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Abstract
It is proposed to apply modern methods of nonlinear nonequilibrium statistical mechanics to develop soft-
ware algorithms that will optimally respond to targets within short response times with minimal computer
resources. This Statistical Mechanics Algorithm for Response to Targets (SMART) can be developed
with a view tow ards its future implementation into a hardwired Statistical Algorithm Multiprocessor
(SAM) to enhance the efficiency and speed of response to targets (SMART SAM).

I. Identification of Sample Problems
(A) Target Variables—Recognition

Consider the grid in Fig. 1, defined within a given time epoch, where the grid is to be conceived as a gen-
eralized ‘‘radar’’ screen, representing data being accumulated by multiple sensors. Each cell has informa-
tion pertaining to relocatable targets that may be moving between cells. This information is assumed to
be further encoded into target variables, e.g., coordinate position, velocity, acceleration, numbers of tar-
gets within these categories, etc.

× ×

× ×

× × ×  × × ×

Figure 1. ‘‘Radar’’ Screen

The information collected within each time epoch serves to define changes in these variables between
neighboring epochs, both within each cell and between neighboring cells.

Thus, large sets of problems are defined by requiring algorithms to recognize and parametrize changing
patterns of these target variables.

(B) Decision-Making Variables—Response

It must also be assumed, if objective responses to targets are required, that decision-making variables be
defined and functionally parametrized. These variables may include properties of actions to be taken,
consistently scaled to match target variables.

Thus, larger sets of problems are defined by requiring algorithms to parameterize and to optimally allo-
cate decision-making variables according to the perceived changing patterns of target variables defined in
(A). It is also reasonable to expect that any algorithm for response, i.e., in contradistinction to mere
recognition, somehow consistently fold in the parameters of both (A) and (B).
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(C) Response-Time and Computational Constraints

These problems are further exasperated by the real nature of physical systems. Not much time may be
available to optimally solve the problems defined in (A) and (B).

Thus, larger sets of problems are defined by requiring algorithms to respond to problems in (A) and (B),
but so constrained that they may not be able to always predict the absolutely best response. It may be
necessary to settle for a ‘‘good’’ response.

(D) Fitting and Predicting Error, Noise and Risk

Given the absence of perfect humans and of perfect machines, it is clear that any algorithm addressing the
problems in (A), (B) and (C) require some degree of parametrization and modeling. There exist some
errors in attempting to match any algorithm to a given genuine complex physical system. In order to min-
imize these errors to within required tolerances, these errors must be quantified.

By design of the targets or by design of the sensors, there also exists some degree of background noise
tending to thwart a completely deterministic description of the target variables. This noise must be quan-
tified, at least in order to assess a measure of credibility given to the identification of changing patterns of
target variables.

The size and complexity of real physical systems, and the response-time and computational constraints
described in (C), dictate that without always being able to make a best single decision, there exist ele-
ments of risk in any response algorithm. This risk must be quantified, at least in order to assess the
chances to be taken by alternative responses. The ‘‘expected gain’’ of any response is the sum of products
of each possible response multiplied by its associated risk, assuming independence among responses; oth-
erwise, cross-correlations must be assessed and folded into this analysis.

Thus, larger sets of problems are defined by requiring algorithms to consistently include fits of variances
(error, noise, risk) of all parameters in (A), (B) and (C). Only if variances are consistently fitted, can the
mean values (signals), approximately corresponding to the otherwise deterministic parameters in the
hypothetical absence of these variances, be extracted. Only if past events include these ‘‘2nd moment’’
fits, i.e., only by fitting bona fideprobability distributions, can the future be optimally predicted, albeit
only with some (quantifiable) degree of statistical (un)certainty.

(E) Introduction

Section II outlines the modern mathematical methods of nonlinear nonequilibrium statistical mechanics
appropriate to the concerns of this section. Enough detail is given to establish the soundness of this
approach, as well as to honestly present the algebraic complexity required.

Section III discusses applications of these mathematical methods to other specific physical systems. The
intent is to demonstrate the broad applicability of this approach, as well as to offer some physical insights
gained from related work that might be useful here.

Section IV suggests how this statistical mechanics approach might be applied in future projects, to
develop computer software and hardware to solve problems of academic, industrial and governmental
concerns.

