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Abstract. Hybrid Classical-Quantum computing is now offered by several 
commercial quantum computers. In this project, a model of financial 
options, Statistical Mechanics of Financial Markets (SMFM), uses this 
approach. However, only Classical (super-)computers are used to include 
the quantum features of these models. Since 1989, Adaptive Simulated 
Annealing (ASA), an optimization code using importance-sampling, has fit 
parameters in such models. Since 2015, PATHINT, a path-integral 
numerical agorithm, has been used to describe several systems in several 
disciplines. PATHINT has been generalized from 1 dimension to N 
dimensions, and from classical to quantum systems into qPATHINT. 
Published papers have described the use of qPATHINT to neocortical 
interactions and financial options. The classical space modeled by SMFM 
fits parameters in conditional short-time probability distributions of 
nonlinear nonequilibrium multivariate statistical mechanics, while the 
quantum space modeled by qPATHINT describes quantum money. This 
project demonstrates how some hybrid classical-quantum systems may be 
calculated using only classical (super-)computers. 

1 Introduction 

1.1 Hybrid computing 

There are several companies now offering commercial-grade Hybrid Classical-Quantum 
computers that can be accessed via the Cloud, e.g., Rigetti, D-Wave, Microsoft, and IBM [1]; 
see  

https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/index.html  
https://www.rigetti.com/what  
https://azure.microsoft.com/en-us/solutions/hybrid-cloud-app/#overview  
https://www.ibm.com/it-infrastructure/z/capabilities/hybrid-cloud 
These companies typically offer Hybrid computing, consisting of Classical computers to 

run optimization program on parameters in systems that are described by quantum variables 
using their Quantum computers [2], Some studies show Quantum computing is still not 
possible for many systems, even with classical optimizers [3]. Software for quantum states, 
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e.g., Tensorflow, the popular end-to-end open-source tool for machine learning, also has been 
adapted for Hybrid classical-quantum computing:  

https://quantumzeitgeist.com/tensorflow-for-quantum-hits-first-birthday/  
https://www.tensorflow.org/quantum  
This project essentially codes generated for two previous XSEDE grants, 

“Electroencephalographic field influence on calcium momentum waves” and “Quantum 
path-integral qPATHTREE and qPATHINT algorithms”. These codes run on Classical 
computers, defining a Hybrid Classical-Quantum solely on a Classical computer. 

1.2 SMFM 

For over two-score years, there have been occasional papers proposing Quantum Money 
(QM) [4-12]. There are several reasons to consider QM, including counterfeit-proof currency, 
and combining of currency with blockchain technologies yielding improved efficiencies and 
scaling beyond today’s blockchains. 

There is not yet a clear proposal for just how QM would be implemented or exchanged 
with classical money. However, quantum computing is rapidly growing, which will be 
applied in many ways to financial markets. Financial markets will be expanded to include 
quantum variables; financial markets will determine how QM is to be valued and how it may 
be exchanged with current financial instruments. 

This paper does not address these problems in defining QM. Instead, this papaer addresses 
how options on such QM can be calculated. 

“If” QM is not much of an issue. When QM arrives, options on quantum markets will be 
required for purposes of hedging and speculation. 

Quantum options on quantum markets requires technologies similar to those required by 
options on classical financial markets. For example, American options, that can be exercised 
before maturation, prominent in today’s markets, and these require numerical algorithms. As 
with today’s technologies, probability distributions of prices in real markets will not 
generally be simple Gaussian or log-normal distributions that yield closed form options 
solutions. Seasonal changes and taxation issues require fits to determine actual distributions 

1.3 SMNI 

Previous papers since 1981 have have calculated properties of a model of neocortex, 
Statistical Mechanics of Neocortical Interactions (SMNI), to fit/describe many experimental 
data, e.g., electroencephalographic (EEG) data using a model of quantum wave-packets 
composed of a specific class of Ca!" ions that are (re-)generated at tripartite neuron-
astrocyte-neuron sites, thereby influencing synaptic interactions [13-15]. 

