approximately 18 to 10! neocortical neurons, estimates of
the number of pyramidal cells range from 1/10 to 2/3. Nearly every pyramidal cell
has an axon branch that makes a cortico-cortical connection; i.e., the number of
cortico-cortical fibers is of the order 0

This is further modified for use in MNN.
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Equivalent Nearest-Neighbor Interactions

Nearest-neighbor (NN) interactions between mesocolumns are illustrated.
Afferent minicolumns ofL0? neurons are represented by the inner circles, and
efferent macrocolumns @fL0° neurons by the outer circles. lllustrated are the NN
interactions between a mesocolumn, represented by the thick circles, and its
nearest neighbors, represented by thin circles. The area outside the outer thick
circle represents the effective number of efferent macrocolumnar nearest-neighbor
neurons. l.e., this is the number of neurons outside the macrocolumnar area of
influence of the central minicolumn.

This approximation, albeit successful in the 19B8ysical Review A
calculations, can be replaced by a more sophisticated algorithm, MNN, published
in Physical Review A Rapid Communicatiomg.992.
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Minima Structure of Nonlinear Lagrangian

Examination of the minima structure of the spatially-averaged and temporally-
averaged Lagrangian provides some quick intuitive details about most likely states
of the system. This is supported by further analysis detailing the actual spatial-
temporal minima structure. lllustrated is the surface of the static (time-
independent) mesoscopic neocortical Lagrandiaover the excitatory-inhibitory
firing plane M E - I\7I'), for a specific set of synaptic parameters. All points on the
surface higher than$1073/7 have been deleted to expose this fine structure.

(-125,25)

(125,-25)

(125,25)
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MATHEMATICAL AND NUMERICAL ASPECTS
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Induced Riemannian Geometry

A Riemannian geometry is derived as a consequence of nonlinear noise,
reflecting that the probability distribution is invariant under general nonlinear
transformations of these variables.

This becomes explicit under a transformation to the midpoint discretization, in
which the standard rules of differential calculus hold forsgmaedistribution:

MC(Ey) = = > (M S +MS), MC(E) = (MS, - M8)e,
F”>=r|P,P=j---jDMexp(—§AtLFs),
v s=0

DM = gg?(2mAt)™? r| g [ 2t)2dMS |
G=1

J'dl\/l - ZAMas,Mo _Mt ’Mu+1‘Mth

LF:%(MG—hG)gGG.(M ~hC)+ - Lhe .+ RIB-V

[]g= of -1

oMG "’
1 _ ,
hG — gG _ E g 1/2(91/2gGG),G' ,
Jee = (9°°) 7,

gs[MG(t_s)ft_s] = det@cc)s Os, = gs[Ms+1r ts] ,
®.q = W% + FEeh® = g (gH2h0) g
rJK =g [IK, L] = LF(gJL,K +0kL,g ~9uk,L)

R=g"Ry. = g0’ Reyr

1
ReskL = > (OFk oL ~ 93k, FL ~ OFL, 0k + QoL rk) + gMN(I—II\:/IK rS\IL - FMLF\'}IK) :
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Calculation of Information
Information is well defined in terms of a path integral:

| =ID'\7' P In(P/P)
with respect to a reference distriton P. Like the probability distributionP

which defines it, information also is an invariant under general nonlinear
transformations.

Some investigators have tried to directly fit statistical white-noise models of
mutual information under different electrodes. SMNI first fits observables (electric
potentials or current flows) to probability distributions, describing inter-electrode
interactions via long-ranged fibers and intra-electrode interactions via short-ranged
fibers, before calculating the information.

For example, sensory cortex may transmit information to motor cortex,
although they have somewhat different neuronal structures or neuronal languages.
This information flow can be relatively independent of information flows that take
place at finer resolutions, e.g., across a subset of synaptic gaps or individual
neurons.

The mathematics required to process these stochastic nonlinear forms to
describe multivariate, multiplicative noise, Gaussian Markovian systems was
developed in the late 1970's in the mathematical physics literature. This
neocortical system was the first physical system to utilize these techniques. Since
then, they have been used for studies in nuclear phyRgsical Revie C & D
1984-1986), financePhysical Review A990), and large-scale DoD simulations
(Mathematical and Computer Modellid®91).
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Measures of Nonlinear Nonequilibrium

“Momentum” = M° = _ oL
~ 9(@MEGC/at)
“Mass” = = oL
~ 9e6 = 5aME/at)a(@aMC o)
Force” = MG
oL 4 oL

“F=ma”. oL=0=—~ - — —~——,
OMG 0ot d(0MC/at)
where M® are the variables antl is the Lagrangian. These physical entities
provide another form of intuitive, but quantitatively precise, presentation of these
analyses.
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Representations of Path Integral

The Langevin Rate-Equati@xhibits a stochastic equation, wherein drifts can
be arbitrarily nonlinear functions, and multiplicative noise is added.

M(t + At - M(DRt F[M(D)]

. dMm

M=—[f,
dt

M=f+@n,

<n(t) >,=0, <n()n(t") >,= ot -t').
The Diffusion Equations another equivalent representation of Langevin

equations. The first moment “drift” is identified af, and the second moment
“diffusion,” the variance, is identified ag’”

oP _ 9(-fP) 162(@2P)
. oM 2 oMz

The Path-Integral Lagrangiarepresents yet another equivalent representation
of Langevin equations. Recently it has been demonstrated that the drift and
diffusion, in addition to possibly being quite general nonlinear functions of the
independent variables and of time explicitly, may also be explicit functions of the
distributionP itself.

P[Mac|M{] = (277G°At) 2 expAtL)

L=(M - f)%(2¢%) ,
P[Mthto] :I' ' I dM;_atdM;_pa; - - 'tho+At
XP[M[M_at] PIM¢-atIMpt] - - - P[My4at|My, ]

PIMiIM,] = --- [ DM exp(- > ALy,

u
DM = (27g5at) 2 [ (2ng3t) ™ 2dMs

s=1
IdMs - Z AMgs, Mg = My, My = My .

This representation is useful for fitting stochastic data to parameters in
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PATHINT Calculation of Path Integral

Given a form forL, we use the path-integral to calculate the long-time
distribution of variables. This is impossible in general to calculate in closed form,
and we therefore must use numerical methods. PATHINT is a code developed for
calculating highly nonlinear multivariate Lagrangians.

The path-integral calculation of the long-time distribution, in addition to being
a predictor of upcoming information, provides an internal check that the system
can be well represented as a nonlinear Gaussian-Markovian system. The use of the
path integral to compare different models is akin to comparing short- and long-time
correlations. Complex boundary conditions can be cleanly incorporated into this
representation, using a variant of “boundary element” techniques.

The histogram procedure recognizes that the distribution can be numerically
approximated to a high degree of accuracy as sum of rectangles at ipiots
height P; and width AM;. For convenience, just consider a one-dimensional
system. The alve path-integral representation can be rewritten, for each of its
intermediate integrals, as

P(M; t+At) = [ dM'[g5“(27A1) ™ exp(-L AN P(M'; )
= [dM'G(M, M'; AOP(M'; 1),
P(M:t) = 3 (M = M)Pi(0).
i=1

0

-y = e O —%AMH) <M < (M, +§AMi) |
, otherwise,
U
which yields
Pi(t + At) = T; (At)P;(t) ,
Ti(AD) = AMi_12+ o Jineain o™ [ g, oM G, M5 8D
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Adaptive Simulated Annealing (ASA)

This algorithm fits empirical data to a theoretical cost function over a
dimensional parameter space, adapting for varying sensitivities of parameters
during the fit. This algorithm was first publishedNtathematical and Computer
Modellingin 1989, and made publicly available in November 19927.

