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Simulated annealing (SA) presents an optimization technique with several striking positive and neg-
ative features. Perhaps its most salient feature, statistically promising to deliver an optimal solution, in
current practice is often spurned to use instead modified faster algorithms, “simulated quenching” (SQ).
Using the author’s Adaptive Simulated Annealing (ASA) code, some examples are given which demon-
strate how SQ can be much faster than SA without sacrificing accuracy.
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1. Introduction

1.1. Shades of simulated annealing
Simulated annealing presents an optimization technique that can: (a) process cost functions pos-

sessing quite arbitrary degrees of nonlinearities, discontinuities, and stochasticity; (b) process quite arbi-
trary boundary conditions and constraints imposed on these cost functions; (c) be implemented quite eas-
ily with the degree of coding quite minimal relative to other nonlinear optimization algorithms; (d) statis-
tically guarantee finding an optimal solution. Section 2 gives a short introduction to SA, emphasizing its
property of (weak) ergodicity. Note that for very large systems, ergodicity is not an entirely rigorous con-
cept when faced with the real task of its computation [1]. Moreover, in this paper “ergodic” is used in a
very weak sense, as it is not proposed, theoretically or practically, that all states of the system are actually
to be visited.

Even “standard” SA is not without its critics. Some negative features of SA are that it can: (A) be
quite time-consuming to find an optimal fit, especially when using the “standard” Boltzmann technique;
(B) be difficult to fine tune to specific problems, relative to some other fitting techniques; (C) suffer from
“over-hype” and faddish misuse, leading to misinterpretation of results; (D) lose the ergodic property (d)
by misuse, e.g., by transforming SA into a method of “simulated quenching” (SQ) for which there is no
statistical guarantee of finding an optimal solution. Section 3 presents some examples to demonstrate
how SQ can give misleading results. There also is a large and growing domain of SA-like techniques,
which do not theoretically predict general statistical optimality, but which are extremely powerful for cer-
tain classes of problems. Section 3 includes some of these algorithms.

Section 4 gives a short description of a sampling of the many complex problems which have bene-
fited greatly by the use of SA and SQ. Specific examples are given from papers addressing robust prob-
lems across many disciplines. There are many reviews of simulated annealing, comparisons among simu-
lated annealing algorithms, and between simulated annealing and other algorithms [2-5]. This paper is
not as exhaustive as these other reviews were in their time. The sampling presented here is not meant to
be a review of SA, but rather a documented statement of the widespread use of SA and SQ. The emphasis
is on comparing the basic theoretic constraints of true simulated annealing (SA) with actual practice on a
range of problems spanning many disciplines. On one hand, this may help to address what may yet be
expected in terms of better necessary conditions on SA to make it a more efficient algorithm, as many
believe that the present sufficiency conditions are overly restrictive. On the other hand, perhaps some of
the results not adhering to the present sufficiency conditions that are being reported in the literature are
quite biased, perhaps being too positive or too negative. An attempt has been made to limit technical dis-
cussion to only that necessary to highlight particular approaches.

There are several approaches being researched to develop better SA algorithms and auxiliary algo-
rithms to predict the efficiency of SA on particular problems. These give some insight into how SA might
be developed into a faster but still optimal algorithm for many kinds of systems. Section 5 describes
some of these approaches.

In Section 6 the author’s publicly available code, Adaptive Simulated Annealing (ASA) [6], illus-
trates how SQ can indeed sometimes perform much faster than SA, without sacrificing accuracy.

This paper appreciates the utility of SQ as a trade-off to benefit from (a), (b) and (c) at the expense
of (D). The conclusion, Section 7, iterates the theme in this introduction, of the questionable push to
neglect some of the theoretical strengths of SA in favor of expediency, and of some new dev elopments
that may make some of these compromises less necessary.

1.2. Critics of SA
At the outset it must be stated that SA is not without its critics. The primary criticism is that it is

too slow; this is partially addressed here by summarizing much work in appropriately adapting SQ to
many problems. Another criticism is that it is “overkill” for many of the problems on which it is used;
this is partially addressed here by summarizing much work demonstrating that it is not insignificant that
many researchers are using SA/SQ because of the ease in which constraints and complex cost functions
can easily be approached and coded.
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There is another class of criticisms that the algorithm is too broadly based on physical intuition and
is too short on mathematical rigor [7]. In that particular bitter and scathing critique the authors take
offense at the lack of reference to other prior work [8], the use of “metaphysical non-mathematical ideas
of melting, cooling, and freezing” reference to the physical process of annealing as used to popularize
SA [9], and they giv e their own calculations to demonstrate that SA can be a very poor algorithm to
search for global optima in some instances.

That there are undoubtedly other references that should be more regularly referenced is an objective
issue that has much merit, with respect to SA as well as to other research projects. The other criticisms
may be considered by some to be more subjective, but they are likely no more extreme than the use of SQ
to solve for global optima under the protective umbrella of SA.

2. “Standard” simulated annealing (SA)
The Metropolis Monte Carlo integration algorithm [10] was generalized by the Kirkpatrick algo-

rithm to include a temperature schedule for efficient searching [9]. A sufficiency proof was then shown to
put an lower bound on that schedule as 1/ log(t), where t is an artificial time measure of the annealing
schedule [11]. However, independent credit usually goes to several other authors for independently devel-
oping the algorithm that is now recognized as simulated annealing [8,12].

2.1. Boltzmann annealing (BA)

Credit for the first simulated annealing is generally recognized as a Monte Carlo importance-sampling
technique for doing large-dimensional path integrals arising in statistical physics problems [10]. This
method was generalized to fitting non-convex cost-functions arising in a variety of problems, e.g., finding
the optimal wiring for a densely wired computer chip [9]. The choices of probability distributions
described in this section are generally specified as Boltzmann annealing (BA) [13].

The method of simulated annealing consists of three functional relationships.
1. g(x): Probability density of state-space of D parameters x = { xi; i = 1, D} .
2. h(∆E): Probability for acceptance of new cost-function given the just previous value.
3. T (k): schedule of “annealing” the “temperature” T in annealing-time steps k, i.e., of
changing the volatility or fluctuations of one or both of the two previous probability densities.

The acceptance probability is based on the chances of obtaining a new state with “energy” Ek+1 rel-
ative to a previous state with “energy” Ek ,

h(∆E) =
exp(−Ek+1/T )

exp(−Ek+1/T ) + exp(−Ek /T )

=
1

1 + exp(∆E/T )

≈ exp(−∆E/T ) ,  (1)

where ∆E represents the “energy” difference between the present and previous values of the energies
(considered here as cost functions) appropriate to the physical problem, i.e., ∆E = Ek+1 − Ek . This essen-
tially is the Boltzmann distribution contributing to the statistical mechanical partition function of the
system [14].

This can be described by considering: a set of states labeled by x, each with energy e(x); a set of
probability distributions p(x); and the energy distribution per state d((e(x))), giving an aggregate energy E,

x
Σ p(x)d((e(x))) = E . (2)

The principle of maximizing the entropy, S,

S = −
x
Σ p(x) ln[ p(x)/p(x)] , (3)

where x represents a reference state, using Lagrange multipliers [15] to constrain the energy to average
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value T , leads to the most likely Gibbs distribution G(x),

G(x) =
1

Z
exp((−H(x)/T )) , (4)

in terms of the normalizing partition function Z , and the Hamiltonian H operator as the “energy” func-
tion,

Z =
x
Σexp((−H(x)/T )) . (5)

For such distributions of states and acceptance probabilities defined by functions such as h(∆E), the
equilibrium principle of detailed balance holds. I.e., the distributions of states before, G(xk), and after,
G(xk+1), applying the acceptance criteria, h(∆E) = h(Ek+1 − Ek) are the same:

G(xk)h((∆E(x))) = G(xk+1) .  (6)

This is sufficient to establish that all states of the system can be sampled, in theory. Howev er, the anneal-
ing schedule interrupts equilibrium every time the temperature is changed, and so, at best, this must be
done carefully and gradually.

