A Reinforcement Learning Method Based
on Adaptive Simulated Annealing

Amir F. Atiya
Dept Computer Engineering
Cairo University
Giza, Egypt
amiratiya@link.net

Alexander G. Parlos
Dept Mechanical Engineering
Texas A&M University
College Station, TX 77843
a-parlos@tamu.edu

Lester Ingber
Lester Ingber Research
ingber@ingber.com

September 13, 2003

Abstract

Reinforcement learning is a hard problem and the majority of the existing
algorithms suffer from poor convergence properties for difficult problems. In
this paper we propose a new reinforcement learning method, that utilizes the
power of global optimization methods such as simulated annealing. Specifically,
we use a particularly powerful version of simulated annealing called Adaptive
Simulated Annealing (ASA) [3]. Towards this end we consider a batch for-
mulation for the reinforcement learning problem, unlike the online formulation
almost always used. The advantage of the batch formulation is that it allows
state-of-the-art optimization procedures to be employed, and thus can lead to

further improvements in algorithmic convergence properties. The proposed al-
gorithm is applied to a decision making test problem, and it is shown to obtain
better results than the conventional Q-learning algorithm.

1 Introduction

Reinforcement learning (RL) is the theory of learning that acts to maximize some
measure of future payoff or reward [10]. Usually each reward is affected by all actions
taken in the past, and that presents a fairly challenging problem involving aspects of
Markov processes and dynamic programming. The RL problem is characterized by a
state transition function that probabilistically specifies the next state as a function of
the current state and the “action” taken. The actions represent a “control decision”
input. It is required to find the control strategy that maximizes the expected future
aggregate reward. Because the control decision affects the instantaneous reward,
as well as the state transition that will in turn affect future rewards, the resulting
optimization problem is by no means simple to solve.

Available RL algorithms are in no means adequate. Theoretical studies prove conver-
gence in only a few narrow special cases (see [14], [8]). Practical experience indicates
that they generally do not achieve the Bellman optimality condition (that is the glob-
ally optimal solution, see [1]). We are here proposing a new RL method which aims at
improving the achieved solution, and at avoiding the susceptibility to local minima.
We use the well-known Adaptive Simulated Annealing algorithm (ASA), which has
been shown in many studies as very effective in reaching the global minimum.

The paper is organized as follows. In the next section we present an overview of RL
theory and an overview of some of the main existing methods. Section III briefly
reviews the Adaptive Simulated Annealing algorithm, and Section IV presents the
proposed method. Section V gives a simulated test for the new method, and Section
VI presents the conclusions of this paper.

2 Introduction to Reinforcement Learning

A measure of the aggregate future rewards used in RL is the so-called value function.
It represents the main objective function for the RL problem. Typically, at each
time instant the value function is estimated and the action that maximizes the value
function is taken. In what follows we will here very briefly review the problem of
value function estimation. We will be following a similar terminology as used in [15].

Consider a dynamic system given by

Ti41 = f(xt, at,nt), (1>

where a; is the control decision or “action”, and n, is the disturbance (assume suc-
cessive independence). Every decision a; leads to the instantaneous reward r(zy, a;).
Based on the current value of the state, it is required to find a control decision that
maximizes some measure of aggregate future reward. Mathematically speaking, one
needs to obtain a mapping a; = ¢(z;) so as to maximize the value function:

V(w,0) = E[iﬁth, ola)|zo =], @)

where 3 € [0,1) is a discount factor.

The optimal control strategy ¢* is the one that maximizes the value function. This
means that

¢*(x) = argmaxy(V (z, ¢)). (3)

Let the associated optimal value function be V*(x). A result of Bellman’s theory of
dynamic programming states that

¢"(x) = argmax, E, (r(z, a) + 8V (f(x,a,n))), (4)

V*(2) = max, B, (r(z, a) + BV*(f(x,a,n))). (5)
where FE,, denotes the expectation with respect to the disturbance term n.

A strategy that successively refines the estimate of ¢* by iteratively applying Eq.
4 is called policy iteration. Similarly a strategy that iterates on Eq. 5 to estimate
the value function is called walue iteration. Using these methods to generate the
decision strategy is prohibitive from a computational point of view, because of the
exponential nature of evaluating ¢*(x) or V*(z) for every possible value of z in a
look-up fashion. As a result, a new family of algorithms have been proposed that
model the value function in a parametric fashion. The parameters are iterated so as
to successively improve the value function estimates. Among this family of algorithms
are the well-known temporal difference learning (TD) [13]. A related method is the
Q-learning algorithm. It was proposed by Watkins [16]. A modified version was
simultaneously developed by Lukes, Thompson and Werbos [5], [17]. In this algorithm
a “Q-function” rather than a value function is approximated. The Q-function, Q(z, a),
is essentially the value function when taking any given control decision a at the current
state x, then continuing by choosing the control decisions optimally. The parameters
of the Q-function are updated so as to minimize the “temporal difference”, or the

difference between the estimated value function at time ¢ and an improved version
of it that incorporates the information available next time step, including the reward
r(z,a). Since the development of TD learning and Q-learning, several other methods
were proposed in the literature, some focusing on optimizing with respect to the
action parameters directly (e.g. [6], [7], [11], [18]), others using novel optimization
formulations (e.g. [2]’s support vector machines’ linear programming formulation),
and some using concepts from backpropagation training [9].