Heuristic arguments have been developed to demonstrate that this algorithm is
faster than the fast Cauchy annealifgz To/k, and much faster than Boltzmann
annealingT; = To/Ink.

For parameters
ac O A, B,
sampling with the random variabi&,
x -1,1],

sy = 0+ X (B = AY)
define the generating function

91 =[] = = [ 6 ()
! =1 2N+ UTH(X[+T) g
in terms of parameter “temperatures”

Ti = TiO eXp(—Ci kllD) .

The cost-functions under consideration are of the form
h(M; a) = exp(L/T),

1
L =LAt+ In(2rAtg?) |

wherelL is a Lagrangian with dynamic variablé&(t), and parameter-coefficients
a to be fit to data.g; is the determinant of the metric, afid is the cost
‘temperature.”

For several test problems, ASA has been shown to be orders of magnitude
more efficient than other similar techniques, e.g., genetic algorithms. ASA has
been applied to several complex systems, including specific problems in
neuroscience, finance and combat systems.

T The latest Adaptive Simulated Annealing (ASA) code and related reprints can be
retrieved via WWW from http://www.ingber.com/ or via FTP from ftp.ingber.com.
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SMNI APPLICATIONS—STM
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Derivation of Short-Term Memory (STM)

At this mesoscopic scale, properties of STM— its capacity, duration and
stability—have been calculated, and found to be consistent with empirical
observations. The first publications on this approach to STM appearéysical
Review Ain 1984.

The maximum STM capacity, consistent with the Zrule, is obtained when
a “centering mechanism” is invoked. This occurs when the threshold f&&tor
takes minima in the interior d¥1® firing-space (i.e., not the corners of this space),
as empirically observed.

In the SMNI papers, the background noB% was reasonably adjusted to
centerF®, with Jg = 0, but similar results could have been obtained by adjusting
the influence of the long-ranged fibeusC®.

Within a time scale of several seconds, the human brain can store only about
7+2 auditorychunksof information (42 visual chunks).

To derive this, choose empirical ranges of synaptic parameters corresponding
to a predominately excitatory case (EC), predominately inhibitory case (IC), and a
balanced case (BC) in between. For each case, also consider a “centering
mechanism” (EC’, IC’, BC’), whereby some synaptic parameter is internally
manipulated, e.g., some chemical neuromodulation or imposition of patterns of
firing, such that there is a maximal efficiency of matching of afferent and efferent
firings:

ME =M= =0.
This sets conditions on other possible minima ofsth&c LagrangianL.
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Centering Mechanism

The centering effect is quite easy for the neocortex to accommodate. For
example, this can be accomplished simply by readjusting the synaptic background
noise fromB¢ to B'S,

1 1
VE -G AC + BE)VEN! -3 ASVENE

BIG -
= VENG

for bothG = E andG =I.

This is modified straightforwardly when regional influences friotf are
included, as used in MNN. In gener8S andB® (and possiblyAS and A® due
to actions of neuromodulators, afkg or M*E constraints from long-ranged fibers)
are available to force the constant in the numerator to zero, giving an extra
degree(s) of freedom to this mechanism.

In this context, it is experimentally observed that the synaptic sensitivity of
neurons engaged in selective attention is altered, presumably by the influence of
chemical neuromodulators on postsynaptic neurons.

The threshold factors greatly influence when and how smoothly the “step
functions” tanhF & in g®(t) changeM©(t) to MS(t +6). l.e., assuming the drifts
are a major driving force,

At
M(t + At) = M(t) - — (MS(t) + N® tanhFC(t))
4
together withAt <7 can be used t@pproximatelydescribe the influence on
efferent firings from their afferent inputs. l.e.,
M(t + At)F N€tanhFS(t)
can be used a first approximation.

An important side result is to drive most probable states, i.e., Emadlich is
driven largely by smalF®, to regions where

VEASME = VO|APM! |
Since |-l efficacies typically are relatively quite small, the probability density
under the centering mechanism is strongly peaked along the line

vVEAEME = |vE|AEM! .
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Applying the Centering Mechanism—*“Inhibitory” State

A model of dominant inhibition describes how minicolumnar firings are
suppressed by their neighboring minicolumns. For example, the averaged effect is
established by inhibitory mesocolumns (1C) by setting
AL = AF =2AE =0.0IN"/N. Since there appears to be relatively little- |
connectivity, setA] = 0. 000IN"/N. The background synaptic noise is taken to be
BE = BL = 2BE = 10B| = 0.00N"/N. As nonvisual minicolumns are observed to
havel[1110 neurons and as there appear to be a predominakicevef | neurons,
here takeNE =80 andN' =30. UseN"/N = 103, J; = 0 (absence of long-ranged
interactions), and/®, v&,, and ¢ as estimated previously, i.e/,® =10 mV,
V& =0.1mV,¢S =0.1 mV. The “threshold factorsF for this IC model are
then

0.5M' —0.25M5 +3.0
72(0. IM' +0.05MF +9. 80)/2

E
IC

. 0.005M' -0.5M" - 45.8
' m2(0.00M" +0. IME +11. 22

Flc will cause efierent M ! (t + At) to fire for most afferent input firings, as it
will be positive for most &lues ofI\7IG(t) in F/c, which is already weighted heavily
with a term -45.8. Looking aFEL, it is seen that the relatively high positive
weights of aflerent M’ require at least moderate values of positiverafitM to
cause firings of érentM =, diminishing the influence o =.

Using the centering mechanisrBE =1.38 andB'| =15.3, andFg2 is
transformed td- %,

0.5M' —0.25m°

742(0. IM' +0.05M = +10. 412 °

E _—
FlCI -

| 0.008v' —0.5M"
742(0. 00IM' +0. IME +20. 42
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Contours of “Inhibitory” State

Contours of the Lagrangian illustrate “valleys” that trap firing-states of
mesocolumns. 7L can be as large as®1p

No interior stable states are observed at scales sénging from 16 down
to 102, until the “centering mechanism” is turned on.

7L1e<S0.1

} 0.04—1.0

0.02—0.1
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Applying the Centering Mechanism—"Excitatory” State
The other “extreme” of normal neocortical firings is a model of dominant
excitation, effected by establishing excitatory mesocolumns (EC) by using the
same parameters { BEZ,va,¢%, Al } as in the IC model, but setting
AE = 2AL = 2AF =0.0IN/N. This yields
c 0.25M' —0.5M" -24.5
=C 0. 09" +0. 10MF + 12, 3p2

. 0.008vM'-0.25M"-25.8
712(0. 00IM' +0.05MF +7. 242

EC =
The negative constants in the numerator§&f enhance efferent firings for
both E and | afferent inputs. However, the increased fioit of MF in FEc

(e.g., relative to its corresponding valueFifi), and the dct thatM = can range up
to NE =80, readily enhance excitatory relative to inhibitory firings throughout

most of the range oME. This is only a first approximation, and the full
Lagrangian must be used to determine the actual evolution.

Using the centering mechanismB/E =10.2 andB'| =8.62, andFg: is
transformed td= g,

cE L 0.25M' -0.5M°
=C 200, 05M' +0. 10MF +17. 22

ol 0.00aM' —0.25v"
=C 1200, 00IM' +0.05ME + 12, 432
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Contours of “Excitatory” State

Contours of the Lagrangian illustrate “valleys” that trap firing-states of
mesocolumns. 7L can be as large as®p

No interior stable states are observed at scales sénging from 16 down
to 102, until the “centering mechanism” is turned on.