An important aspect of the SA algorithm is to pick the ranges of the parameters to be searched. In
practice, computation of continuous systems requires some discretization, so without loss of much gener-
ality for applications described here, the space will be assumed to be discretized. There are additional
constraints that are required when dealing with generating and cost functions with integral values. Many
practitioners use novel techniques to narrow the range as the search progresses. For example, based on
functional forms derived for many physical systems belonging to the class of Gaussian-Markovian sys-
tems, one could choose an algorithm for g,

g(∆x) = (2πT )−D/2 exp[−∆x2/(2T )] , (7)

where ∆x = x − x0 is the deviation of x from x0 (usually taken to be the just-previously chosen point),
proportional to a “momentum” variable, and where T is a measure of the fluctuations of the Boltzmann
distribution g in the D-dimensional x-space. Given g(∆x), it has been proven [11] that it suffices to
obtain a global minimum of E(x) if T is selected to be not faster than

T (k) =
T0

ln k
, (8)

with T0 “large enough.”

For the purposes of this paper, a heuristic demonstration follows, to show that Eq. (8) will suffice to
give a global minimum of E(x) [13]. In order to statistically assure, i.e., requiring many trials, that any
point in x-space can be sampled infinitely often in annealing-time (IOT), it suffices to prove that the prod-
ucts of probabilities of not generating a state x IOT for all annealing-times successive to k0 yield zero,

∞

k=k0

Π (1 − gk) = 0 .  (9)

This is equivalent to
∞

k=k0

Σ gk = ∞ . (10)

The problem then reduces to finding T (k) to satisfy Eq. (10).

For BA, if T (k) is selected to be Eq. (8), then Eq. (7) gives
∞

k=k0

Σ gk ≥
∞

k=k0

Σ exp(− ln k) =
∞

k=k0

Σ 1/k = ∞ . (11)

Although there are sound physical principles underlying the choices of Eqs. (7) and (1) [10], it was
noted that this method of finding the global minimum in x-space was not limited to physics examples
requiring bona fide “temperatures” and “energies.” Rather, this methodology can be readily extended to
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any problem for which a reasonable probability density h(∆x) can be formulated [9].

3. Simulated quenching (SQ)
Many researchers have found it very attractive to take advantage of the ease of coding and imple-

menting SA, utilizing its ability to handle quite complex cost functions and constraints. However, the
long time of execution of standard Boltzmann-type SA has many times driven these projects to utilize a
temperature schedule too fast to satisfy the sufficiency conditions required to establish a true (weak)
ergodic search. A logarithmic temperature schedule is consistent with the Boltzmann algorithm, e.g., the
temperature schedule is taken to be

Tk = T0
ln k0

ln k
, (12)

where T is the “temperature,” k is the “time” index of annealing, and k0 is some starting index. This can
be written for large k as

∆T = −T0
ln k0∆k

k(ln k)2
, k >> 1

Tk+1 = Tk − T0
ln k0

k(ln k)2
. (13)

However, some researchers using the Boltzmann algorithm use an exponential schedule, e.g.,

Tk+1 = cTk , 0 < c < 1

∆T

Tk
= (c − 1)∆k , k >> 1

Tk = T0 exp(((c − 1)k)) , (14)

with expediency the only reason given. While perhaps someday some less stringent necessary conditions
may be developed for the Boltzmann algorithm, this is not now the state of affairs. The question arises,
what is the value of this clear misuse of the claim to use SA to help solve these problems/systems?
Below, a variant of SA, adaptive simulated annealing (ASA) [6,16], in fact does justify an exponential
annealing schedule, but only if a particular distribution is used for the generating function.

In many cases it is clear that the researchers already know quite a bit about their system, and the
convenience of the SA algorithm, together with the need for some global search over local optima, makes
a strong practical case for the use of SQ. In some of these cases, the researchers have been more diligent
with regard to their numerical SQ work, and have compared the efficiency of SQ to some other methods
they hav e tried. Of course, the point must be made that while SA’s true strength lies in its ability to statis-
tically deliver a true global optimum, there are no theoretical reasons for assuming it will be more effi-
cient than any other algorithm that also can find this global optimum.

3.1. Genetic algorithms (GA)
As an example of other algorithms competitive with SQ, there is a very popular class of algorithms,

genetic algorithms (GA) that has spawned its own culture across many disciplines. While the origins of
its development were not to seek optimization per se [17,18], there are reasons to consider GA as valid
approaches to numerical optimization [19,20]. This has led to some comparisons between GA and SA
techniques [21], which currently must be viewed in the context of “judging” these algorithms only spe-
cific to the problems/systems being tested. I.e., it should be expected that there are systems for which one
of GA or SA will be better suited than the other. While GA does not possess any claim to ergodicity,
albeit there is some progress in establishing convergence to some fixed optima [22], features typically
addressed by SQ, such as premature global convergence, rapid local convergence, and the handling of
constraints, all can be reasonably treated in the framework of GA [19]. GA also is not without its critics
with respect to its approach, and examples have been developed to illustrate how simple random mutation
may be superior to GA [23].
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3.1.1. GA-SA hybrids
Below a hybrid parallelized SA-GA technique, parallel recombinative simulated annealing (PRSA),

is reported to be useful to speed up SA under some circumstances [24]. While the actual test cases
reported in the PRSA paper used SQ exponential temperature schedules on Boltzmann algorithms, the
PRSA method is an alternative method of taking advantage of flexibility in searching the parameter space,
e.g., as does ASA. Given the use of true SA temperature schedules in PRSA, the advantages in optimal
searching of the parameter space afforded by ASA could reasonably be overshadowed by some advan-
tages offered by GA, e.g., added degrees of parallelism and perhaps less sensitivity to initial conditions. It
would be interesting to explore the application of ASA techniques to the processes of crossover and muta-
tion in the GA stages of PRSA.

There have been other successful attempts to create hybrid GA-SA algorithms. In one approach,
the authors have giv en a proof that an equilibrium distribution can be achieved by using a Metropolis-type
acceptance rule [25].

3.2. Some problems with SQ
To make the point of how quenching can lead to some problems, consider some graphs from a pre-

vious study [21]. Fig. 1 uses f0, an objective function which contains a very large number of local
minima [26], and is very difficult to optimize. Trajectories were developed in an SA study [21] using very
fast simulated reannealing (VFSR) [16,27], discussed below as ASA [6], and a standard genetic algorithm
generator [28]. The number of local minima is given by 105n − 1; when n = 4 it contains 1020 local min-
ima. (Visiting each minimum for a millisecond would take about the present age of the universe to visit
all minima.)

f0(x1, . . . , xn) =
n

i=1
Σ




(ti sgn (zi) + zi)
2cdi

di x
2
i

if |xi − zi | < |ti |

otherwise ,

zi =








xi

si




+ 0. 49999





sgn (xi)si ,

si = 0. 2, ti = 0. 05, i = 1, n ,

di = {1. 0, 1000. 0, 10. 0, 100. 0, . . . } ,

c = 0. 15 ,

−1000. 0 ≤ xi ≤ 1000. 0 , i = 1, n , (15)

where si , ti , di (repeated in cycles of 4), and c are coefficients defined such that f0 defines a paraboloid
with axis parallel to the coordinates, and a set of holes that increase in depth near the origin.
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Fig. 1. Comparison between GA and VFSR is given for function f0, where the dimension of the space is
4. Solid and short dashed lines each represent one VFSR run each, and dashed and long dashed lines rep-
resent one GA run each. The runs are log-log plotted to show relative convergence rates of each algo-
rithm. The abscissa indicates the number of function calls, while the ordinate shows the best function
evaluation found so far. For purposes of these log-log plots, VFSR was cut off arbitrarily at f < 10−12,
ev en when it actually attained 0 to machine precision.

Fig. 2 shows two trajectories when the dimension of f0 is increased from 4 to 10, presenting a prob-
lem with 1050 local minima (most of which are beyond a typical workstation’s precision and recognition).
Clearly, a quenching algorithm might well have not obtained an optimal solution within any practical
time. In fact, some standard SA techniques, such as BA and fast annealing (FA, discussed below), can
miss global optima as well when optimizing functions with extremely large numbers of minima [29].
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Fig. 2. Trajectories for VFSR are given for function f0, where the dimension of the space is 10. See Fig.
1 for legend.