The codes PATHTREE/qPATHTREE and PATHINT/qPATHINT can include random 
shocks in the evolution of a short-time probability distribution over thousands of foldings 
[16-19]. 

More details on how hybrid quantum-classical computing is being applied to this system 
currently is in another companion paper [20].  

1.4 PATHINT 

The path-integral can define a one-dimensional code developed to numerically propagate 
short-time conditional probability distributions [11,12,21], and this was generalized to 
PATHINT to an N-dimentional code. This was applied in several disciplines [22-25], and to 
PATHTREE [26].  
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1.5 qPATHINT 

The PATHTREE and PATHINT codes were generalized to quantum systems, yielding 
qPATHTREE and qPATHINT [16,17,19]. 

1.6 Organization of paper 

Section 2 describes Adaptive Simulated Annealing (ASA) in the context of this project.  
Section 3 describes PATHINT/qPATHINT in the context of this project.  
Section 4 describes SMFM in the context of this project.  
Section 5 describes performance and scaling issues.  
Section 6 is the Conclusion. 

2 ASA Algorithm 
For parameters 
 

𝛼!" ∈ [𝐴" , 𝐵"] (1) 

 
sampling with the random variable 𝑥# 
 

𝑥! ∈ [−1,1] 
 𝛼!#$" = 𝛼!" + 𝑥"(𝐵" − 𝐴") 

(2) 

 
the default generating function is 
 

𝑔%(𝑥) =/
&

"'$

	
1

2	ln(1 + 1/𝑇")(|𝑥"| + 𝑇")
≡/

&

"'$

	𝑔%" (𝑥") (3) 

 
in terms of “temperatures” for parameters [27] 
 

𝑇" = 𝑇"(exp(−𝑐"𝑘$/&) (4) 

 
ASA defaults use the same type of annealing schedule for the acceptance function ℎ as 

used for the generating function 𝑔, but all default functions can be overridden with user-
defined functions [28,29]. 

Recently, ASA has been applied to studies of COVID-19, fitting forms like 𝑥𝑆$, for 
variables 𝑆 and parameters 𝑥 and 𝑦, in the drifts and covariances of conditional probability 
distributions [30]. 

ASA has over 150 OPTIONS to provide robust tuning over many classes of nonlinear 
stochastic systems. These many OPTIONS help ensure that ASA is robust across many 
systems. 

The “QUENCHing” OPTIONS are among the most important for controlling Adaptive 
Simulated Annealing. Fuzzy ASA algorithms in particular offer ways of controlling how 
these QUENCHing OPTIONS may be applied across many classes of problems. 

In the context of this project, ASA has an ASA_SAVE_BACKUP OPTIONS which 
periodically saves all information (including generated random numbers) sufficient to restart 
if it is interrupted, e.g., using the ASA_EXIT_ANYTIME OPTIONS to simply remove a file 
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“asa_exit_anytime” which causes ASA to gracefully exit. In this project, ASA removes 
“asa_exit_anytime” each 47 hours. Accounts on supercomputers require such constraints. 

3 Path-Integral Methodology 

3.1 Generic Applications 

There are many systems well defined by (a) Fokker-Planck/Chapman-Kolmogorov partial-
differential equations, (b) Langevin coupled stochastic-differential equations, and (c) 
Lagrangian or Hamiltonian path-integrals. All three systems of equations are mathematically 
equivalent, when limits of discretized variables are taken in the induced Riemannian 
geometry of the system due to nonlinear and time-dependent diffusions [31-34].  

3.1.1 Path-Integral Algorithm 

A classical system with N variables defined by a path integral is indexed by 𝑖, at multiple 
times indexed by 𝜌, defined by its Lagrangian 𝐿: 
 

𝑃[𝑞%|𝑞%!]𝑑𝑞(𝑡) = 5 …5 𝐷𝑞exp;−min	 5
%

%!