7L <004

0.01—0.04

} 0.03—0.04

0.04

. 0.01-0.04
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Applying the Centering Mechanism—"Balanced” State

Now it is natural to examine a balanced case intermediate between IC and EC,
labeled BC. This is accomplished by changiA§ = At = A = 0. 005N /N.
This yields

e 0.25M' —0.25V" - 4.50
¢ 20, 05aMF +0. 05aM' +8. 3032

. 0.00aM'-0.25M" -25.8
¢ 112(0.00IM' +0.05aME +7. 2432
Here the constant in the numeratorFg., while still negative to promot&
efferent firings, is much greater than that R, thereby decreasing the net

excitatory activity to a more moderate level. A similar argument applies in
comparingFc to F|c, permitting a moderate level of inhibitory firing.

Applying the centering mechanism to BB'E = 0. 438 andB'| = 8. 62, and
F5c is transformed t& S,

0.25M' -0.25m°F
712(0. 050M "' +0. 05aM = + 7. 40§12

E _
FBC’ -

ol 0.005v' —0.5M"
5 200, 00" +0. 050V E + 12, 4p/2
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Contours of “Balanced” State

No interior stable states are observed at scales sanging from 16 down
to 102, until the “centering mechanism” is turned on.

7Lpc<0.04

! 0.01-0.04 4 0.01-0.04 0.01-0.04

() TLrpc<0.04

V~/ 0.02—-0.03

P 0.02-0.03
0.0—0.04 >/ 0.02—0.03

(a) Contours for values less than 0.04 are drawnrfy.. The MF axis
increases to the right, fromNE = -80 to NE = 80. TheM' axis increases to the
right, from-N' = =30 toN' =30. In each cluster, the smaller values are closer to
the center. (b) Contours for values less than 0.04 are drawh fer.
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Modeling Visual Cortex STM

When N =220, modeling the number of neurons per minicolumn in visual
neocortex, then only 5-6 minima are found, consistent with visual STM. These
minima are narrower, consistent with the sharpness required to store visual
patterns.

N=220, 1L pc<0.04

} 0.04

-

} 0.04

o 001003

0.01-0.03 } 0.04
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STM Stability and Duration

The attractors of these models can be identified. Possible hysteresis and/or
jumps between local minima can be explicitly calculated within the limitations of
studying a specific attractors.

Detailed calculations identify the inner valleys of the parabolic trough with
stable short-term-memory states having durations on the order of tenths of a
second.

Stability is investigated by
5MG:_ NZE,GGIJMG' .
Therefore, minima of the static Lagrangiarare minima of the dynamic transient

system defined bl. The time of first passage is calculated as

112
= 2 o \(T 2D
typ=N? L e (< M )| Log(< M )5

x exp{CN7[L(< M >) ~L(<< M >,)]} .

For rL[110°2, the only values found for all three cases of firing, the time of
first passagé,, is found to be several tenths of second for jumps among most
minima, up to 9. There is hysteresis for deeper valleys at 10th-11th minima of
Legc at the corners of thavi © plane. The hysteresis occurs in about a few
minutes, which is too long to affect thet2 rule. This result isexponentially
sensitive toN in @®/D, and exponentially sensitive to N"N)¥2 in F€, the
“threshold factor.”

Use is made in later development of EEG analyses of the discovered nature of
the line of stable minima lying in a deep parabolic trough, across a wide range of
cases of extreme types of firings.
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PATHINT Calculations of STM

PATHINT is an important partner to the ASA code. ASA has made it possible
to perform fits of complex nonlinear short-time probability distributions to EEG
data. PATHINT details the evolution of the attractors of these short-time
distributions, e.g., as studied in 1984.

Now, using ASA, the parameters of the fitted SMNI distribution can be used
to determine a distribution of firings in a short initial time epoch of EEG.

Then, PATHINT can be used to predict the evolution of the system, possibly
to predict oncoming states, e.g., epileptic seizures of patients baselined to a fitted
distribution.

Below is the evolution of model B@t 0.01 seconds = after 100 foldings of
the path integral. In agreement with previous studies, modelaBLCBC VIS
support multiple stable states in the interior physical filwi§-space for time
scales of a few tenths of a second. Models B IC do not possess these
attributes.

PATHINT STM BC’ t=1
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PATHINT Calculations of STM BC'_VIS
The interior ofM ®-space of model BCVIS is examined at 0.01 seconds.=

PATHINT STM BC'_VIS t=1

'BCP_VIS_001' ——
0.0247 -----
b 0.0197
0.0148 ---
0.00987 -----
0.00494 -
f
.
0.03 b
0.025
0.02
0.015
0.01
0.005
0
50
-150

100

150

These high resolution calculations were published in Ingber and Nunez
Physical Review1995).
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Primacy Versus Recency Rule

SMNI also presents an explanation, or at least an upper statistical constraint,
on the primacy versus recency rule observed in serial processing.

First-learned items are recalled most error-free, and last-learned items are still
more error-free than those in the middle. l.e., the deepest minima are more likely
first accessed, while the more recent memories or newer patterns have synaptic
parameters most recently tuned or are more actively rehearsed.

Note that for visual cortex, presentation a27tems would have memories
distributed among different clusters, and therefore the recency effect should not be
observed. Instead thetZ rule should dictate the number of presented items.
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40 Hz Models of STM

An alternate theory of STM, based on after-depolarization (ADP) at synaptic
sites, has been proposed.

Feature SMNI ADP
7+ 2 Rule attractors of. 40 Hz subcycles
4+ 2 Rule attractors of visudl | ?

Primacy versus Recency  statistics of attractors  ?

Large-Scale Influences consistent with EEG ?

Duration local interactions neuromodulators

ADP proposes a “refresher” mechanism of 40 Hz to sustain memories for time
scales on the order of tenths of seconds within cycles of 5-12 Hz, even under the
influence of long-ranged regional firings and neuromodulators. SMNI PATHINT

calculations show a rapid deterioration of attractors in the absence of external
influences.

ADP and SMNI together forge a stronger theory of STM than either
separately.
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SMNI APPLICATIONS—EEG
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Local and Global EEG

The derived mesoscopic dispersion relations also are consistent with other
global macroscopic dispersion relations, described by long-range fibers interacting
across regions.

This SMNI model yields oscillatory solutions consistent with the alpha
rhythm, i.e.,w = 10° se¢?, equivalent tov = w/(277) = 16 Hz. This suggests that
these complementary local and global theories may be confluent, considered as a
joint set of dispersion relations evolving from the most likely trajectories of a joint
Lagrangian, referred to as the “equations of motion,” but linearly simplified in
neighborhoods of minima of the stationary Lagrangian.

These two approaches, i.e., local mesocolumnar versus global macrocolumnar,
give rise to important alternative conjectures:

(1) Isthe EEG global resonance of primarily long-ranged cortical interactions? If
so, can relatively short-ranged local firing patterns effectively modulate this
frequency and its harmonics, to enhance their information processing across
macroscopic regions?

(2) Or, does global circuitry imply boundary conditions on collective mesoscopic
states of local firing patterns, and is the EEG a manifestation of these
collective local firings?

(3) Or, is the truth some combination of (1) and (2) above? For example, the
possibility of generating EEG rhythms from multiple mechanisms at multiple
scales of interactions, e.g., as discussed above, may account for weakly
damped oscillatory behavior in a variety of physiological conditions.