3 The Adaptive Simulated Annealing Algorithm

Simulated annealing is a well-known optimization method for finding the global opti-
mum, developed by Metropolis et al [12]. The basic idea of the method is to sample
the space using a Gaussian distribution. The standard deviation of the sampling dis-
tribution is “annealed” with time, as we hone in on the optimum. Simulated annealing
was very effective in discovering the global optimum, but its problem has been the
slow convergence. To alleviate that Ingber [3] has developed a much faster method of
simulated annealing called Adaptive Simulated Annealing (ASA). It is based on sam-
pling the space using a specific fat-tailed distribution. This allows far-reaching access
of the state space, and allows much faster annealing and hence faster convergence.
Since then, ASA has been the simulated annealing method of choice for many global
optimization applications.

The default parameter-sampling distribution permits temperature schedules exponen-
tially faster than a Cauchy distribution, which is in turn exponentially faster than a
Gaussian/Boltzmann distribution, according to each distribution’s proof for (weakly)
ergodic sampling of the parameter space. Furthermore, since nonlinear systems typi-
cally are non-typical, the many OPTIONS broken out for user tuning makes ASA very
powerful across many classes of nonlinear problems. Some of these ASA OPTIONS
permit methodical ”quenching” versus ”annealing” to explore possible efficiencies for
a given system. This is quite different from most other simulated-annealing algo-
rithms, which at their inception resort to quenching — denying their own proof of
proper annealing, e.g., with exponential temperature schedules — just to move their
algorithm faster, of course at the expense of denying proper sampling to achieve global
optimization.

4 Proposed Reinforcement Learning Method

Assume V(x,w) is a parametrized approximation to the value function, with w =
(w1, ..., wg)T being the parameter vector, and z being the state vector. Similar to
the Q-learning approach, we use a linear model of some basis functions:

V(z,w) = z_:wkgk(x)- (6)

We assume that given a value function approximation, the optimal control can be
obtained easily. This is usually the case, because typically the dimensionality of the
control variables is much less than that of the state space. Required is to find the
optimal parameters w,, that lead to the most accurate value function estimation, in
other words the highest value function. We use ASA as follows:

1) Run the application forward, generating a “training set”, or a sequence of states
x,t =1,...,T. It is preferrable to have multiple sequences.

2) Sample the wy, ’s according to ASA.

3) Evaluate the value function according to Eq. 5 sequentially with time, where at
each time step, we employ the optimal control action according to Eq. 4.

4) Repeat the sampling and the evaluation steps 2), 3) many times according to
the ASA sampling scheme, where the realized value or reward (RV) represents the
objective function to be maximized, given by

RV = ;ﬁtr(xn ¢($t)) (7>

for each sequence. Upon termination the wy’s with its associated value function (Eq
6) represent the optimal solution.

As can be inferred, he proposed method is more of a value iteration method. It
exhibits several advantages compared to the Q-learning method, as follows:

1) First and foremost, it is a method designed to reach the global minimum, and so
it is expected to obtain superior solutions.

2) It has the flexibility to use fairly sophisticated or nonlinear value function models.
We used here a linear model (Eq 6) for illustration only. We could use a nonlinear

model such as a neural network (we mean nonlinear in the parameters). With a
nonlinear model, Q-learning will have a tough time producing meaningful results,
but with ASA, it would not present a problem albeit possibly a little slower value
function computation per iteration.

3) The algorithm also allows for exploration. Instead of choosing the maximum action
as in Eq. 4, the action can be generated according to a Boltzmann probability, as

follows:
elr(aizr)+BV (zr1,w)]/Tr

Eje[r(aj,$T)+ﬁV(wT+1,w)}/TT) (8)

Pla, =«a;) =

where «; represents the possible values that the control action a, can take, and x,,4
is a state vector generated for the next time step, conditional on action «; being
taken (the dependence on j is skipped for brevity). The parameter T’ represents the
temperature which should be decreased gradually with iteration. This version of the
algorithm allows exploring otherwise inaccessible portions of the state space In fact
the exploration framework provides some kind of “annealing” that is the spirit of the
other annealing performed in value function maximization.

5 Implementation example

We have tested the proposed algorithm on the following sequential decision making
problem. A source generates a sequence of random numbers according to an unknown
distribution. An agent receives these numbers and attempts to choose a number as
high as possible. At each time step the agent decides to either stop and choose the
currently received number or wait for the next time step in hope for a larger number.
If the agent forgoes choosing a number, he cannot choose it again at a later time
step (it’s gone). The reward is exponentially discounted as in standard RL problems.
The more the agent waits, the more accurate the statistics that are collected on
the unknown distribution, and hence the agent can make a more informed decision.
However, an offsetting factor is the punishing effect of the discounting as time goes by.
This problem arises in the theory of decision making, where one has to compromise
between waiting to get more information and losing value and opportunity as the
decision gets delayed.