Fig. 3 uses f3, the plateau function, generated as the sum of integer threshold values. The five
dimensional space has one minimum and is discontinuous.

f3(x1, . . . , x5) = 30. 0 +
5

j=1
Σ  x j




,

−5. 12 ≤ xi ≤ 5. 12 , i = 1, 5 . (16)
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Fig. 3. Comparison between GA and VFSR is given for function f3. See Fig. 1 for legend.

In Fig. 1, quenching would seem to work quite well if one were using the optimization procedure
illustrated by the medium-dashed and long-dashed trajectories, since no clear dramatic benefit seems to be
derived by continuing with more detailed searching. However, with respect to the algorithm illustrated by
the solid and short-dashed trajectories, especially given no advance knowledge of a given function/data,
when should one decide to curtail the search? In this second case, if one does not venture out long
enough, the true global minimum will very likely be completely missed!

This point is emphasized again in Fig. 3. If one does not venture out far enough, the global mini-
mum will likely not be reached. Furthermore, here efficiency is irrelevant, since once a favorable
approach is determined, the calculation suddenly dives down into the global minimum.

4. Sampling of SA/SQ applications
Because of the very widespread use of simulated annealing over many disciplines, it is convenient

to describe a sampling with respect to specific disciplines. A main purpose here is to demonstrate the
nontrivial power of SA/SQ to handle quite complex problems/systems and constraints.

4.1. Traveling salesman problem (TSP)
The first popular paper on simulated annealing that drew the attention of many researchers was

focussed on optimizing the circuitry of computer chips and on the traveling salesman problem (TSP) [9].
The literature is quite dense with other applications to the TSP, a simple example of an NP-complete
problem. The TSP should be included in any list of test problems, if for no other reason than its popular-
ity, but also because it can be considered a prototypical physical model of many quasi-linear systems [30].

In at least one early study, the TSP was used as a test case to try to determine an “efficient” expo-
nential temperature schedule of type Eq. (14), leading to a variant of SQ [31]. In that particular study,
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advantage was taken of the nature of the TSP and of Boltzmann annealing to test some analytic
derivations of expected properties of the algorithm, e.g., of numerical convergence to expected “thermo-
dynamic” properties.

4.2. Circuit design
Applications to more complex circuit design problems including several layers of logic hierarchy

were approached using SQ [32]. This required placements and routing for tens to hundreds of groups of
units, potentially a higher dimensional task than placing individual connections among units.

While SQ has been effective in determining circuitries, an inverse problem also can be approached.
A “Boltzmann machine” SQ algorithm, a variant of mean-field annealing discussed below, was hard-
wired onto a VLSI chip to perform SQ at very high speeds [33].

4.3. Mathematics/combinatorics
The design of efficient classification and decision trees, an NP-complete problem, greatly benefited

by applying SQ, with an exponential temperature schedule

Ti+1 = α Ti , 0. 7 ≤ α ≤ 0. 99 , (17)

more so than trying the information-theoretic Huffman algorithm [34].

SQ techniques similarly have been useful in approaching graph problems. In one study, searching
for the maximum number of edges in graphs of order v ≤ 200 and girth >= 5, the authors found that their
own variant of “hillclimbing” was superior [35]. Another study using the SQ mean-field annealing algo-
rithm (MFA), described below, found SQ and SA superior over other optimization techniques in determin-
ing maximal sets of vertices with all pairs connected by an edge [36].

SQ was used to determine subsquare free Latin squares [37]. The authors demonstrated that the
ability to recognize an optimal solution made it feasible to use SQ instead of SA.

Mean field annealing (MFA), discussed below, was used to apply neural networks to the minimum
cut graph bisection problem, and its speed of solution was found superior to other techniques [38].

Many difficult optimization problems arise concerning matrices. Standard SA was useful in finding
optimal block and row-column designs [39]. Another optimization problem used SQ, using low accep-
tance ratios as the criteria to exit, to optimize row-column permutations designed to diagonalize matrices
representing coauthor citation frequencies [40].

4.4. Data analysis
Standard SA was found optimal in some cases, prohibitively slow in others, when applied to

exploratory data analysis, i.e., mapping problems of matching distances among patterns in high dimen-
sional spaces and clustering problems in labeling patterns into natural subsets [41].

When looking at controlled rounding procedures in Census data, to preserve the anonymity of
respondents, SQ, using an exponential temperature schedule

T j = FT j−1 ,

F = (Tmin/Tmax)1/Ncycles (18)

was found superior, both in speed and in finding optimal solutions, to all other techniques tried [42].

4.5. Imaging
Image reconstruction and filtering requires recognition and extraction of patterns from sets of data.

Often, an algebraic model is used to develop a filter to aid in this process. Then, parameters of the model
must be fit to data, and here SQ techniques have been quite successful [43,44]. The models often are not
very nonlinear, but they are high dimensional.

A very difficult problem, in determining both spatial and temporal aspects of estimation of visual
motion over sequences of images, was approached by developing a model invoking continuity of the
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image with respect to the motion [45]. This gave impetus to develop an SQ algorithm with a non-mono-
tonic temperature schedule that kept lower temperature across fields tracked for longer times, and higher
temperatures across newer fields.

Many imaging techniques use techniques of Kalman filtering to extract signal from noise. It has
been shown that the Kalman filter can be derived from more general multivariate nonlinear multiplicative-
noise systems [46,47]. As such, this presents a more powerful algorithm to model signals and noise.
These equations can be represented as nonlinear Lagrangians [48]. SA techniques can be used to fit such
models to data, but the author has not yet seen any specific applications of such techniques to imaging.

4.6. Neural networks
There have been several approaches to implementing some form of simulated annealing into neural

networks, e.g., to expedite the training phase of fitting parameters. The prototype was the “Boltzmann
machine,” [49] which was constructed with many analogies to Ising models of magnetic systems [50].

An SA algorithm, fast annealing (FA) discussed below, was demonstrated to solve the problems of
trapping in local optima found with a local gradient technique, when applied to a network using an energy
function modeled on the potential of electric charges to study associative recall [51]. The authors found
empirically that taking the initial temperature to be the median, instead of the average, of some test ran-
dom transitions increased the efficiency of their searches. They noted that the Cauchy algorithm used,
though theoretically faster than the Boltzmann algorithm, still took quite long to search.

There are other studies that have taken somewhat the opposite approach, that of developing some
variants of SQ which possess the same mathematical structure as particular neural networks. Then, those
neural networks can be used as a machine to perform the particular variant of SQ. These approaches
include mean-field annealing algorithms (MFA) [36,52,53], discussed below. A useful contribution is a
method for estimating the critical temperature in advance, obtained by linearizing the mean-field equa-
tions and looking for the largest eigenvalue [38]. These neural-network MFA applications have been
extended to many other optimization problems, such as TSP, graph bisection and partitioning, scheduling
problems, and the knapsack problem with inequality constraints; these are discussed in a review
article [54].

Overlapping the category of hardwiring SA/SQ into computer circuitry, there are other algorithms
suggested for developing hardware neural network-type implementations of SA/SQ for specific classes of
systems. One such application was designed for a Boolean network [55]. Such a machine can be applied
to other optimization tasks.

A construction of neural networks applied to image reconstruction has been proposed to utilize a
physical implementation of an amorphous magnetic processor [56]. Implicit in their design is the capabil-
ity for associative memory, fast associative access, and massive information storage. This implementation
is based primarily on ideas from the Boltzmann machine, discussed above. An amorphous magnetic
material such as a spin glass film is taught a series of pattern vectors by first locally laser heating it in the
magnetic field created by an imposed input pattern until the spins become mobile, and then allowing the
magnetic spins of the system to seek an energy minimum. After repeated training sessions, an energy
landscape is created which effectively stores and permits retrieval of pattern vectors from a set of given
inputs.

Another neural network algorithm, based on aggregate columnar circuitries in neocortex, with
direct applications to Fokker-Planck/Langevin/Lagrangian systems, was developed by incorporating an
SA (ASA) algorithm [57]. The high degree of nonlinearity and stochasticity in such systems make it
likely that true SA is required for such problems.