This theory has allowed the local and global approaches to complement each
other at a common level of formal analysis, i.e., yielding the same dispersion
relations derived from the “equations of motion,” analogous to
> (forces)= d(momentum)dt describing mechanical systems.
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EEG Phenomena—Euler-Lagrange Approximation

The variational principle permits derivation of the Euler-Lagrange equations.
These equations are then linearized about a given local minima to investigate
oscillatory behavior. This calculation was first publishedPhysical Review An
1983.

Here, long ranged constraints in the form of Lagrange multiplligrsvere
used to efficiently search for minima, corresponding to roots of the Euler-Lagrange
equations. This illustrates how macroscopic constraints can be imposed on the
mesoscopic and microscopic systems.

0=6Lr =Lr gy~ gL

=—f M°

~le|'= + féMG B 9|G|D2'\—/IIGI + bIGI'\—/IIGI +b MGH y
G £#G,
MC = MC- < M® >
M® = ReMgs.exp[-i(¢ [F -~ wt)] ,
MEAT. 1) = [ d°£dw Mosdé, ) expli(e F - wt)]

wr = +{ - 1. 86+2.38¢p)?%; -1. 25 + 1. 51 (£p)*} , £ = ¢] .
It is calculated that
w0 sec?,
which is equivalent to
v = wl(2m) 16 cps (Hz) .

This is approximately within the experimentally observed ranges dlpta and
betafrequencies.
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E-L Nearest-Neighbor Contours

A numerical calculation of the cdafients, g;, of nearest-neighbor
interactions, [IM®)?, shows that SMNI can support/describe both spreading
activation of firings as well as local containment of firings.

g terms are responsible for the spatial dependence of the EEG dispersion
relations.

@) ¢ Oger GV MEPL LD

-0.4—1.0 1.0-02

() - her I MV 10

1.0-0.03

0.03
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E-L Propagation of Information
The propagation velocity is calculated from

v = dw/dé=1 cm/sec £[B0p,
which tests the NN interactions, the weakest part of this theory.

Thus, within 10* sec, short-ranged interactions over several minicolumns of
10 cm may simultaneously interact with long-ranged interactions over tens of
cm, since the long-ranged interactions are speeded by myelinated fibers and have
velocities of 600-900 cm/sec. In other words, interaction among different
neocortical modalities, e.g., visual, auditory, etc., may simultaneously interact
within the same time scales, as observed.

This propagation velocity is consistent with the observed movement of
attention and with the observed movement of hallucinations across the visual field
which moves at'1/2 mm/sec, about 5 times as slow\as(l.e., the observed
movement ig18 mseci, and a macrocolumimm processes 18@f visual field.)
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Macroscopic Linearization Aids Probability Development

The fitting of the full SMNI probability distribution to EEG data was
published inPhysical Review i 1991.

Previous STM studies have detailed that the predominant physics of short-
term memory and of (short-fiber contribution) to EEG phenomena takes place in a
narrow “parabolic trough” inM®-space, roughly along a diagonal line. I«
can vary by as much as °l@rom the highest peak to the lowest valley in
MC-space. Therefore, it is reasonable to assume that a single independent firing
variable might offer a crude description of this physics. Furthermore, the scalp
potential® can be considered to be a function of this firing variable.

In an abbreviated notation subscripting the time-dependence,
B— < ® = O(M, M{) = a(M{ - < ME >») +b(M{- < M' ),

wherea andb are constants of the same sign, an@<e and <<M® >> represent
a minima in the trough.

Laplacian techniques help to better localize sources of activity, and thereby
present data more suitable for modeling. E.g., theis more directly related to
columnar firings, instead of representing the electric potential produced by such
activity.

This determines an SMNI approach to study EEG under conditions of
selective attention.
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EEG Macrocolumnar Lagrangian
Again, aggregation is performed,

Po[Preat|Pr] =I d MtE-Athtl+AthtEthl PM[ME-At’ Mt|+At|MtE’ Mtl]

[ ®rrpr = P(MGar, Miza)10[P — DME, M{)]

Under conditions of selective attention, within the parabolic trough along a
line in M€ space, the parabolic shapes of the multiple minima, ascertained by the
stability analysis, justifies a form

Pe = (2 a?dt) Y2 exp[-(dt/20?) .[ dxLe] ,

1 1 1
Ly = 5 IaCD/a'[I2 - > c2|6d3/6X|2 - 5 a)(%lqjlz -F(®),

whereF(®) contains nonlinearities away from the trough, and wieres on the
order ofN, given the derividon of L, above.
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EEG Variational Equation

Previous calculations of EEG phenomena showed that the (short-fiber
contribution to the) alpha frequency and the movement of attention across the
visual field are consistent with the assumption that the EEG physics is derived from
an average over the fluctuationsof the system. l.e., this is described by the
Euler-Lagrange equations derived from the variational principle possesdeg by
more properly by the “midpoint-discretizedlLy, with its Riemannian terms.
Hence,

0_3 OLo +i oLy Ol
0t A(0D/At)  9x 0(OP/OX) oD
When expressed in the firing state variables, this leads to the same results
published inPhysical Review A 1983.

The result for theb equation is:

’e  ,0°d  , OF
- +wif®+—=0.

oz~ oxz TP 55 =0
If the identification

oF

— = Of (D),

0P (@)
is made, then

2 2

(0 ()

g —cZa +[ws + f(D)]P =0,

ot? 0x?
IS recovered, i.e., the dipole-like string equation.

The previous application of the variational principle was at the scale of
minicolumns and, with the aid of nearest-neighbor interactions, the spatial-
temporal Euler-Lagrange equation gave rise to dispersion relations consistent with
STM experimental observations.

Here, the scale of interactions is at the macrocolumnar level, and spatial
interactions must be developed taking into account specific regional circuitries.
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Macroscopic Coarse-Graining

Now the issue posed previously, how to mathematically justify the intuitive
coarse-graining ob to get®’, can be approached.

In Ly above, consider terms of the form

I d?dx =I dx3 5 GG, sink,x sinky,x
nm
=>> GnGmJ’ dxsink,Xx sinkpX
nm

=(2nR) 3 G2 .

By similarly considering all terms ihgy, a short-time probability distribution for
the change in nodeis defined,

Pn[Gn(t + At)|G(1)] -

Note that in general thE(®) term in Ly will require coupling betweefs, and
Gy, N # m. This defines

Po = P1P2- - Poo -
Now a coarse-graining can be defined that satisfies some physical and
mathematical rigor:
Pt :IdkM+1dkM+2 - 0Koy PLP2° - PM PM+1PM+2 " * Poo -

l.e., since SMNI is developed in terms lobna fideprobability distributions,
variables which are not observed can be integrated out.

The integration over the fine-grained wave-numbers tends to smooth out the
influence of thek,,’s for n > M, effectively “renormalizing”

G, - G'p,
o - P,
Lo — LTg .

This development shows how this probability approach to EEG specifically
addresses experimental issues at the scale of the more phenomenological dipole
model.
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Development of Macrocolumnar EEG Distribution

Advantage can be taken of the prepoint discretization, where the postpoint
ME(t + At) moments are given by

ms=<®,-g>=a<ME>+b<M' >=agf +bg' ,

g2 =< (®, - ¢7)2 >-<®, - (p>2= angE " bzg” _
Note that the macroscopic drifts and diffusions of ®ie are simply linearly

related to the mesoscopic drifts and diffusions of M&'s. For the prepoint
ME(t) firings, the same linear relationship in terms{ap, a,b} is assumed.

The data being fit are consistent with invoking the “centering” mechanism.
Therefore, for the prepoit E(t) firings, the nature of the parabolic trough derived
for the STM Lagrangian is taken advantage of, and

M'(t) = cME(t) ,

where the slope is determined for each electrode site. This permits a complete
transformation fronM© variables tap variables.