	𝑑𝑡&𝐿A𝛿(𝑞(𝑡') = 𝑞')𝛿(𝑞(𝑡) = 𝑞%) 

𝐷𝑞 = lim
(→*

	D
("+

,-+

	𝑔+/! 	D
#

	(2𝜋Δ𝑡)/+/!𝑑𝑞,#  

𝐿(�̇�# , 𝑞# , 𝑡) =
1
2 (�̇�

# − 𝑔#)𝑔##"(�̇�#
" − 𝑔#") + 𝑅/6 

𝑔##" = (𝑔##")/+ 
𝑔 = det(𝑔##") 

(5) 

 
The diagonal diffusion terms are 𝑔## and the drift terms are 𝑔#. If the diffusions are not 

constant, there are additional terms in the drift, and in a Riemannian-curvature potential 𝑅/6 
for dimension > 1 in the midpoint Stratonovich/Feynman discretization [33]. 

The path-integral approach is very useful to intuitively define physical variables from the 
Lagrangian 𝐿 in terms of its underlying variables 𝑞#: 

 

Momentum:	Π# =
𝜕𝐿

𝜕(𝜕𝑞#/𝜕𝑡) 

Mass:	𝑔##" =
𝜕𝐿

𝜕(𝜕𝑞#/𝜕𝑡)𝜕(𝜕𝑞#"/𝜕𝑡)
 

Force:	
𝜕𝐿
𝜕𝑞# 

F = ma:	𝛿𝐿 = 0 =
𝜕𝐿
𝜕𝑞# −

𝜕
𝜕𝑡

𝜕𝐿
𝜕(𝜕𝑞#/𝜕𝑡) 

(6) 

 
Canonical Momenta Indicators (CMI = Π#) were used successfully in neuroscience [35-

37], combat analyses [38], and financial markets [35,39]. 
The histogram procedure numerically approximates sums of rectangles of height 𝑃# and 

width Δ𝑞# at points 𝑞#. Considering a one-dimensional system in the prepoint Ito 
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discretization, the path-integral representation is written in terms of the kernel 𝐺, for each 
intermediate integrals, as 

 

𝑃(𝑥; 𝑡 + Δ𝑡) = 	5 𝑑𝑥&[𝑔+/!(2𝜋Δ𝑡)/+/!exp(−𝐿	Δ𝑡)]𝑃(𝑥&; 𝑡)

= 	5 𝑑𝑥&𝐺(𝑥, 𝑥&; Δ𝑡)𝑃(𝑥&; 𝑡) 

𝑃(𝑥; 𝑡) =_
0

#-+

𝜋(𝑥 − 𝑥#)𝑃#(𝑡) 

𝜋(𝑥 − 𝑥#) = `1	, (𝑥# −
1
2Δ𝑥

#/+) ≤ 𝑥 ≤ (𝑥# +
1
2Δ𝑥

#)
0	, otherwise

 

(7) 

 
This yields 
 

𝑃#(𝑡 + Δ𝑡) = 𝑇#1(Δ𝑡)𝑃1(𝑡) 

𝑇#1(Δ𝑡) =
2

Δ𝑥#/+ + Δ𝑥# 	 5

2#"32#/!

2#/32#$%/!

𝑑𝑥	 5

2&"32&/!

2&/32&$%/!

𝑑𝑥&𝐺(𝑥, 𝑥&; Δ𝑡) 
(8) 

 
𝑇#1 is a banded matrix from the Gaussian short-time probability centered about the 

(possibly time-dependent) drift. 
Explicit dependence of 𝐿 on time 𝑡 is included. Care developing the mesh Δ𝑞# yields 

diagonal elements of the diffusion matrix as 
 

Δ𝑞# ≈ (Δ𝑡𝑔##)+/! (9) 

 
This constrains the covariance of each variable to be a (nonlinear) function of all 

variables, presenting a rectangular underlying mesh. Since integration is inherently a 
smoothing process [40], fitting data over the short-time probability distributions permits the 
coarser meshes than the corresponding stochastic differential equation(s). The coarser 
resolution is appropriate for numerical solutions of the time-dependent path integral. 
Consideration of contributions to the first and second moments gives conditions on the time 
and variable meshes [41]. A scan of the time slice can be determined by a scan of Δ𝑡 ≤ 𝐿f/+, 
where 𝐿f is the uniform/static Lagrangian, giving ranges of most important contributions to 
the probability distribution 𝑃.  