We consider a collection of sources which produce normally distributed numbers.
The mean and standard deviation of the generated numbers from each source are
unknown. However, the means and the standard deviations of the different sources
are generated from a distribution uniform in [0, 1] and in [0, 0.5], respectively. We
considered 100 sources, and for each source we generated a sequence of numbers of
length 1000. This represents our training set.

Table 1: Comparison between the new method and the Q-learning method (for various
learning rates)

Method Achieved Obj Fn Val
New Method 0.7569
Q-Learning n = 0.002 0.6528
Q-Learning n = 0.005 0.6836
Q-Learning n = 0.02 0.6176

We considered a state vector with four components: the running mean (the mean up
to the current time), the running standard deviation, the maximum (of the previous
sequence up to current time), and the time, each properly scaled. We modelled the
value function as a linear function using Gaussian basis functions whose centers are
located at scattered parts of the state space. We took 10 Gaussian basis functions, so
our optimization parameter is the 10-dimensional vector w. We used the ASA code
downloadable at [4] and modified it for our purposes. Table 1 shows a comparison
between the new method and the Q-learning method. The performance measure
indicated is the discounted objective function as defined in Eq. 7. One can see that the
proposed ASA method achieves a significantly better solution (10.72% improvement
in objective function). However, if we factor out the fact that the most trivial decision
method of choosing the first generated number achieves 0.5, then the improvement of
the new method over Q-learning seems more significant relatively speaking. It should
be noted that even though that there is a common belief that simulated annealing
methods are slow, this is not the case here. Within a few seconds we got the solution.
The advantage of ASA (over other simulated annealing methods) is the fast annealing
that allows faster convergence.

6 Conclusion

A new algorithm for the RL problem is proposed. It is based on the adaptive simulated
annealing algorithm. Implementation on a decision making test example shows that
the method achieves superior performance compared to the well-known Q-learning
method. The proposed approach is flexible enough to tackle sophisticated nonlinear
value function models, as well as exploration models. These, however, are not yet
tested, and this will be considered in future work.

Acknowledgment

The second author would like to thank the financial support provided by the State
of Texas Advanced Technology Program, Grant 512 — 0225 — 2001, and the National
Science Foundation Grants No. C'M S — 0100238 and CM S — 0097719.

References

[1] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific,
1996.

[2] T. Dietterich and X. Wang, “Batch value function approximation via support
vectors”,

[3] L. Ingber “Very fast simulated re-annealing”, Mathematical Computer Modelling,
Vol. 12, No. 8, pp. 967-973, 1989.

[4] http://www.ingber.com/#ASA.

[5] G. Lukes, B. Thompson, and P. Werbos, “Expectation driven learning with an
associative memory”, in Proceedings International Joint Conference on Neural
Networks, pp. 1:521-524, 1990.

[6] J. Moody, L. Wu, Y. Liao and M. Saffell, “Performance functions and reinforce-
ment learning for trading systems and portfolios”, J. Forecasting, Vol. 17, pp.
441-470, 1998.

(7] J. Moody and M. Saffell, “Learning to trade via direct reinforcement”, IEEE
Trans. Neural Networks: Special Issue: Neural Networks in Financial Engineer-
ing, Vol. 12, No. 4, pp.875-889, July 2001.

[8] A. Poznyak, K. Najim, and E. Gomez-Ramirez, Self-Learning Control of Finite
Markov Chains, Marcel Dekker, New York, 2000.

[9] D. Prokhorov and D. Wunsch, “Adaptive critic designs”, IEEE Transactions Neu-
ral Networks, Vol. 8, pp. 997-1007, Sep 1997.

[10] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

[11] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation”, Advances in Neural
Information Processing Systems 12, pp. 1057-1063, MIT Press, 2000.

[12] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation
of state calculations by fast computing machines”, J. Chem. Phys., Vol. 21, No.
6, pp. 1087-1092, 1953.

[13] R. Sutton, “Learning to predict by the method of temporal differences”, Machine
Learning, Vol. 3, No. 1, pp. 9-44, 1988.

[14] J. Tsitsiklis and B. Van Roy, “An analysis of temporal difference learning with
function approximation”, IEEE Transactions Automatic Control, Vol. 42, No. 5,
pp. 674-690, 1997.

[15] B. Van Roy, “Neuro-dynamic programming: overview and recent trends”, in
Handbook of Markov Decision Processes: Methods and Applications, E. Feinberg
and A. Schwartz, Eds., Kluwer, 2001.

[16] C. Watkins, Learning from Delayed Rewards, Ph.D. Thesis, Cambridge Univer-
sity, UK, 1989.

[17] P. Werbos, “Approximate dynamic programming for real-time control and neural
modeling”, in Handbook of Intelligent Control, D. White and D. Sofge, Eds., 1992.

[18] R. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”, Machine Learning, Vol. 8, pp. 229-256, 1992.