Similarly, as appearing in the modified threshold fadtSt, each regional
influence from electrode site acting at electrode site given by afferent firings
M*E, is taken as

MIE, =d,ME(t-T,.,),

whered, are constants to be fitted at each electrode site,Tangd is the delay

time estimated for inter-electrode signal propagation, typically on the order of one
to several multiples of= 5 msec. In future fits, some experimentation will be
performed, taking th&’s as parameters.

This defines the conditional probability distribution for the measured scalp
potential®,,

Pv[q)v(t + At)lq)v(t)] = exp(_LvAt) ]

1
(2 g?At)1/2
1 .
L, = — (D, - m)?.
1% 20_2 ( 14 )

The probability distribution for all electrodes is taken to be the product of all these
distributions:

P=T1P,,
v

L=SL,.
%
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Development of EEG Dipole Distribution

The model SMNI, derived foP[M®(t + At)|M(t)], is for a macrocolumnar-
averaged minicolumn; hence it is expected to be a reasonable approximation to
represent a macrocolumn, scaled to its contributio®to HencelL is used to
represent this macroscopic regional Lagrangian, scaled from its mesoscopic
mesocolumnar counterpdrt

However, the expression fd?, uses the dipole assumption to also use this
expression to represent several to many macrocolumns present in a region under an
electrode: A macrocolumn has a spatial extent of about a millimeter. Often most
data represents a resolution more on the order of up to several centimeters, many
macrocolumns.

A scaling is tentatively assumed, to use the expression for the macrocolumnar
distribution for the electrode distribution, and see if the fits are consistent with this
scaling. One argument in favor of this procedure is that it is generally
acknowledged that only a small fraction of firings, those that fire coherently, are
responsible for the observed activity being recorded.

The results obtained here seem to confirm that this approximation is in fact
guite reasonable. For example, for the nonvisual neocortex, taking the extreme of
permitting only unit changes i€ firings, it seems reasonable to always be able
to map the observed electric potential val®efsom a given electrode onto a mesh
a fraction of NEN' = 10*,

It is expected that the use of MNN will make this scaling approximation
unnecessary.
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Key Indicators of EEG Correlates to Brain States
The SMNI probability distribution can be used directly to model EEG data,

instead of using just the variational equations. Some important features not
previously considered in this field that were used in the Fd9kical Review A
paper were:

Intra-Electrode Coherencyis determined by the standard deviations of
excitatory and inhibitory firings under a given electrode as calculated using
SMNI. Once the SMNI parameters are fit, then these firings are calculated as
transformations on the EEG data, as described in terms of the SMNI derived
probability distributions. This is primarily a measure of coherent columnar
activity.

Inter-Electrode Circuitryis determined by the fraction of available long-
ranged fibers under one electrode which actively contribute to activity under
another electrode, within the resolution of time given in the data (which is
typically greater than or equal to the relative refractory time of most neurons,
about 5-10 msec). This is primarily a measure of inter-regional
activity/circuitry. Realistic delays can be modeled and fit to data.

The electrical potential of each electrode, labeledsbys represented by its

dipole-like natureM®(t), which is influenced by its underlying columnar activity
as well as its interactions with other electrod®®, G # G'. This can be
expressed as:

e o
M= =g +gn"
g® = -r7}(M® + N® tanhF©®) ,

G° = (N®/r)"*sectF®

I 1 ! ! 1 I
o (vE-aEVEINT -2 AGVEIM® - afvEN'E -~ AZVEMTE)
F~ =

.1 , .1 . '
(7l(VE)? + (ASH?(aSING + ~ AGIME + al- N¥E + . AZEMEY))12

The equivalent Lagrangian is used for the actual fits.



SMNI Lester Ingber

Pilot Study—EEG Correlates to Behavioral States

In a 1991 paper, sets of EEG data, given to the author by Henri Begleiter,
Neurodynamics Laboratory at the State University of New York Health Center at
Brooklyn, were obtained from subjects while they were reacting to pattern-
matching “odd-ball’-type tasks requiring varying states of selective attention
taxing their short-term memory. Based on psychiatric and family-history
evaluations, 49 subjects were classified into two groups, 25 possibly having high-
risk and 24 possibly having low-risk genetic propensities to alcoholism.

After each subject’'s data set, representing averages over 190 points of EEG
data, was fitted to its probability distribution, the data were again filtered through
the fitted Lagrangian, and the mean and mean-square valiw? wire recorded
as they were calculated fror®. Then, the group’s averages and standard
deviations were calculated, the latter simply from
{[< (M®)? > - < M® >?|n/(n-1)}*2, where n=49. This procedure gives the
means and standard deviations of the effective firif$, aggregated from all
subjects under each electrode, as well as the weigbfshe time-delayed inter-
electrode inputd1 “E.

Although M€ were permitted to roam throughout their physical ranges of
+NE = +80 and+N' = +30 (in the nonvisual neocortex, true for all these regions),
their observed effective regional-averaged firing states were observed to obey the
centering mechanism. l.e., this numerical result is consistent with the assumption
thgt the most likely firing states are centered about the régifdm 0= M in
F~.

Fitted parameters were used to calculate equivalent columnar firing states and
time delays between regions. No statistical differences were observed between the
total group, the high-risk group, and the low-risk group.
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Sample Results — Total Group

TABLE |I. Means and standard deviations of averages over EEG recordings
from 49 subjects, representing 190 points of data per subject, are consistent with
the centering mechanism during selective attention tasks. Under each electrode the
means and standard deviationdwf are given. Also given for each electrode are
the means and standard deviations of the individual-subject standard deviations,
here labeled as, aggregated from each subject. The physical bounds fiu &ll
under these nonvisual regions aiéE = +80. Also given are the weightsof the
regional time-delayed contributiordV"E. The physical bounds for aME and
ME under these nonvisual regions amd® = +NF = +80; the physical bounds
for all M" arexN' = +30.

Electrode MeaM®  S.D.ME  Meano(M®  S.D.g(ME)

Fz 1.13661 3.8754 6.09339 5.30891
Cz -0.533493 4.83208 6.31146 5.59003
Pz -0.3158 3.87471 5.44242 5.50453
P3 -0.121703 10.1069 8.152 7.08701
P4 -0.0208276 7.47837 11.0526 7.04522
Electrode  MeaM' S.D.M! Meanoc(M"  S.D.g(M")
Fz 1.83249 7.11368 11.4131 2.71679
Cz 0.229446 5.89307 11.5578 2.68969
Pz -0.255393 6.37452 12.4699 2.86198
P3 -0.0234756 7.39736 10.5579 3.2693
P4 -0.0271411 6.25121 12.0525 2.52846
Electrode Mear S.D.d

Fz - Cz 0.389722 0.291677
Cz- Pz 0.377305 0.266958
Pz - P3 0.536313 0.288519
Pz - P4 0.485525 0.294742
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Lessons Learned

Future studies will use data obtained by Laplacian recording techniques. E.g.,
patches of 5 closely-spaced electrodes are used to determine a reasonable
underlying source of activity.

The previous study used data collected under the assumptions that:
* there is a genetic predisposition to alcoholism, and
* that this predisposition could be correlated to EEG activity.