4.7. Biology
The biological sciences are poised for many breakthroughs at many spatial-temporal scales. Bio-

logical researchers are bringing to bear modeling techniques from other sciences as well as their own to
approach these complex systems. This often requires the fitting of complex cost functions and constraints
to experimental data. For example, A very difficult problem in molecular biology concerns understanding
the secondary structures of protein chains, e.g., helices, turns, extended molecular strands, etc. Models
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are being developed that attempt to explain the secondary structures given the primary composition of the
chains, usually within a prescribed context/environment, e.g., in the presence of other specific protein
chains.

A prototypical problem of finding conformational substates of proteins was mapped onto the TSP,
discussed above, but using more realistic van der Waals interactions to determine “distances” between
units [58]. Then, an SQ algorithm was used to determine optimal configurations.

One direct approach minimizes the “free energy” (the internal energy minus the temperature times
the entropy), finding the conformation with the lowest free energy. SA has been invoked to approach such
difficult computational problems, but in practice SQ usually is used. For example, one study [59] uses a
Boltzmann algorithm, enhanced with an Acceptance Ratio Method (ARM) using updated information to
select step sizes for individual atoms or clusters of atoms, these being ranges of the relevant parameters in
the free energy considered as cost function. This method has been shown to be effective in treating such
inhomogeneous systems. They pick an exponential SQ temperature schedule

Ti+1 = γTi ,

γ = (T f /Ti)
1

Nc−1 , (19)

and determine γ from a predetermined number of annealing temperature-cycles, Nc, which establishes a
progression from initial temperature Ti to a final temperature T f .

Another approach to a similar problem develops a model in information-theoretic terms [60]. First,
a minimal message length (MML) encoding is used to establish a small set of candidate graphs represent-
ing secondary structures. Then, probabilities are attached to each leg of each graph, and an SA algorithm
(following close to a 1/ log(t) schedule) is used to find the graph with maximum probability and the opti-
mal graph. The combined MML and maximal probability model might be considered as quenching in
itself, in that, if an algorithm could be developed to simultaneously optimize the combined problem with
SA, a different optimal solution might evolve. This is not a criticism of the the very difficult work done to
date, but rather a statement of a generic problem in optimizing a system with a set of models/stages of
which SA is just one of several techniques, and thus quenching may be the final result.

Problems in mRNA splicing arise in determining alignments of large sequences, and here SQ was
found to be a valuable tool [61].

A study on optimal selection of panels of rodent-human hybrid clones, involving sifting through as
many as 1022 possible panels [62], found simulated annealing (no specific temperature schedule reported)
better that random sampling or “random downhill” sampling (random sampling keeping the lowest cost
function always, possibly getting trapped in a local optima).

A study on peptide conformations [63] used SQ on 102 parameters in a cost function determining
the force fields. The constant c in the exponential temperature schedule,

Ti+1 = cTi , (20)

was related to the variance of the free energy, itself related to the heat capacity. The use of this kind of
complex cost function permitted the investigators to straightforwardly establish constraints on their cost
function based directly on experimental and computational data.

The author has used SA (ASA) to fit a complex cost function modeling large-scale human neocorti-
cal activity to EEG (electroencephalographic) data [64]. Parameters in a model of columnar neuronal fir-
ing states (depicting 100’s of neurons) were developed across multiple scales of interaction, into an elec-
tric potential model of larger scale brain activity (depicting millions of neurons), requiring a cost function
expressed in terms of nonlinear Lagrangians, and as sets of discrete and continuous constraints.

Sets of complex constraints, i.e., sets of weights to suppress ambiguities arising from null space
components that arise in singular value decompositions (SVD), were easily handled using an SQ algo-
rithm to develop a cost function capable of fitting (and predicting) images in computer tomography (CT)
scanning [65]. The authors were well aware of their use of SQ, explaining its appropriateness due to the
simple surface and single minima of their cost function.
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4.8. Physics
An early application of SA/SQ algorithms was to Ising models of magnetism, a prototypical system

for problems in many disciplines. Spin-glass Ising systems present enormous numbers of local optima,
and here it seems that only SA/SQ have a chance of finding a global optima. One such application used a
new method of simulated tempering, outlined below, on the random field Ising model, a system presenting
a very rough energy landscape [66].

The original Metropolis algorithm was designed for multivariate integrals of the kind that arise
when performing path integrals [67]. SA has been used to enhance the efficiency of such calculations by
first establishing extrema stationary phase points for these integrals [68], analogous to finding paths of
maximum likelihood of integrals over multivariate dynamic probability distributions. Here, it is advanta-
geous to keep track of multiple local minima as they arise, to include their contributions to the overall
integral, and so in practice SQ is applied.

SA (ASA) can be substantially parallelized at several scales, and integrated with modern methods
of functional stochastic calculus defining nonlinear Lagrangians, and with algorithms developed for a sta-
tistical mechanics of neocortical interactions, to produce a powerful generic mesoscopic neural network
(MNN) [21,57]. This algorithm is quite generic, and can be used to process information in a wide class of
systems, especially, but not limited to, those amenable to modeling by mathematical physics techniques
alternatively described by path-integral Lagrangians, Fokker-Planck equations, or Langevin rate equa-
tions.

In the limit of quasi-linear Lagrangians (quadratic Lagrangian forms yielding quasi-linear stochas-
tic differential equations) for which good mean-field limits exist, an SQ algorithm, mean-field annealing
discussed below, can be more efficient and as effective as SA [30].

4.9. Geophysics
SQ techniques have proven useful in modeling seismic wav eforms. It was noted that nonlinearity

and stochasticity, which plague many other standard algorithms, can in fact be quite useful for such sparse
data [69]. This made SA techniques extremely attractive and useful. Seismic traces over time and loca-
tions are “stacked” and the cost function to be minimized was taken to be the negative of the total stack
power.

Another similar technique is to optimize a second order correlation function based on the products
of offset stacks (the previous method is essentially with offset zero), which tends to minimize degenera-
cies associated with the previous method [70]. This was performed using an SQ algorithm.

Another paper reports the importance in applying an SQ algorithm of experimenting to find a good
starting temperature near the “critical temperature” at which alternative optima are strongly searched [71].

4.10. Finance
Quite a few private communications with financial institutions have established that SA (or SQ?) is

rapidly becoming an in-house algorithm of choice when dealing with financial instruments. Standard
nested regression and local-search methods usually are applied to develop hybrid securities, e.g., combin-
ing markets in interest rates, foreign-exchange, equities, and commodities, by linking them via options,
futures, forwards, and swaps, to increase profits and reduce risks in investments as well as in trading [72].
However, the complexity and nonlinearity of these multivariate systems, and the increasing interest of
including information from more sophisticated modeling into trading rules, have called for more sophisti-
cated numerical algorithms. For example, the author has written ASA codes to optimize trading rules,
including optimization of sub-shells including models used to forecast variables, such as prices, volumes,
open interests, momentums of these variables derived from Lagrangians representing multivariate nonlin-
ear multiplicative-noise processes, etc. As such, the parameters are a mix of continuous and discrete sets,
but these seem to be able to processed quite smoothly by ASA. One of the several strong features of these
algorithms is their flexibility in accommodating many ad hoc constraints, rules, etc., as well as algebraic
models. An example of the power of SA (ASA), coupled with new statistical mechanical modeling tech-
niques, demonstrated that interest rates could be fit much better to data than previous published
studies [73,74].
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One study has used SQ on a set of several econometric problems [75], including cost functions aris-
ing in: the monetary theory of exchange rate determination, a study of firm production efficiency, and a
neural net model which generates chaos reputed by some to mirror some economic and financial series.
The authors demonstrated that their SQ algorithm performed better, e.g., at least more reliably finding
more optima, than other numerical techniques such as a genetic algorithm and a quasi-Newton algorithm.
In that study, using a Boltzmann algorithm [26], quenching is introduced by taking an exponential temper-
ature schedule,

Ti+1 = rT Ti , (21)

where rT lies between 0 and 1, and is selected in an ad hoc way to aid the global and local aspects of the
search. The problems they had in not always finding a global optima likely can be traced to using SQ, as
well as to using the standard Boltzmann method which does not permit much room for addressing differ-
ent sensitivities of the parameters, a point recognized by the authors. Their FORTRAN code is in the
public domain [76].