3.1.2 Direct Kernel Evaluation 

Several projects have used this algorithm [11,12,23,24,41,42]. 2-dimensional codes were 
developed for projects in Statistical Mechanics of Combat (SMC) [21], SMNI [23], and 
Statistical Mechanics of Financial Markets (SMFM) [22]. 

The 1-D PATHINT code was generalized by the author to N dimensions. A quantum 
generalization also was made to the code, changing all variables and functions to complex 
variables, changing about 7500 lines of PATHINT code. The N-dimensional code was 
developed for classical and quantum systems [16-18].  
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3.1.3 Monte Carlo vs Kernels 

Path-integral numerical applications often use Monte Carlo algorithms [43]. This approach 
includes the author’s ASA code with ASA_SAMPLE OPTIONS [28]. This project, however, 
concerns time-sequential serial random shocks, which are not conveniently treated with 
Monte-Carlo/importance-sampling algorithms.  

3.2 Quantum Path Integral Algorithms  

3.2.1 Scaling Issues  

qPATHINT has been tested with shocks to quantum options wave-functions [18], illustrating 
computational scaling issues described in the Performance and Scaling Section.  

3.2.2 Imaginary Time 

Imaginary-time Wick rotations transform imaginary-time real-variable time. When used with 
numerical calculations, multiple foldings of the path integral leaves no audit trail back to 
imaginary time (private communication with several authors of path-integral papers, 
including Larry Schulman on 18 Nov 2015) [34].  

4 SMFM With qPATHINT 
Above considerations define fitting a volatility of volatility options model with Classical 
algorithms, with qPATHINT numerically calculating the Quantum path-integrals at each 
time between epochs. At the beginning of each epoch, time is reset (𝑡 = 0) since the wave-
function is decohered (“collapsed”) by a prior American stop-measurement; until the end of 
that epoch there are multiple calls to Classical functions calculating the evolution of the 
conditional short-time probability distribution.  

4.1 SMFM 2-D 

The two-factor model includes stochastic volatility 𝜎 of the underlying 𝑆, 
 

𝑑𝑆 = 𝜇	𝑑𝑡 + 𝜎	𝐹(𝑆, 𝑆', 𝑆*, 𝑥, 𝑦)	𝑑𝑧4 
𝑑𝜎 = 𝜈	𝑑𝑡 + 𝜖	𝑑𝑧5 

< 𝑑𝑧# >	= 0, 𝑖 = {𝑆, 𝜎} 

< 𝑑𝑧#(𝑡)	𝑑𝑧1(𝑡&) >= p
𝑑𝑡	𝛿(𝑡 − 𝑡&) 𝑖 = 𝑗
𝜌	𝑑𝑡	𝛿(𝑡 − 𝑡&) 𝑖 ≠ 𝑗 

𝐹(𝑆, 𝑆', 𝑆*, 𝑥, 𝑦) = s
𝑆, 	𝑆 < 𝑆'
𝑆2𝑆'+/2 , 	𝑆' ≤ 𝑆 ≤ 𝑆*
𝑆$𝑆'+/2𝑆*

2/$, 	𝑆 > 𝑆*
 

(10) 

 
where 𝑆' and 𝑆* lie outside the region that fits other parameters, e.g., 𝑆' = 1 and 𝑆* =