These assumptions were negated by the SMNI study: E.g., there were no
statistical differences in intra-electrode coherencies or in inter-electrode circuitry,
or in any other parameter, between the two groups. Especially in light of other
studies, it seems that if such a predisposition exists, it is a multifactorial issue that
requires a very large subject population to resolve the many parameters, more than
was available for this EEG study.
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Future Sources of Data

Laplacian techniques help to better localize sources of activity, and thereby
become more suitable for the MNN modeling. By virtue of Poisson’s equation,

[0 o(F)0e(F, t) = s(7, t) ,

where o(f) is the tissue conductivitys(f,t) is the macrocolumnar-averaged
microsource typically: 0.1-1 zA/mm?, andg(F, t) is the micropotential.

Thus, the Laplacian of the EEG potential, directly relateg,tpresents an
EEG variable directly related to columnar firings. E®,.instead of representing
the EEG electric potential, then is a direct measure of current flows described by
temporal changes in firingd ©.

There is at least one problem associated with the use of Laplacian filtering, a
second-order differentiation process. Differentiation generally tends to emphasize
the noise contributions owing to their typically sharper curvatures. As in similar
modeling projects in combat analyses and finance, this can be alleviated by using
the path-integral Lagrangian to determine the proper meshes. Then, this resolution
of data must be available for further modeling.

A recent 1996 study used evoked potential (EP) data from a multi-electrode
array under a variety of conditions. The earlier 1991 study used only averaged EP
data. As the SMNI model suggests, EEG “noise” likely possesses non-constant
structure developed from the statistical mechanics of neocortical interactions, and
the model should be fit directly to the single-sweep data to be able to extract the
maximum signal.



SMNI Lester Ingber

Precursor Information of Epileptic Seizures
Improve Temporal Prediction of Seizures

If these SMNI techniques can find patterns of such such upcoming activity
some time before the trained eye of the clinician, then the costs of time and pain in
preparation for surgery can be reduced. This project will determine inter-electrode
and intra-electrode activities prior to spike activity to determine likely electrode
circuitries highly correlated to the onset of seizures. This can only do better than
simple averaging or filtering of such activity, as typically used as input to
determine “dipole” locations of activity prior to the onset of seizures.

Improve Spatial Resolution

If a subset of electrode circuitries are determined to be highly correlated to the
onset of seizures, then their associated regions of activity can be used as a first
approximate of underlying “dipole” sources of brain activity affecting seizures.
This first approximate may be better than using a spherical head model to deduce
such a first guess. Such first approximates can then be used for more realistic
dipole source modeling, including the actual shape of the brain surface to
determine likely localized areas of diseased tissue.
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OTHER APPLICATIONS—MNN AND CHAOS
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Generic Mesoscopic Neural Networks

* SMNI describes reasonable mechanism for information processing in
neocortex at columnar scales.

* Modern stochastic calculus permits development of alternative descriptions of
path-integral Lagrangians, Fokker-Planck equations, and Langevin rate
equations. The induced Riemannian geometry affords invariance of
probability distribution under general nonlinear transformations.

» ASA presents a powerful global optimization that has been tested in a variety
of problems defined by nonlinear Lagrangians.

» Parallel-processing computations can be applied to ASA as well as to a
neural-network architecture.

This MNN algorithm was published inPhysical Review A Rapid
Communicationgn 1992.
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Further Development of SMNI for MNN

While the development of nearest-neighbor interactions into a potential term
V' was useful to explore local EEG dispersion relations, for present purposes this is
not necessary and, as permitted in the development of SMNI, minicolumnar
interactions with firingdv ' are simply incorporated int6®:

oL VEo\ETE
(ml(VEN2 + (gEh2TEN Y2

1 '
T}S'za‘C?'NG+5 Cime

! 1 T
+alCINTE" + . AFImTC

I 1 T
+ag NS+ - ALIMEE

16 _ 1 At ptG
aG, _EAGI +BG' y

At =AF=A"=8B{ =B =8B =0,
1
a§E=5A§E+B*EE.

M€ represent firings internal to a given minicolum.’® represent firings among
minicolumns within a macrocolumrivi*€ represent firings among minicolumns in
macrocolumns under different electrodes (daly E firings exist).
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MNN Minicolumnar Interactions

Minicolumnar interactions are represented across three scales: intra-
macrocolumnar within a given macrocolumn, intra-regional and inter-
macrocolumnar within a given region and between macrocolumns, and inter-
regional between regions. The large solid circles represent regions, the
intermediate long-dashed circles represent macrocolumns, and the small short-
dashed circles represent minicolumns.

MNN permits an overlap in scales being investigated by SMNI and ANN.
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MNN Learning

“Learning” takes place by presenting the MNN with data, and parametrizing
the data in terms of the “firings,” or multivariad® “spins.” The “weights,” or
coefficients of functions oM® appearing in the drifts and diffusions, are fit to
incoming data, considering the joint “effective” Lagrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost
function.

The cost function is a sum of effective Lagrangians from each node and over
each time epoch of data.

This program of fitting coefficients in Lagrangian uses methods of adaptive
simulated annealing (ASA). This maximum likelihood procedure (statistically)
avoids problems of trapping in local minima, as experienced by other types of
gradient and regression techniques.
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MNN Prediction

“Prediction” takes advantage of a mathematically equivalent representation of
the Lagrangian path-integral algorithm, i.e., a set of coupled Langevin rate-
equations. The Tt@repoint-discretized) Langevin equation is analyzed in terms of
the Wiener processW', which is rewritten in terms of Gaussian nojses dW'/dt
in the limit:

MS(t + At) - MC(t) = dM® = g®dt + §EdW' |
dm©®
dt
M={M®G=1,---\A} ,n={n;i=1,---,N} ,

=M°®=g°+§%

<pl(t)>=0, <pl(t),n" ') >=oVat-t).
Moments of an arbitrary functiofR(77) over this stochastic space are defined by a
path integral oven'. The Lagrangian diffusions are calculated as

I N . . I
gcc =_Zlg?g? -
i=

The calculation of the evolution of Langevin systems has been implemented in
the above-mentioned systems using ASA. It has been used as an aid to debug the
ASA fitting codes, by first generating data from coupled Langevin equations,
relaxing the coefficients, and then fitting this data with the effective Lagrangian
cost-function algorithm to recapture the original coefficients within the diffusions
defined byg®®.
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MNN Parallel Processing
The use of parallel processors can make this algorithm even more efficient, as

ASA lends itself well to parallelization.

During “learning,” blocks of random numbers are generated in parallel, and
then sequentially checked to find a generating point satisfying all boundary
conditions.

Advantage is taken of the low ratio of acceptance to generated points typical
in ASA, to generate blocks of cost functions, and then sequentially checked to
find the next best current minimum.

Additionally, when fitting dynamic systems, e.g., the three physical systems
examined to date, parallelization is attained by independently calculating each
time epoch’s contribution to the cost function.

Similarly, during “prediction,” blocks of random numbers are generated to
support the Langevin-equation calculations, and each node is processed in
parallel.
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Generic MNN

This SMNI MNN can be generalized to model other large-scale nonlinear
stochastic multivariate systems, by considering general drifts and diffusions to
model such systems, now lettirfg represent an arbitrary number of variables.
Ideally, these systems inherently will be of the Fokker-Planck type,

0P _ 3(-g°P) 1 0%(g°°P)
ot  AMG 2 9MGIMG
The topology, geometry, and connectivity of the MNN can of course be

generalized. E.g., there need not be any restriction to nearest-neighbor
interactions, although this is simpler to implement especially on parallel
processors. Also, “hidden layers” can be included to increase the complexity of
the MNN, although the inclusion of nonlinear structure in the dgftsand
diffusionsg®® may make this unnecessary for many systems.