4.11. Military
Optimal disbursement of resources is a common problem to large systems and is especially critical

in defense. A study in optimal deployment of missile interceptors [77] used an SQ algorithm [78], per-
mitting the acceptance criteria to get stricter as the temperature decreases, by multiplying the difference of
saved and generated cost functions by the value of the saved cost function raised to an ad hoc power.

Tracking problems, in air, on the seas, and under water, present optimization problems to extract
viable trajectories from sparse data. SQ techniques have been effective when used with detailed physical
models that describe such trajectories [79].

A project to baseline computer wargames to exercise data required fitting data to multivariate non-
linear stochastic differential equations, expressed as an equivalent nonlinear Lagrangian [80]. SA (ASA)
was used effectively to fit alternative models represented by such short-time conditional probabilities.
Path-integral calculations then could be used to compare long-time correlations in these models with the
data, to determine the best model.

5. Modifications/improvements on SA

5.1. SQ modifications
If one is willing to spend some time and resources learning a bit more about a system’s cost func-

tion, and is willing to spend a bit more time experimenting with additional complexity, then likely one of
several methods designed to enhance the efficiency of SQ can be chosen.

5.1.1. Acceleration/termination of annealing
Many modifications to SA are directly related to spending fewer resources addressing the perceived

problem of too slow evolution of accepted configurations. This perception seems to be warranted in a
large number of papers, some of which are referenced above, that have demonstrated they can achieve
optimal solutions for their systems in less time than that mandated by the sufficiency conditions of the
“proofs.” Many approaches utilize the accepted to generated ratio to dynamically alter the annealing
schedule, e.g., attempting to maintain a ratio ≈ 1 [26].

There has been much success in stopping SA rather arbitrarily at the later low-temperature stages of
a search, when some low predetermined acceptance ratio is reached, then to proceed with another algo-
rithm. A “rejectionless” method was developed, similar in spirit to this method, but more methodical, and
yielding a search time not dependent on the acceptance ratio or temperature [81]. Acceptance criteria are
biased according to information being gathered on the cost function during the search, maintaining
detailed balance throughout the search. They suggest using standard SA until some low acceptance crite-
ria is reached, then to finish annealing using their method.

Some theoretical work that has been performed, enhancing the efficiency of generating functions,
utilizes techniques borrowed from stochastic relaxation [82], biasing the acceptance criteria using
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information gathered during the search coupled with the Metropolis algorithm [44]. This inhomogeneous
(nonstationary) method works particularly well when the cost function can be approximately represented
by the log of an additive Gaussian distribution typical of problems arising in image-restoration. While
aw are of the schedule required for SA using their Metropolis-based algorithm, their numerical work uti-
lized a much faster geometric SQ schedule,

Tk = T0rk . (22)

In many complex problems, much CPU time is spent inefficiently until an annealing temperature is
reached that starts to effectively sample the local minima. One solution to this is to perform some short
sample runs [83], perhaps using as much as 80% of the total CPU time (saving the best-to-date optima), to
determine this effective temperature.

A study in mapping tasks onto network graphs examined some correlations between graph regular-
ity and annealing schedules using SA and SQ algorithms [84]. Their conclusions lead them to the
hypothesis that further research into ultrametricity [85], a theory including the topology and regularity of
multiple scales, may lead to more efficient SA algorithms and to guidelines when to expect SQ to perform
well on a given class of problems.

5.1.2. Using knowledge of mathematical/physical structure
An approach to minimizing time spent in unproductive regions, the essence of “importance sam-

pling” introduced by the Monte Carlo approach [10], is to combine the SA algorithm with the “hybrid
Monte Carlo” method [86], which has been implemented in a neural network study [87]. The idea of the
hybrid Monte Carlo method is to expand the “configuration space” (q) of an energy-type cost function
E(q), creating a Hamiltonian-type cost function H(p, q) defined in “phase space” (p, q),

H(p, q) = E(q) + 1
2 p2 , (23)

where p is the “momentum.” In addition to stochastic movements typical of SA and Monte Carlo meth-
ods, “dynamic” moves are also made in H ≈ constant surfaces, permitting some rejection of high H val-
ues. A few other interesting twists are added, e.g., defining the annealing temperature T ∝ p2, permitting
additional control at the various stages of the search process [87].

This is an SQ algorithm, but one which permits a better physical understanding of the physical pro-
cesses of the state space in a given problem than by merely accelerating the temperature schedule. For
example, the schedule for the stochastic momentum vector updates was selected to be

pt+1 = α |pt |u + (1 −α 2)1/2n , 0 ≤ α < 1 ,  (24)

where u is a random vector of unit length with uniformly distributed direction, and n is a multivariate
Gaussian random vector. It can be demonstrated that this procedure is equivalent to sampling the phase
space according to the Boltzmann distribution for this system.

Simply relating the temperature to the square of the momentum in phase space, after a Fourier
transform of the phase space cost function H with respect to p in (p ⋅ q)-space, is equivalent to consider-
ing the configuration cost function as having a variance proportional to the temperature, i.e., the form of
the standard algorithm. For physical systems driven by differential rate equations with simple white
(additive Gaussian Markovian) noise η , this is equivalent to a Langevin equation

dq

dt
= −∇ E(q) + (2T )1/2η , (25)

which prompted a hybrid annealing/Langevin algorithm [3]. This permits the treatment of nonstationary
systems.

When the system is nonlinear, multivariate, and the noise contains multiplicative nonconstant func-
tions, a Riemannian geometry is induced [88], which requires some care in the definition of the cost func-
tion used for SA. Several problems have been successfully treated with ASA using the equivalent nonlin-
ear Lagrangian specified for such systems, to define a maximum likelihood fitting
procedure [16,57,64,73,80].
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Care must be taken in minimizing the cost functions of many physical systems by terminating the
temperature schedule [66]. At finite temperature, the optimal equilibrium state of such a system is deter-
mined by the free energy, which usually is much more difficult to calculate than just the internal energy.

5.1.3. Mean-field annealing (MFA)
An SQ algorithm gaining in popularity that quenches in a different manner than manipulating the

annealing schedule, but often which is combined with other SQ techniques such as described previously,
is mean-field annealing (MFA).

The value and justification for MFA is derived from energy/cost functions quadratic in the variables
being quenched, e.g., similar to the Ising model of magnetic interactions among spins [52],

H(s) =
i
Σ si(hi + 2

j≠i
ΣVij) +

k≠i
Σ hk +

k≠i
Σ

j≠k,i
Σ Vkj sk s j , (26)

where the (discrete) vector si is the variable being quenched, hi is the “external field,” and Vij is the pair
interaction. It is noted that the mean value < si >, < ⋅ > taken with respect the the Boltzmann distribution
in terms of the effective field Φi (the coefficient of the factor multiplying si in the first term on the RHS of
the above equation), relaxes to equilibrium much faster than does the stochastic variable si . The algo-
rithm proceeds by performing updates at each decreasing temperature level: calculating the present < si >,
then updating Φi , and then updating < si >.

For quasi-quadratic energy functions, the mean values of the variables is a good approximation to
the optimal stochastic state. Then, the MFA fit efficiently capitalizes on searching for these deterministic
most likely trajectories, instead of having to perform a fully stochastic search. I.e., when a mean-field
theory is a good approximate to a stochastic cost function, then MFA may be a very efficient alternative to
SA.

This algorithm has drawn further interest because such quasi-quadratic energy functions, defined in
terms of path integrals over their Boltzmann probability distributions, possess variational equations which
can directly lead to mean-field equations for their variables. For example, this is similar to deriving the
force law F for a spring,

F = −k < x >= ma = m < ẍ > ,  (27)

using the variational principle on the distribution of the Lagrangian L,

L = 1
2 mẋ2 − 1

2 kx2 , (28)

corresponding to the Hamiltonian H ,

H = 1
2 p2/m + 1

2 kx2 . (29)

The interest arises from taking < s j > as a sigmoidal function and making various identifications between
all parameters, arriving at a set of differential equations describing a neural network as well as the TSP
discussed above. Furthermore, these sets of equations can be simply mapped into software and hardware
parallel architectures [30,53,54]. Of course, the Ising model is a prototype for many other systems, but
here the attraction is to use a neural net to perform the search.

