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A series of papers over the past decade [the most recent being L. Ingber, Phys. Rev. A44, 4017
(1991)] has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate
behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of
synaptic interactions, demonstrating its capability in describing large-scale properties of short-term mem-
ory and electroencephalographic systematics. This methodology also defines an algorithm to construct a
mesoscopic neural network, based on realistic neocortical processes and parameters, to record patterns of
brain activity and to compute the evolution of this system. Furthermore, this algorithm is quite generic,
and can be used to similarly process information in other systems, especially, but not limited to, those
amenable to modeling by mathematical physics techniques alternatively described by path-integral
Lagrangians, Fokker-Planck equations, or Langevin rate equations. This methodology is made possible
and practical by a confluence of techniques drawn from SMNI itself, modern methods of functional
stochastic calculus defining nonlinear Lagrangians, very fast simulated reannealing, and parallel-process-
ing computation.
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I. MOTIVATION
During the past decade, a statistical mechanics of neocortical interactions (SMNI) has been devel-

oped to address mesoscopic phenomena in the human neocortex, based on a physically and mathemati-
cally justifiable nonlinear stochastic development [1-13]. The basic approach of the SMNI has been to
statistically aggregate synaptic and neuronal interactions, from microscopic systematics to mesoscopic
interactions among minicolumns of hundreds of neurons, to macroscopic macrocolumnar interactions
among thousands of minicolumns, to approach regional spatial scales of several millimeters to several
centimeters. The theory has been tested by verifying observations at the mesoscopic scale, e.g., short-
term-memory phenomena [4,6], and at the macroscopic scale, e.g., electroencephalography
(EEG) [4,5,13]. A current description of the theory to date is in Ref. [13], where extensions were made to
the SMNI to correlate human behavioral states to circuitries measured by EEG electrode recordings, an
ongoing project. While the experimental resolution of EEG typically is on the order of several centime-
ters, new work has shown that under some circumstances this resolution can be sharpened to several mil-
limeters, the spatial extent of macrocolumns [14].

As noted early in this development [1,15], basing information processing at macroscopic scales on
processes at mesoscopic scales leads to new kinds of computational algorithms, such as those proposed
here. This approach is consistent with the view that many complex nonlinear nonequilibrium systems
develop mesoscopic intermediate structures, e.g., to develop a Gaussian-Markovian statistics to maximize
the flow of information [16,17]. Viewing the neocortex as the prototypical information processor, a meso-
scopic-neural-network (MNN) algorithm can be developed to store and predict patterns of activity inher-
ent in many such nonlinear stochastic multivariate systems.

II. SMNI MNN
The SMNI theory has developed a nonlinear Lagrangian dynamics describing mesoscopic neocorti-

cal interactions. The mathematical development of mesocolumns establishes a mesoscopic LagrangianL,
defining the short-time probability distribution of firings in a minicolumn, composed of∼ 102

neurons [18-20], given its just previous interactions with all other neurons in its macrocolumnar surround.
In the prepoint discretization this is considerably simplified, and the Riemannian geometry induced by the
nonlinear metric (inverse diffusion matrix) is not explicitly displayed as it is in the midpoint
discretization [21]. The relevance of this Riemannian geometry in the neocortex has been discussed pre-
viously in the SMNI papers, and will not be further addressed here.

The Einstein summation convention is used for compactness, whereby any index appearing more
than once among factors in any term is assumed to be summed over, unless otherwise indicated by verti-
cal bars, e.g., |G|. The mesoscopic probability distributionP is given by the product of microscopic neu-
ronal conditional probability distributionspσ i

, constrained such that the aggregate mesoscopic excitatory
firings M E= Σ j ∈ E σ j , and the aggregate mesoscopic inhibitory firingsM I = Σ j ∈ I σ j . The SMNI further
develops this into a Lagrangian dynamics in terms of first-moment driftsgG , a second-moment diffusion
matrix gGG′ , a metricgGG′ as the inverse of the diffusion matrix, and a potentialV ′, whereG = { E, I } .

P≈(2πτ)−1/2g1/2 exp(−Nτ L) ,

L = (2N )−1(ṀG − gG)gGG′(ṀG′ − gG′) + MG JG /(2Nτ ) − V ′ ,

gGG′ = (gGG′)
−1 ,

g = det(gGG′) .  (1)

In the SMNI, the drifts, diffusions, and potential are given by

gG = −τ −1(MG + N G tanhFG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1N Gsech2FG ,
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V ′ =
G
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These all depend sensitively on “threshold factors”FG ,
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where AG
G′ and BG

G′ are macrocolumnar-averaged interneuronal synaptic efficacies,vG
G′ andφG

G′ are aver-
aged means and variances of contributions to neuronal electric polarizations, and nearest-neighbor inter-
actionsV ′ are detailed in other SMNI papers [2,4].MG′ and N G′ in FG are afferent macrocolumnar fir-
ings, scaled to efferent minicolumnar firings byN /N ∗ ∼ 10−3, where N ∗ is the number of neurons in a
macrocolumn. Similarly,AG′

G andBG′
G have been scaled byN ∗ /N ∼ 103 to keepFG invariant. This scaling

is for convenience only.