This addresses some concerns in the neural network community relating to the
ability of neural networks to be trusted to generalize to new contexts: If the nodes
can be described by mechanisms inherently consistent with system, then more
confidence can be justified for generalization. This is more desirable and likely
more robust, than using additional “hidden layers” to model such nonlinear
structures.
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Nonlinear Dynamics — Chaos?

What if EEG has chaotic mechanisms that overshadow thee atochastic
considerations? The real issue is whether the scatter in data can be distinguished
between being due to noise or chaos.

The SMNI-derived probability distributions can be used to help determine if
chaos is a viable mechanism in EEG. The probability distribution itself is a
mathematical measure to which tests can be applied to determine the existence of
other nonlinear mechanisms.

The path integral has been used to compare long-time correlations in data to
predictions of models, while calculating their sensitivity, e.g., of second moments,
to initial conditions. This also helps to compare alternative models, previously
having their short-time probability distributions fit to data, with respect to their
predictive power over long time scales.

Similar to serious work undertaken in several fields, the impulse to identify
“chaos” in a complex system often has been premature. It is not supported by the
facts, tentative as they are because of sparse data. Similar caution should be
exercised regarding neocortical interactions.

It is of interest to note a series of experimental and theoretical studies of
nonlinear dynamics of the olfactory bulb in small mammals, in which distinctive
EEG patterns on the bulb surface are shown to be associated with specific odors.
Many such studies demonstrating chaos are quite model dependent, and as such it
is only fair to present the models as possessing chaos, not necessarily the actual
physical system. However, there are reports of model-independent experimental
observations of distinctive stimulus-dependent parameters having extreme
sensitivity to initial conditions.

It has been widely noted that the correlation dimension of data is difficult to
calculate; perhaps it is often not even a well-founded concept, e.g., since the EEG
of event-related potentials is likely nonstationary and very much context and
subject dependent. Its calculation, e.g., using the popular Grassberger-Procaccia
algorithm, even when supplemented with finer statistical tests and noise reduction
techniques, may pwe fruitful, but likely only as a sensitivity index relative to
shifting contexts and complementary to other models of EEG data.
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Duffing EEG Analog — Chaos in Noise

Nunez and Srinivasan (1993) studied chaos in a model of EEG, cast into a
Duffing analog.

%= f(x1),

f = —aXx—wix + Bcost .
This can be recast as
X=Y,
y=f(x1),
f =-ay-wix+Bcost .
Note that this is equivalent to a 3-dimensional autonomous set of equations, e.g.,

replacing cos by cosz, definingz = 3, and takings to be some constant.

Ingber, Srinivasan and Nunez (1996) studied a model embedding this
deterministic Duffing system in moderate noise, e.g., as exists in such models as
SMNI. Independent Gaussian-Markovian (“white”) noise is added tosoatidy,
nl, where the variables are representedibyx, y} and the noise terms are
represented by={1, 2,

X=y+Gx .
y=f(x,t) +§n2 ,
<nl(t)>=0,

<n(®).n" () >= oVt -1) .
In this study, we take moderate noise and simpl;g#etl? Odij.

The equivalent short-time conditional probability distributi®nin terms of
its Lagrangiar., corresponding to these Langevin rate-equations is

P[x,y;t +At|x, y,t] =

1
Crngig?e P

_G-y? (- 1)
262 262
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Duffing EEG Analog — Preliminary Indications

No differences were seen in the stochastic system, comparing regions of
Duffing parameters that give rise to chaotic and non-chaotic solutions. More
calculations must be performed for longer durations to draw more definitive
conclusions.

Path Integral Evolution of Non-Chaotic Stochastic Duffing Oscillator
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SMNI CANONICAL MOMENTA INDICATORS—EEG
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Canonical Momenta Indicators (CMI)

Some 1996 papers illustrated how canonical momenta derived from fitted
nonlinear stochastic processes, using ASA to fit models to S&P 500 data, can be
useful indicators of nonequilibrium behavior of financial markets.

“Momentum” = MN° = _or
3(OMC/on)

Training Phase

These techniques are quite generic, and can be applied to the SMNI model. In
a 1997Physical Revievwpaper, a given SMNI model is fit to EEG data, e.qg., as
performed in the 199Physical Reviewaper. This develops a zeroth order guess
for SMNI parameters for a given subject’s training data. Next, ASA is used
recursively to seek parameterized predictor rules, e.g., modeled according to
guidelines used by clinicians. The parameterized predictor rules form an outer
ASA shell, while regularly fine-tuning the SMNI inner-shell parameters within a
moving window (one of the outer-shell parameters). The outer-shell cost function
Is defined as some measure of successful predictions of upcoming EEG events.

Testing Phase

In the testing phase, the outer-shell parameters fit in the training phase are
used in out-of-sample data. Again, the process of regularly fine-tuning the inner-
shell of SMNI parameters is used in this phase.

Utility

These momenta indicators should be considered as supplemental to other
clinical indicators. This is how they are being used in financial trading systems. In
the context of other invariant measures, the CMI transform covariantly under
Riemannian transformations, but are more sensitive measures of neocortical
activity than other invariants such as the energy density, effectively the square of
the CMI, or the information which also effectively is in terms of the square of the
CMI (essentially integrals over quantities proportional to the energy times a factor
of an exponential including the energy as an argument). Neither the energy or the
information give details of the components as do the CMI. EEG is measuring a
guite oscillatory system and the relative signs of such activity are quite important.
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SMNI vs SMFM (SM of Financial Markets)

Feature SMNI SMFM

Data EEG coupled markets
Training a given subject historical data
Testing clinical observatiory  trading for profit/loss
ASA “Inner-Shell” Momenta | EEG-fit SMNI market-fit models
ASA “Outer-Shell” Rules clinical rules trading rules
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SMNI CMI of Genetic Predisposition to Alcoholism

Each set of results is presented with 6 figures, labeledhleholic|contrdl,
{stimulus 1|match|no-matgh subject, {potentiallmomentd, abbreviated to
{al|¢_{1|m|r}_subjecf potjmon} where match or no-match was performed for
stimulus 2 after 3.2 sec of a presentation of stimulus 1. Data includes 10 trials of
69 epochs each between 150 and 400 msec after presentation. For each subjects
run, after fitting 28 parameters with ASA, epoch by epoch averages are developed
of the raw data and of the multivariate SMNI canonical momenta. There are fits
and CMI calculations using data sets from 10 control and 10 alcoholic subjects for
each of the 3 paradigms. For some subjects there also are out-of-sample CMI
calculations. All stimuli were presented for 300 msec. Note that the subject
number also includes tHalcoholic|contrdl tag, but this tag was added just to aid
sorting of files (as there are contribution from co2 and co3 subjects). Each figure
contains graphs superimposed for 6 electrode sites (out of 64 in the data) which
have been modeled by SMNI using the circuitry:

Site  Contributions From  Time Delays (3.906 msec)

F3

F4

T7 F3 1
T7 T8 1
T8 F4 1
T8 T7 1
P7 T7 1
P7 P8 1
P7 F3 2
P8 T8 1
P8 P7 1
P8 F4 2

Data was collected by Henri Begleiter and associates at the Neurodynamics
Laboratory at the State University of New York Health Center at Brooklyn.
Calculations were performed on a Sun SPARC 20 at the University of Oregon,
Eugene, courtesy of the Department of Psychology.