While the analogies and applications using MFA are interesting, most results are for (quasi-)linear
systems, albeit high dimensional ones. It should be kept in mind that these methods likely work as well
as other SQ methods, and likely fail as well on more nonlinear problems which require more exhaustive
searches.

5.1.4. Optimal ensembles
Ensemble algorithms have been developed to approach the selection of optimal schedules. The

basic approach is to generate independent Markov chains in the annealing algorithm, i.e., using different
initial conditions/random seeds for each trajectory. This technique was parallelized and applied with very
good results to TSP problems, adding some adaptive quenching designed to take advantage of specific
system features [89]. These features include a priori selecting aspects of the associated distribution to be
optimized, e.g., its mean, median, mode, energy cut-offs, etc. They also include some adaptive features
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based on information being gathered during the fit, such as coarse graining the current optima to an equiv-
alent tree structure over the mountain-like terrain of the cost function, using information being gathered
by all generated points, to estimate the current relaxation time to equilibrium at a given temperature.
These estimates are used to estimate an optimal ensemble size.

5.1.5. Simulated tempering (ST)
A method of simulated tempering (ST) has been designed for maximizing probabilities, P(X , m),

with cost functions H(X), by expanding the variable space, X , adding a new discrete variable, m [66],

P(X , m)∝ exp((βm H(X) − gm)) , (30)

where βm are considered to be dynamic temperatures, and gm are a priori assigned constants. This
approach selects ∆gm to approximate an intermediate value of βm H(X) as the index m changes, but such
that ∆H is appreciable with contiguous changes in βm in order to obtain an efficient algorithm. An
important feature is to maintain equilibrium of the system while seeking alternative minima and lowering
the effective cost function according to the m schedule. Care must be taken not to select the m schedule
inappropriately or else premature quenching can result.

5.1.6. Prejudicial search
Several of the above algorithms blend some form of deterministic search together with SA to

achieve efficiency beyond that of SA alone, albeit at the risk of not guaranteeing convergence to the global
optima within finite times. A formal argument has been presented to demonstrate that a class of such
“prejudicial” searches can achieve asymptotic convergence to the optimum state, albeit this can sacrifice
statistical convergence in finite time, and this typically does require some a priori knowledge of the
system [90].

5.2. Ergodic SA improvements

5.2.1. Fast annealing (FA)
Although there are many variants and improvements made on the “standard” Boltzmann algorithm

described above, many textbooks finish just about at this point without going into more detail about other
algorithms that depart from this explicit algorithm [4]. Specifically, it was noted that the Cauchy distribu-
tion has some definite advantages over the Boltzmann form [13]. The Cauchy distribution,

g(∆x) =
T

(∆x2 + T 2)(D+1)/2
, (31)

has a “fatter” tail than the Gaussian form of the Boltzmann distribution, permitting easier access to test
local minima in the search for the desired global minimum.

It is instructive to note the similar corresponding heuristic demonstration, that the Cauchy g(∆x)
statistically finds a global minimum. If Eq. (8) is replaced by

T (k) =
T0

k
, (32)

then here
∞

k0

Σ gk ≈
T0

∆xD+1

∞

k0

Σ 1

k
= ∞ . (33)

Note that the “normalization” of g has introduced the annealing-time index k, giving some insights into
how to construct other annealing distributions. The method of FA is thus seen to have an annealing
schedule exponentially faster than the method of BA. This method has been tested in a variety of
problems [13].
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5.2.2. Adaptive simulated annealing (ASA)
In a variety of physical problems we have a D-dimensional parameter-space. Different parameters

have different finite ranges, fixed by physical considerations, and different annealing-time-dependent sen-
sitivities, measured by the derivatives of the cost-function at local minima. BA and FA hav e distributions
which sample infinite ranges, and there is no provision for considering differences in each parameter-
dimension; e.g., different sensitivities might require different annealing schedules. This prompted the
development of a new probability distribution to accommodate these desired features [16], leading to a
variant of SA that in fact justifies an exponential temperature annealing schedule. This algorithm is dis-
cussed in more detail in the next section.

5.2.3. Parallel annealing
Advantage can be taken of parallel processing to implement SA at several stages, e.g., during ran-

dom number generation as well as in calculating generating functions [57]. However, such approaches
likely do not maximally take advantage of the possibilities of parallel processing.

5.2.3.1. Mob parallel annealing
Efficiency in implementing standard SA was achieved by adding a “mob” heuristic in graph-embed-

ding problems, to randomly swap coarse-grained neighborhoods of parameter space, thereby avoiding
spending large amounts of resources in local minima [91]. In their work, a mob is a collection of vertices
that have a “large” effect on the cost function when swapped. Another advantage of this heuristic is that it
readily permits parallel implementation. The authors prove that standard SA techniques become innately
serial at low temperatures, preventing strict parallelism at massive scales. The proof makes some assump-
tions about the probabilities of rejection at low temperatures that should be examined for other SA algo-
rithms. In practice, they find ample parallelism for many of their problems.

As mentioned in the section above on SQ modifications, in the context of ultrametricity, the general
concept of respecting multiple scales of the cost function may be one of the most important areas for
future investigation in improving the performance of SA.

5.2.3.2. Time-homogeneous parallel annealing
There are more sophisticated algorithms that have proven that parallel probabilistic exchanges of

information gathered from processors annealing at different temperatures can increase the overall rate of
convergence [92]. The proof given depends on selecting the final and initial temperatures, and all inter-
mediate cycles, before the search begins. It is instructive here to examine one of the bases on which they
develop the bias factors for their algorithm. They define p(T , E, T ′, E ′, )  as the probability of exchange
between two solutions (to be used in periodically exchanging information between processors), with the
logical requirement that solutions are always exchanged if a better one is found at a higher temperature,

∆T ∆E = (T − T ′)(E − E ′) < 0 => p = 1 .

For the other cases, they inv oke detailed balance,

1

Z (T )
exp(−

E

T
)

1

Z (T ′)
exp(−

E ′
T ′

)p(T , E, T ′, E ′) =
1

Z (T )
exp(−

E ′
T

)
1

Z (T ′)
exp(−

E

T ′
) ,  (34)

Z (T ) =
x
Σexp(−

E(x)

T
) .  (35)

This yields

p(T , E, T ′, E ′) =







1

exp(−
∆T ∆E

TT ′
)

if ∆T ∆E < 0

otherwise .
(36)

They note that this enables p to be calculated without knowledge of the partition function Z , making
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updates much simpler than other techniques requiring the calculation of Z .

5.2.3.3. Parallel recombinative simulated annealing (PRSA)
A hybrid algorithm of parallel recombinative simulated annealing (PRSA), blending desirable fea-

tures of genetic algorithms (GA), briefly discussed above, with standard SA has been proposed [24,93].
Crossover and mutation techniques of GA are performed during various stages of SA. Parallelism is a
feature typically incorporated with GA, and this is added here as well. If two conditions are strictly satis-
fied—(a) that the system can move to an optimal solution in a finite number of transitions, and (b) there
exists detailed balance symmetry condition—then the global convergence properties of SA are retained.
This method requires generation of points until two trial cost functions are found that both differ from
each other and from the latest saved cost function by some threshold value θ . This paper also contains an
short review of some other work in parallel simulated annealing.

5.2.3.4. Parallel systolic SA
The use of arrays of transputers, each independent computing element containing a complete inde-

pendent database with periodic communication between elements, presents opportunities for parallel
SA [94]. Especially at low temperatures with higher rejection rates, independent Markov chains can be
efficient in exploring large spaces. This study also used FA, described above, which presented approxi-
mately constant rates of acceptances at low temperatures, relatively independent of the temperature, per-
mitting efficient optimizations of crystallization problems.