In a recent project correlating EEG circuitries to human behavioral states [13], in order to more
properly include long-ranged fibers so that interactions among macrocolumns could be included, theJG
Lagrange constraint terms were dropped and more realistically replaced by a modified threshold factor
FG including afferent contributions fromN‡E long-ranged excitatory fibers. For example, cortico-corti-
cal neurons were added, whereN‡E might be on the order of 10−20 % ofN ∗ : Nearly every pyramidal cell
has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-cortical fibers
may be as high as 1010.

While the development of nearest-neighbor interactions into a potential termV ′ was useful to
explore EEG dispersion relations [4,5], for present purposes this is not necessary and, as permitted in the
development of SMNI, we simply incorporate nearest-neighbor interactions with firingsM†G by again
redefiningFG :

FG =
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1

2
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E + B‡E
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This result presents an SMNI MNN as a set of nodes, each described by a short-time probability
distribution interacting with the other nodes. A set of 1000 such nodes represents a macrocolumn, scaled
to represent a “dipole” current source [13]. A circuitry among patches of macrocolumns represents a typ-
ical circuit of activity correlated to specific behavioral states as recorded by EEG under specific experi-
mental or clinical conditions. We are applying SMNI MNN to learn patterns of an individual’s EEG, and
then to predict possible future states of brain activities or anomalies, etc. The methodology used is quite
general, and will be described generically.

III. GENERIC MNN
We now generalize this SMNI MNN, generated from Eq. (1), to model other large-scale nonlinear

stochastic multivariate systems, by considering general drifts and diffusions to model such systems, now
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letting G represent an arbitrary number of variables. Ideally, these systems inherently will be of the
Fokker-Planck type,

∂P

∂t
=

∂(−gG P)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ . (5)

The topology, geometry, and connectivity of the MNN can of course be generalized. E.g., we need not be
restricted to nearest-neighbor interactions, although this is simpler to implement especially on parallel
processors. Also, we can include “hidden layers” to increase the complexity of the MNN, although the
inclusion of nonlinear structure in the driftsgG and diffusionsgGG′ may make this unnecessary for many
systems.

A. Learning
“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the

“firings,” or multivariateMG “spins.” The “weights,” or coefficients of functions ofMG appearing in the
drifts and diffusions, are fit to incoming data, considering the joint “effective” Lagrangian (including the
logarithm of the prefactor in the probability distribution) [22] as a dynamic cost function. The cost func-
tion is a sum of effective Lagrangians from each node and over each time epoch of data.

This program of fitting coefficients in Lagrangian cost functions to data, has been accomplished in
several systems, i.e., in combat analyses [23,24], finance [25,26], and neuroscience [13], using methods of
very fast simulated reannealing (VFSR) [27,28]. This maximum likelihood procedure (statistically)
avoids problems of trapping in local minima, as experienced by other types of gradient and regression
techniques. VFSR has been shown to be orders of magnitude more efficient than other similar techniques,
e.g., genetic algorithms, and we have described how it is extremely well suited to our present project by
parallelizing this code on a Connection Machine [28,29].

VFSR has been developed to fit observed data to a large class of theoretical cost function over aD-
dimensional parameter space, adapting for varying sensitivities of parameters during the fit. The anneal-
ing schedule for the ‘‘temperatures’’ (artificial fluctuation parameters)Ti decrease exponentially in
‘‘time’’ (cycle number of iterative process)k, i.e., Ti = Ti0 exp(−ci k

1/D). Heuristic arguments have been
developed to demonstrate that this algorithm is faster than the fast Cauchy annealing [30],Ti = T0/k, and
much faster than Boltzmann annealing [31],Ti = T0/ ln k.

B. Prediction
“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian path-

integral algorithm, i.e., a set of coupled Langevin rate-equations. The Itoˆ (prepoint-discretized) Langevin
equation is analyzed in terms of the Wiener processdW i, which is rewritten in terms of Gaussian noise
η i = dW i/dt in the limit [21]:

dMG = gG dt + ĝG
i dW i ,

dMG

dt
= ṀG = gG + ĝG

i η i ,

M = { MG ; G = 1,. . . , Λ } , η = { η i; i = 1,. . . , N } ,

< η j(t) >η = 0 , <η j(t),η j′(t ′) >η = δ jj′δ (t − t ′) .  (6)

Moments of an arbitrary functionF(η ) over this stochastic space are defined by a path integral overη i.
The Lagrangian diffusions are calculated as

gGG′ =
N

i=1
Σ ĝG

i ĝG′
i . (7)

The calculation of the evolution of Langevin systems has been implemented in the above-men-
tioned systems using VFSR [13,23,25]. It has been used as an aid to debug the VFSR fitting codes, by
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first generating data from coupled Langevin equations, relaxing the coefficients, and then fitting this data
with the effective Lagrangian cost-function algorithm to recapture the original coefficients within the dif-
fusions defined bygGG′ . Thus, these previous projects have been simple demonstrations of the MNN,
considering each of many nodes as having the same set of weights, but different random generators resid-
ing at each node during generation of data using the Langevin systems in the “prediction” phase. That is,
in principle, the reverse procedure could have been exercised: Considering a given Lagrangian as repre-
senting a “learned” set of patterns, e.g., in the sense of a sum over eigenfunctions of its probability distri-
bution, then a “prediction” procedure is well defined by developing aggregated statistics over many trajec-
tories produced by the Langevin equations.