The SMNI CMI give more signal to noise presentation than the raw data,
especially for the significant matching tasks between the control and the alcoholic
groups. The CMI can be processed further as is the raw data, and also used to
calculate “energy” and “information/entropy” densities.
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Data vs SMNI CMI for Alcoholic Group — S1
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Data vs SMNI CMI for Control Group — S1
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Data vs SMNI CMI for Alcoholic Group — S2 Match
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Data vs SMNI CMI for Control Group — S2 Match
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Data vs SMNI CMI for Alcoholic Group — S2 No Match
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Data vs SMNI CMI for Control Group — S2 No Match
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SMNI GENERIC FEATURES



SMNI Lester Ingber

Scaling Paradigm

These results, in addition to their importance in reasonably modeling EEG
with SMNI, also have a deeper theoretical importance with respect to the scaling of
neocortical mechanisms of interaction across disparate spatial scales and
behavioral phenomena. These features offer guides to overlap models across
multiple scales.

» The derivation of the mesoscopic probability distribution, yields similar algebraic
structures of the threshold factors at the neuronal scale,

Vi~ 22V
= T
(”% ajk’(VJZk' + (”Jzk'))z

to be compared with the mesoscopic threshold factor,

F

I l T
G G|, ,IGI NG G|, ,/GIng G
(VC - aSVEIN —§A|G,|V|G,|I\/I )

FC = |
(IT[(V|CC;,|)2 + (ﬁgl)Z](aglNG' + % A'GG,|MG'))1/2

which contribute to the driftg® and diffusionsg®C,
g® = -1 {(M® + N®tanhF®) ,

g°® = (gsg) t = o8 ' N®sechF°© ,

illustrating common forms of interactions between their entities, i.e., neurons and
columns of neurons, respectively.

» The macroscopic regional probability distribution has the same functional form as
the mesoscopic distribution, where the macroscopic drifts and diffusions of the
potentials described by th@'s are simply linearly related to the (nonlinear)
mesoscopic drifts and diffusions of the columnar firing states given by fe

m=<®,-g>=a<ME>+b<M' >=agF +bg'

02 =< (®, - g)? > — < , — ¢ >2= agFE + b2g" .

It was possible to scale the macrocolumnar distribution to describe electrode
recording areas of several gmand have the fitted parameters lie within their
experimentally observed ranges.
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Addressing Phenomena at Multiple Scales

Analyzing, understanding, and attempting to predict neocortical phenomena at
the spatial scales encountered in EEG scalp recordings involves measuring firings
from millions of neurons; in intracortical measurements at least tens of thousands
of neurons are involved. SMNI approaches such scales as new systems with
emergent phenomena. Just as physics and chemistry could not have progressed
this century if all theoretical and experimental research were inappropriately
constrained to be understood at the level of quantum mechanics (or quarks or
strings), so neuroscience must soon accept that all brain phenomena is not best
understood or perhaps understood at all at the level of simple neuron-neuron
interactions (or membrane dynamics or macromolecular interactions). Different
scales present new complex systems that must be approached as such and often
with different approaches.
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Increasing Signal to Noise/Audit Trail to Sources
Logical and Testable Development Across Multiple Scales

SMNI is a logical, nonlinear, stochastic development of aggregating neuronal
and synaptic interactions to larger and larger scales. Paradigms and metaphors
from other disciplines do not substitute for logical SMNI development.

Validity Across Multiple Scales

The SMNI theoretical model has independent validity in describing EEG
dispersion relations, systematics of short-term memory, velocities of propagation
of information across neocortical fields, recency versus primacy effects, etc. Fits
of such models to data should do better in extracting signal from noisadheart
phenomenological models.

Use of ASA and PATHINT on Nonlinear Stochastic Systems

ASA enables the fitting of quite arbitrary nonlinear stochastic models to such
data as presented by EEG systems. Once fitted, PATHINT can evolve the system,
testing long-time correlations between the model(s) and the data, as well as serving
to predict events.

Inclusion of Short-Range and Long-Range Interactions

SMNI proposes that models to be fitted to data include models of activity
under each electrode, e.g., due to short-ranged neuronal fibers, as well as models of
activity across electrodes, e.g., due to long-ranged fibers.

Riemannian Invariants
Yet to explore are the ramifications of using the derived (not hypothesized)
Riemannian metric induced by multivariate Fokker-Plank-type systems. This

seems to form a natural invariant measure of information, that could/should be
used to explore flows of information between neocortical regions.

Renormalization of Attenuated Frequencies

The SMNI approach shows how to “renormalize” the spatial activity to get a
model that more closely matches the experimental situation, wherein there is
attenuation of ranges of wave numbers.

MNN Real-Time Processing and Audit Trail to Finer Scales

The MNN parallel algorithm may offer real-time processing of nonlinear
modeling and fitting of EEG data for clinical use. Regional EEG data can be
interpreted as mechanisms occurring at the minicolumnar scales.

Recursive ASA Optimization of Momenta Indicators + Clinical Rules

Similar to codes developed for financial systems, recursive ASA optimizations
of inner-shell SMNI indicators and outer-shell clinical guides should improve
predictions of and decisions on clinical observations.
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Generic Applications to Process Aggregated Information

This statistical mechanics approach represents the mesoscale as a pattern-
processing computer. The underlying mathematical theory, i.e., the path-integral
approach, specifies a parallel-processing algorithm which statistically finds those
parameter-regions of firing which contribute most to the overall probability
distribution: This is a kind of “intuitive” algorithm, globally searching a large
multivariate data base to find parameter-regions deserving more detailed local
information-processing. The derived probability distribution can be thought of as a
filter, or processor, of incoming patterns of information; and this filter can be
adapted, or updated, as it interacts with previously stored patterns of information.

These technical methods are quite general, and | have applied them to:

neuroscience— detailing properties of short-term memory derived from neuronal
synaptic interactions, and calculating most likely frequencies observed in EEG data
and velocities of propagation of information across neocortex.

nuclear physics — detailing Riemannian contributions arising from “velocity-
dependent” forces to the binding energy of nucleons interacting via exchanges of
mesons.

combat systems— modeling battalion- and brigade-level attrition, permitting
comparison of combat computer models with field exercise data.

financial markets — defining an approach to perform superior fits of economic
models to interest-rates, and to perform superior calculations of multivariate
securities such as bonds and options. Bond-pricing, options-pricing, and many
derivative theories present examples of interesting systems which possess multi-
variable, nonlinear, multiplicative-noise, Fokker-Planck dynamics. One class of
theories develops interest rates, determined at several temporal scales, as the
independent stochastic variables. Previous models tested against data have been
two dimensional generalizations, e.g., short-term and long-term interest rates, of
the well-known Black-Scholes model, but recent fits argue for the necessity of
including at least a third variable, intermediate-term interest rates.
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Utility, Parsimony, & Beauty

SMNI presents a computational algorithm faithful to a model of neocortical
interactions that has been baselined to experimental observations across multiple
scales. The present neuroscience project is constructing a tool to be used for real-
time study and diagnoses of brain function.

Similarly to the neocortex, in many complex systems, as spatial-temporal
scales of observation are increased, new phenomena arise by virtue of synergistic
interactions among smaller-scale entities—perhaps more properly labeled
“quasientities”—which serve to explain much observed data in a parsimonious,
usually mathematically aesthetic, fashion. Many complex systems are in
nonequilibrium, being driven by nonlinear and stochastic interactions of many
external and internal degrees of freedom. For these systems, classical
thermodynamical approaches typically do not apply. Such systems are best treated
by respecting some intermediate mesoscale as “fundamental” to drive larger
macroscopic processes.

The use of ASA and PATHINT permit the processing of quite general
nonlinear, stochastic, and multivariate descriptions of systems, without being
limited to equilibrium energy-type cost functions.

Phenomena specific to given scales of interaction must be modeled and
studied, as well as the flow of information across these scales. The stochastic
nonlinear SMNI paradigm permits this development.