5.2.3.5. Analysis of Gibbs sampler
A contribution to rigorously investigating SA, and the possibilities to be gained by parallel process-

ing, is some work done examining rates of convergence at any constant temperature applied to lattice
problems [95]. They inv estigate conditions under which the equilibrium Boltzmann distribution is
achieved for some simple models, which possess this distribution as a limit when sampled sequentially,
when parallelized.

5.2.4. Global versus local stages of search
There are some aspects of SA that can be modified to improve efficiency without sacrificing the suf-

ficiency conditions. The initial stages of SA generally are committed to global diffuse searching, to
explore alternative optima. Here, it is important to examine sensitivity of the global search to initial tem-
perature. The final stages of SA generally are committed to local focused convergence into the global
optima. If some information is known about the system, then a natural criteria might be established.

In dealing with the overall process, it may help to appreciate just how the products of generating
and acceptance probabilities describe a Markov chain. Many practitioners experiment with their particu-
lar application to implement the temperature schedule. For example, some practitioners establish sets of
homogeneous (time or temperature independent) Markov chains at constant temperature, each set of
length determined until a predetermined number of repetitive visits to a given optima occur. This can
serve to permit more global searching in particularly rough parameter landscapes, reducing long local vis-
its. For example, in a study utilizing FA [51], better results were obtained using such sets of homoge-
neous Markov chains.

In applications using ASA [21,64,73,80], typically using a low acceptance to generated ratio, long
local visits were reduced by changing the acceptance distribution temperature only on each new accep-
tance. This seems to work well since only the generating distributions are fat-tailed and can more reason-
ably follow the fastest temperature schedule permitted by the sufficiency conditions.

Furthermore, in problems where the desired degree of accuracy and precision are known before-
hand, it may be reasonable to shunt over to a more efficient local algorithm. In some ASA applications,
good results have been obtained shunting over to the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [96] after a determined number of acceptances did not improve the precision of the minimum
by a predetermined amount.
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6. Adaptive simulated annealing (ASA)
In a variety of physical problems we have a D-dimensional parameter-space. Different parameters

have different finite ranges, fixed by physical considerations, and different annealing-time-dependent sen-
sitivities, measured by the curvature of the cost-function at local minima. BA and FA hav e g distributions
which sample infinite ranges, and there is no provision for considering differences in each parameter-
dimension, e.g., different sensitivities might require different annealing schedules. These are among sev-
eral considerations that gav e rise to Adaptive Simulated Annealing (ASA). Full details are available by
obtaining the publicly available source code [6].

ASA considers a parameter α i
k in dimension i generated at annealing-time k with the range

α i
k ∈ [Ai , Bi] ,  (37)

calculated with the random variable yi ,

α i
k+1 = α

i
k + yi(Bi − Ai) ,

yi ∈ [−1, 1] . (38)

Define the generating function

gT (y) =
D

i=1
Π 1

2(|yi | + Ti) ln(1 + 1/Ti)
≡

D

i=1
Π gi

T (yi) .  (39)

Its cumulative probability distribution is

GT (y) =
y1

−1
∫ . . .

yD

−1
∫ dy′1 . . . dy′D gT (y′) ≡

D

i=1
Π Gi

T (yi) ,

Gi
T (yi) =

1

2
+

sgn (yi)

2

ln(1 + |yi |/Ti)

ln(1 + 1/Ti)
. (40)

yi is generated from a ui from the uniform distribution

ui ∈ U[0, 1] ,

yi = sgn (ui −
1

2
)Ti[(1 + 1/Ti)

|2ui−1| − 1] . (41)

It is straightforward to calculate that for an annealing schedule for Ti

Ti(k) = T0i exp(−ci k
1/D) ,  (42)

a global minima statistically can be obtained. I.e.,

∞

k0

Σ gk ≈
∞

k0

Σ [
D

i=1
Π 1

2|yi |ci
]

1

k
= ∞ . (43)

It seems sensible to choose control over ci , such that

T fi = T0i exp(−mi) when k f = exp ni ,

ci = mi exp(−ni/D) ,  (44)

where mi and ni can be considered “free” parameters to help tune ASA for specific problems.

It has proven fruitful to use the same type of annealing schedule for the acceptance function h as
used for the generating function g, i.e., Equations (42) and (44), but with the number of acceptance
points, instead of the number of generated points, used to determine the k for the acceptance temperature.

New parameters α i
k+1 are generated from old parameters α i

k from
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α i
k+1 = α

i
k + yi(Bi − Ai) ,  (45)

constrained by

α i
k+1 ∈ [Ai , Bi] .  (46)

I.e., yi’s are generated until a set of D are obtained satisfying these constraints.

6.1. Reannealing
Whenever doing a multi-dimensional search in the course of a real-world nonlinear physical prob-

lem, inevitably one must deal with different changing sensitivities of the α i in the search. At any giv en
annealing-time, it seems sensible to attempt to “stretch out” the range over which the relatively insensitive
parameters are being searched, relative to the ranges of the more sensitive parameters.

It has proven fruitful to accomplish this by periodically rescaling the annealing-time k, essentially
reannealing, every hundred or so acceptance-events, in terms of the sensitivities si calculated at the most
current minimum value of the cost function, L,

si = ∂L/∂α i . (47)

In terms of the largest si = smax, it has proven fruitful to reanneal by using a rescaling for each ki of each
parameter dimension,

ki → k ′i ,

T ′ik ′ = Tik(smax/si) ,

k ′i = ((ln(Ti0/Tik ′)/ci))
D . (48)

Ti0 is set to unity to begin the search, which is ample to span each parameter dimension.

The acceptance temperature is similarly rescaled. In addition, since the initial acceptance tempera-
ture is set equal to a trial value of L, this is typically very large relative to the global minimum. There-
fore, when this rescaling is performed, the initial acceptance temperature is reset to the most current mini-
mum of L, and the annealing-time associated with this temperature is set to give a new temperature equal
to the lowest value of the cost-function encountered to annealing-date.

Also generated are the “standard deviations” of the theoretical forms, calculated as [∂2 L/(∂α i)2]−1/2,
for each parameter α i . This gives an estimate of the “noise” that accompanies fits to stochastic data or
functions. At the end of the run, the off-diagonal elements of the “covariance matrix” are calculated for
all parameters. This inverse curvature of the theoretical cost function can provide a quantitative assess-
ment of the relative sensitivity of parameters to statistical errors in fits to stochastic systems.

A few other twists can be added, and such searches undoubtedly will never be strictly by rote.
Physical systems are so different, some experience with each one is required to develop a truly efficient
algorithm.

6.2. Self optimization
Another feature of ASA is its ability to recursively self optimize its own Program Options, e.g., the

ci parameters described above, for a given system. An application is described below.

6.2.1. Quenching
Another adaptive feature of ASA is its ability to perform quenching. This is applied by noting that

the temperature schedule above can be redefined as

Ti(ki) = T0i exp(−ci k
Qi/D
i ) ,

ci = mi exp(−niQi/D) ,  (49)

in terms of the “quenching factor” Qi . The above proof fails if Qi > 1 as



SA Practice vs Theory - 22 -  Lester Ingber

k
Σ

D

Π 1/kQi/D =
k
Σ1/kQi < ∞ . (50)

This simple calculation shows how the “curse of dimensionality” arises, and also gives a possible
way of living with this disease. In ASA, the influence of large dimensions becomes clearly focussed on
the exponential of the power of k being 1/D, as the annealing required to properly sample the space
becomes prohibitively slow. So, if we cannot commit resources to properly sample the space ergodically,
then for some systems perhaps the next best procedure would be to turn on quenching, whereby Qi can
become on the order of the size of number of dimensions.

The scale of the power of 1/D temperature schedule used for the acceptance function can be altered
in a similar fashion. However, this does not affect the annealing proof of ASA, and so this may used
without damaging the (weak) ergodicity property.