When discretized, the Langevin equations give the evolution of the system from stateM(t) to time
M(t + ∆t) at each node, in terms of weights fit in the learning phase described above. The inverse “static”
Lagrangian (settingṀG = 0) is a  reasonable measure of the time mesh required to integrate the Langevin
equations [25]. The ensemble of many nodes gives a reasonable statistical evolution of the system.

IV. DISCUSSION
We hav e described a computational algorithm faithful to a model of neocortical interactions that has

been baselined to experimental observations. The present focus of our neuroscience project is construct-
ing a clinical tool to be used for real-time diagnoses of brain function.

Similarly to the neocortex, in many complex systems, as spatial-temporal scales of observation are
increased, new phenomena arise by virtue of synergistic interactions among smaller-scale entities—per-
haps more properly labeled ‘‘quasientities’’—which serve to explain much observed data in a parsimo-
nious, usually mathematically aesthetic, fashion [17,32]. Many complex systems are in nonequilibrium,
being driven by nonlinear and stochastic interactions of many external and internal degrees of freedom.
For these systems, classical thermodynamical approaches typically do not apply. Such systems are best
treated by respecting some intermediate mesoscale as “fundamental” to drive larger macroscopic pro-
cesses.

It seems reasonable to approach the computation of such systems in a similar fashion. For example,
the limitations of artificial neural networks (ANN’s) are now better understood, especially with regard to
large-scale systems [33]. There is some work in progress purposely adding noise during the learning
phase to prevent overtraining to make ANN’s more robust, as likely arises in some circumstances of
human learning, but the noise is not considered as an integral part of ANN’s. It has been previously rec-
ognized that training ANN’s is equivalent to an optimal control problem [34]. The MNN, in fact more
closely mimicking the neocortex, starts with mesoscopic units at its nodes. The use of VFSR permits the
processing of quite general nonlinear, stochastic, and multivariate descriptions of systems, without being
limited to equilibrium energy-type cost functions. Furthermore, many complex systems have structure in
their “noise,” which can be modeled by nonconstant diffusions, permitting better signal resolution. The
use of the effective Lagrangian encases the parameters in the diffusion both in the Lagrangian itself and in
the logarithm of the prefactor; this sets up a competition permitting the fitting of all parameters in the dif-
fusion. This has been the case in the previous systems studied using VFSR.

This construction of MNN to describe nonlinear stochastic multivariate systems would not be prac-
tical without the ability to perform detailed computations. To do this, we appeal to Fokker-Planck mod-
els, known to be quite robust for many large-scale systems, to model the MNN nodes. This enables us to
apply VFSR to a joint conditional probability distribution defined in the Lagrangian representation, fitting
the weights in the MNN cost function over all nodes and all epochs. Then, we use the equivalent
Langevin rate-equation representation to facilitate the testing or prediction phase of MNN. MNN might
be useful for general path-integral calculations, but this methodology must be tested. The use of these
various mathematical representations to develop this computational algorithm would not be possible with-
out the recent development of mathematical physics techniques in functional analysis [21,35].

We use parallel processors to make this algorithm even more efficient. During “learning,” VFSR
lends itself well to parallelization. Blocks of random numbers are generated in parallel, and then sequen-
tially checked to find a generating point satisfying all boundary conditions. Advantage is taken of the low
ratio of acceptance to generated points typical in VFSR, to generate blocks of cost functions, and then
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sequentially checked to find the next best current minimum. Additionally, when fitting dynamic systems,
e.g., the three physical systems examined to date, parallelization is attained by independently calculating
each time epoch’s contribution to the cost function. Similarly, during “prediction,” blocks of random
numbers are generated to support the Langevin-equation calculations, and each node is processed in par-
allel.

As observed in the real neocortex and with ANN’s, it is expected that the MNN will afford a phe-
nomenological computational approach even to systems not directly amenable to the algebraic model
selected at any one node, e.g., a Fokker-Planck description. The merit of such applications must be
decided for each class of systems investigated.

Finally, it should be possible to hardwire the MNN to process nonlinear stochastic information
faithful to specific systems, e.g., the neocortex. For example, if a computer medium possesses noise that
can be well modeled by an MNN, e.g., consider temperature-induced noise or quantum-mechanical uncer-
tainty, then this circumstance might be incorporated in the construction of an MNN for a specific stochas-
tic system.
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