20 for Eurodollar futures which historically have very tight ranges relative to other markets. 
The Black-Scholes form 𝐹 = 𝑆 inside 𝑆 < 𝑆' is used so that no negative prices arise since 
the distribution is excluded from 𝑆 < 0. Put-call parity for European options is derived 
independent of mathematical modelling of options [44]. This is given by 
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𝑐 + 𝑋𝑒/6(8/%) = 𝑝 + 𝑆 (11) 

 
where 𝑐 (𝑝) is the fair price of a call (put), 𝑋 is the strike price, 𝑟 is the risk-free interest 

rate, 𝑡 is the present time, 𝑇 is the time of expiration, and 𝑆 is the underlying market. 𝑦 = 0 
reflects a normal distribution defining ignorance of markets outside the range of 𝑆 > 𝑆*. 
This one-factor model assumes constant 𝜎. Note that BS models incorrectly include 
contributions from large 𝑆 regions because of their fat tails [45]. 

The formula for pricing an option 𝑃, derived in a Black-Scholes generalized framework, 
leaving out interest-rate discounting, uses the form 

 
𝑑𝑆 = 𝜇	𝑆	𝑑𝑡 + 𝜎	𝐹(𝑆, 𝑆', 𝑆*, 𝑥, 𝑦)	𝑑𝑧4 

𝑑𝜎 = 𝜈	𝑑𝑡 + 𝜖	𝑑𝑧5 
(12) 

 
Some experimentation was performed with alternative functional forms, e.g., appling 

smooth cutoffs across the above three regions of 𝑆. 𝐹&, a function 𝐹 designed to revert to the 
lognormal Black-Scholes model in several limits, was used 

 
𝐹&(𝑆, 𝑆', 𝑆*, 𝑥) = 𝑆	𝐶' + (1 − 𝐶')	(𝑆2	𝑆'+/2	𝐶* + 𝑆'(1 − 𝐶*)) 

𝐶' = exp z−{
𝑆
𝑆'
	
|1 − 𝑥|

1 + |1 − 𝑥||
|!/2|"+

} 

𝐶* = exp z−{
𝑆
𝑆*
|
!

} 

lim
4→*,2<+

𝐹&(𝑆, 𝑆', 𝑆*, 𝑥) = 𝑆' = constant 
lim
4→''

𝐹&(𝑆, 𝑆', 𝑆*, 𝑥) = lim
2→+

𝐹&(𝑆, 𝑆', 𝑆*, 𝑥) = 𝑆 

(13) 

 
Fits were most sensitive to the data when the central region was simply 𝑆2 using 𝐹 above.  

4.2 Two-Factor Volatility and PATHINT Modifications 

In the two-factor model, the mesh of 𝑆 would depend on 𝜎 and cause some problems in any 
PATHINT grid to be developed in 𝑆-𝜎. 

For some time considerations have been made to handle the generic problem for 𝑛-factor 
multivariate systems with truly multivariate diffusions within the framework of PATHINT. 
In one case, taking advantage of the Riemannian invariance of the probability distribution as 
discussed above, transforms diffusions to have only “diagonal” multiplicative dependence 
[46-49]. Unfortunately, this leads cumbersome numerical problems with the transformed 
boundary conditions [23]. Another method, is to develop a tiling of diagonal meshes for each 
factor 𝑖 that often are suitable for off-diagonal regions in an 𝑛-factor system, e.g., 

 
Δ𝑀=

# = 2>(
# Δ𝑀'

#  

Δ𝑀'
# ≈ �𝑔=!

|#||#|Δ𝑡 
(14) 

 
where the mesh of variable 𝑖 at a given point labeled by 𝑘 is an exponentiation of 2, 

labeled by 𝑚=
# . The integral power 𝑚=

#  approximates a diagonal mesh in the one-factor 
PATHINT mesh conditions, giving a minimal mesh Δ𝑀'

#  in regions of the Lagrangian with 
most important contributions to the distribution. 
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After the at-the-money BPV are scaled to be equivalent, there is not a very large change 
in the one-factor ATM Greeks. Not changing the functional dependence of the Lagrangian 
on 𝑆 and 𝜎 has determined the meshes using a diffusion for the 𝑆 equation as 
𝜎'	𝐹(𝑆, 𝑆', 𝑆*, 𝑥, 𝑦), where 𝜎' is determined by the same BPV-equivalent condition as 
imposed on the one-factor models. This works well, taking the 𝜎 equation with a limited 
range of influence in the calculations.  