6.3. ASA applications
The above defines this method of adaptive simulated annealing (ASA), previously called very fast

simulated reannealing (VFSR) [16] only named such to contrast it the previous method of fast annealing
(FA) [13]. The annealing schedules for the temperatures Ti decrease exponentially in annealing-time k,
i.e., Ti = Ti0 exp(−ci k

1/D). Of course, the fatter the tail of the generating function, the smaller the ratio of
acceptance to generated points in the fit. However, in practice, it is found that for a given generating func-
tion, this ratio is approximately constant as the fit finds a global minimum. Therefore, for a large parame-
ter space, the efficiency of the fit is determined by the annealing schedule of the generating function.

A major difference between ASA and BA algorithms is that the ergodic sampling takes place in an
n + 1 dimensional space, i.e., in terms of n parameters and the cost function. In ASA the exponential
annealing schedules permit resources to be spent adaptively on reannealing and on pacing the conver-
gence in all dimensions, ensuring ample global searching in the first phases of search and ample quick
convergence in the final phases. The acceptance function h(∆x) chosen is the usual Boltzmann form sat-
isfying detailed balance, and the acceptance-temperature reannealing paces the convergence of the cost
function to permit ergodic searching in the n-parameter space considered as the independent variables of
the dependent cost function.

ASA has been applied to several systems, ranging from combat analysis [80,97], to finance [73,74],
to neuroscience [64], to a set of test problems [21], to a new technique combining the power of SA with
the physics of large-scale systems [57], to many other systems [98].

ASA source code in C-language is publicly available [6]. It is certain that there is much research to
be done on determining optimal or even reasonable ASA parameters, for different classes of systems,
especially in higher dimensional spaces of user parameters. A major purpose of making this code pub-
licly available is to motivate more of this research, and thus make the code more useful to a wider audi-
ence.

6.4. ASA annealing versus quenching
As an example of applying some of the features of ASA, the reannealing, self optimization, and

quenching features were applied to the difficult test problem in the code, given above as Eq. (15), for
dimensions n = 4 and n = 8, containing 105n minima. Relative to previously published ASA/VFSR stud-
ies that were faster and more accurate than other global optimization algorithms, these options can speed
up the search (number of cost_function calls) by as much as a factor of 20, without losing accuracy in
finding the global minimum.

For dimension 4, quenching values of Q were chosen as 1, 2, 3, and 4, and “super-quenching” val-
ues of 8 and 16 were also run. For dimension 8, quenching values of Q were chosen as 1, 2, 3, 4, 5, 6, 7,
and 8, and “super-quenching” values of 16 and 24 were also run. Separate runs were done for cases with
reannealing and with no reannealing.

It was quite surprising to see that all runs achieved the global optima of 0. It should be noted that
the super-quenched runs quickly exhausted the preset limits of precision of 10−30, which became the val-
ues of the parameter and cost function annealing temperatures rather soon into into the runs. The runs
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continued, which simply translated into no annealing after those low temperatures were reached, just ran-
domly searching within the narrowed ranges. If the limits of precision were set lower, then it should be
expected that the runs would end much faster, albeit they might not attain the global minimum. This
likely explains why the super-quenching did not perform much better than for values of Q = n.

For each value of Q selected, three trajectories were run. Figs. 4 and 5 give results for n = 4, for the
cases of no reannealing and with reannealing, respectively. Figs. 6 and 7 give results for n = 12, for the
cases of no reannealing and with reannealing, respectively. Tables I and II give values of the final number
of calls generated for each trajectory, for dimensions n = 4 and n = 8, respectively.
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Fig. 4. Superimposed are runs for n = 4, the case of no reannealing, 3 trajectories each for cases of Q = 1,
2, 3, 4, 8, and 16. Although the actual final cost function values are 0, they were set to 10−10 for purposes
of this log-log plot. See Table I for assignments of trajectories with their final numbers of required calls.
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Fig. 5. Superimposed are runs for n = 4, the case including reannealing, 3 trajectories each for cases of Q
= 1, 2, 3, 4, 8, and 16. Although the actual final cost function values are 0, they were set to 10−10 for pur-
poses of this log-log plot. See Table I for assignments of trajectories with their final numbers of required
calls.
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Dimension = 4

No_Reanneal Reanneal
Quench Traj Calls Traj Calls

1 a  4814 d 3163
1 b  4523 e 3375
1 c  4910 f 4189
2 a  1473 d 1340
2 b  2065 e 1635
2 c  3078 f 1749
3 a  1637 d 2728
3 b  1807 e 1614
3 c  1300 f 968
4 a  2938 d 1259
4 b  2953 e 2230
4 c  1570 f 1632
8 a  1647 d 1682
8 b  2447 e 2355
8 c  2188 f 1999

16 a 1660 d 1593
16 b 2035 e 2440
16 c 2171 f 2486

Table I. The values of the number of generated calls to achieve the global optimum point are given for
dimensions n = 4, for several values of quenching values of Q, for three trajectories each for cases of no
reannealing (trajectories a, b and c) and with reannealing (trajectories d, e and f).
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Fig. 6. Superimposed are runs for n = 8, the case of no reannealing, 3 trajectories each for cases of Q = 1,
2, 3, 4, 5, 6, 7, 8, 16, and 24. Although the actual final cost function values are 0, they were set to 10−10

for purposes of this log-log plot. See Table II for assignments of trajectories with their final numbers of
required calls.
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Fig. 7. Superimposed are runs for n = 8, the case including reannealing, 3 trajectories each for cases of Q
= 1, 2, 3, 4, 5, 6, 7, 8, 16, and 24. Although the actual final cost function values are 0, they were set to
10−10 for purposes of this log-log plot. See Table II for assignments of trajectories with their final num-
bers of required calls.
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Dimension = 8

No_Reanneal Reanneal
Quench Traj Calls Traj Calls

1 a  211066 d 46850
1 b  170163 e 35121
1 c  199969 f 91993
2 a  16115 d 10763
2 b  13800 e 15080
2 c  17554 f 9340
3 a  7026 d 8291
3 b  8661 e 6439
3 c  5613 f 5275
4 a  5668 d 5289
4 b  3497 e 3920
4 c  4388 f 4557
5 a  4637 d 6222
5 b  2458 e 7006
5 c  4327 f 7873
6 a  5975 d 6428
6 b  6328 e 4207
6 c  3585 f 4590
7 a  4347 d 5255
7 b  4692 e 6246
7 c  4807 f 5992
8 a  5920 d 7051
8 b  4142 e 4014
8 c  5128 f 5976

16 a 5640 d 4663
16 b 4534 e 3573
16 c 4355 f 5955
24 a 5147 d 5048
24 b 6776 e 4206
24 c 4807 f 5607

Table II. The values of the number of generated calls to achieve the global optimum point are given for
dimensions n = 8, for several values of quenching values of Q, for three trajectories each for cases of no
reannealing (trajectories a, b and c) and with reannealing (trajectories d, e and f).

7. Conclusion
Simulated annealing is a very powerful and important tool in a variety of disciplines. However,

often it is not applied according to strict adherence to sufficiency conditions permitting the researcher to
truly claim that the optimal solution has been (statistically) found. The reason typically given is simply
that many variants of this technique are considered to be too consuming of resources to be applied in such
strict fashion.

There exist faster variants of true simulated annealing (SA), but these apparently are not as quite
easily coded and so they are not widely used. More well-documented user-friendly code, e.g., menu-
driven, would definitely help.

Many modifications of SA are really quenching, and should aptly be called simulated quenching
(SQ). However, SQ is not without its usefulness and often is justified in terms of its practicality. Many
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current research problems, given the complexity of models and constraints faced, likely would not be
approached if there was not some chance of reasonable solution of the optimization problems that arise.
SQ does fill this void. Explicit calculations on a difficult test problem have demonstrated that at least in
some cases SQ can perform faster than SA with the same accuracy.

The best solution to this situation might occur if further research could establish some necessary
conditions on SA for obtaining an optimal solution with fewer resources than the current sufficiency con-
ditions permit. The search for such a “holy grail” is not quite hopeless. As we have tried to outline here,
so many difficult problems have been treated quite favorably by SQ techniques, that it seems that a classi-
fication of problems might exist, yielding insight into what “shade” of SA or SQ might be most appropri-
ate for a given system.
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