4.3 Previous XSEDE SMFM Project 

It seems that “if” QM is not much of an issue. When QM does arrive, options on quantum 
markets will be required for hedging and speculation. 

4.3.1 Options Calculations 

A value of 9 off-diagonal terms are used on each side of the diagonal kernel. The model has 
noise of 𝑆2, where 𝑆 is the underlying price and 𝑥 is an exponent. The underlying price is 
taken to be 7.0. A strike value of 7.5 is used for this table. The risk-free rate is taken to be 
0.0675. The cost of carry is taken to be 0. A daily volatility of 0.00793725 is used, and this 
parameter is taken to be real for both PATHINT and qPATHINT. 

There is no additional drift, but drift arises from the nonlinear noise [22,42]. In this 
context, shocks affect Greeks with “p” severely, where “p” denotes additional orders of 
derivatives. E.g., VegapPI (second derivative of Υ with respect to volatility) is very sensitive 
to shocks in this drift. 

Results are given in a previous paper [18].  

4.3.2 Current Project 

ASA is used to fit volatility of volatility options over short-time conditional probability 
distributions, similar to previously projects [22], but now these forms are based on Quantum, 
instead of Classical, money. 

5 Performance and Scaling 
Code is used from a previous XSEDE grant “Quantum path-integral qPATHTREE and 
qPATHINT algorithm”, for qPATHINT runs.  

5.1 SMNI Scaling Estimates 

SMNI estimates were made on XSEDE.org’s Expanse using ‘gcc -O3‘, and for the one-
dimentional system. 

SMNI uses a variable mesh covering 1121 points along the diagonal, with a maximum 
off-diagonal spread of 27; corners require extra CPU to care for boundaries. Also, oscillatory 
wave functions require large off-diagonal spreads [17]. 

𝑑𝑡 = 0.0002 requires 10 foldings of the distribution. This runs in 0.002s, giving 
0.0002s/qIteraction. With ‘-g‘ the code takes 0.004s to run. 
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5.2 Scaling Estimates N-D 

An N-factor model with the same 1-D system cloned in all dimensions (each unit is a "double 
complex") was used for benchmarks:  

D=1:imxall: 27 , jmxall: 7 , ijkcnt: 189  
D=2:imxall: 729 , jmxall: 49 , ijkcnt: 35721  
D=3:imxall: 19683 , jmxall: 343 , ijkcnt: 6751269  
D=4:imxall: 531441 , jmxall: 2401 , ijkcnt: 1275989841  
D=5:imxall: 14348907 , jmxall: 16807 , ijkcnt: 241162079949  
D=6:imxall: 387420489 , jmxall: 117649 , ijkcnt: 45579633110361  
D=7:imxall: 10460353203 , jmxall: 823543 , ijkcnt: 8614550657858229  
The size of the kernel size (I	J)?, where I = imxall, J = jmxall (= kernel band width), and 

kernel size = ijkcnt. 
The 2-D problem takes on the order of 200 times the 1-D problem. When the length of 

time is an issue, e.g., for dimensions > 2, fits of drifts and covariance matrices to 
parameterized forms is a very good option [50].  

6 Conclusion 
Pilot studies give rationales for developing this particular kernel-based quantum path-integral 
algorithm. This can study serial random shocks that occur in many real systems. qPATHINT 
can be used for many quantum systems which are becoming increasingly important. 
 
Acknowledgements: The author thanks the Extreme Science and Engineering Discovery 
Environment (XSEDE.org), for yearly supercomputer grants since February 2013. 
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