II. Method of Solution
(A) One Variable, One Cell

For momentary simplicity, again consider the ‘‘radar’’ grid in Fig. 1, but now consider only one parame-
ter, M(t), in just one cell, representing just one of the variables discussed in Section (IA) or Section (IB).
The problem of determining the change of M within time ∆t is

M(t + ∆t) − M(t) = ∆t f [M(t)] , (1)

where f [M] is some function to be fit, which describes how M is changing. For small enough ∆t, and
assuming continuity of M , this is often written as

Ṁ =
dM

dt
= f . (2)
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If background noise, η , is present, assumed to be Gaussian-Markovian (‘‘white’’ noise), then this affects
the description of changing M by

Ṁ = f + ĝη , (3)

< η (t) >η = 0 ,

< η (t)η (t ′) >η = δ (t − t ′) ,

where ĝ2 is the (constant here) variance of the background noise. Here η is assumed to have a zero mean.
Eq. (3) is referred to as a Langevin rate-equation in the scientific literature.

Physicists and engineers, e.g., in fluid mechanics, recognize an equivalent ‘‘diffusion’’ equation to Eq. (3),
defining a differential equation for the conditional probability distribution, P[M(t + ∆t)|M(t)], of finding
M at the time t + ∆t, giv en its value at time t.

∂P

∂t
=

∂(− fP)

∂M
+

1

2

∂2(ĝ2P)

∂M2
(4)

is known as a Fokker-Planck equation.

Some physicists, e.g., in elementary-particle physics, are familiar with yet another representation of Eq.
(3) or (4). For small time epochs, the conditional probability P is

P[Mt+∆t |Mt] = (2πĝ2∆t)−1/2 exp(−∆tL) ,  (5)

L = (Ṁ − f )2/(2 ̂g2) .

L is defined to be the Lagrangian. This representation for P permits a ‘‘global’’ path-integral description
of the evolution of P from time t0 to a long time t, i.e., in contradistinction to the ‘‘local’’ differential Eq.
(4). Labelling u intermediate time epochs by s, i.e., ts = t0 + s∆t, in the limits limu→∞ and lim∆t→0, and
assuming Mt0

= M(t0) and Mt = M(t ≡ tu+1) are fixed,

P[Mt |Mt0
] = ∫ . . . ∫ dMt−∆t dMt−2∆t

. . . dMt0+∆t (6)

×P[Mt |Mt−∆t]P[Mt−∆t |Mt−2∆t]

× . . . P[Mt0+∆t |Mt0
] ,

P[Mt |Mt0
] = ∫ . . . ∫ DM exp(−

u

s=0
Σ ∆tLs) ,

DM = (2πĝ2
0∆t)−1/2

u

s=1
Π (2πĝ2

s∆t)−1/2dMs ,

∫ dMs →
N

α =1
Σ ∆Mα s , M0 = Mt0

, Mu+1 = Mt ,

where α labels the range of N values of M . For notational simplicity, the indices s and α often will be
dropped in the following, but these time and range discretizations must of course be explicitly pro-
grammed in all actual numerical calculations.

There are at least three advantages to Eq. (6) over its equivalent representations, Eqs. (3) and (4): First,
there is a variational principle defined by Eq. (6), wherein a set of Euler-Lagrange differential equations
exist for L, directly yielding those values or trajectories of M which give the largest contribution to the
probability distribution P.

Second, because P is a bona fideprobability distribution, there exist Monte Carlo numerical algorithms
for calculating Eq. (6), sampling the M-space without having to calculate all values of M at all intermedi-
ate time epochs from t0 to t to find P. This numerical algorithm also has the nice feature of avoiding
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traps in local minima when there are deeper minima to be had, representing more probable states.

Third, the Lagrangian representation permits the use of importance-sampling techniques, efficiently giv-
ing more weight to more probable states.

(B) Many Nonlinear Variables

It is possible to formulate Langevin equations generalized from Eq. (3),

ṀG = f G + ĝG
i η i , (7)

i = 1, . . . , Ξ ,

G = 1, . . . , Θ ,

where G corresponds to any number of Θ variables, e.g., target and decision-making variables in (IA) and
(IB), f G and ĝG

i are arbitrarily nonlinear functions of any or all MG, and of t, and the index i corresponds
to recognizing that there can be many different sources contributing to the variance of MG. The Einstein
summation convention is used for compactness, whereby any index appearing more than once among fac-
tors in any term is assumed to be summed over, unless otherwise indicated. The time of evaluation of ĝG

si
during s-epochs intermediate between t0 and t, ts between ts and ts+1 = ts + ∆t, must now be explicitly
prescribed. Unless otherwise specified, a midpoint Stratonovich rule will be chosen here, using

MG(ts) =
1

2
(MG

s+1 + MG
s ) , ṀG(ts) = (MG

s+1 − MG
s )/∆t , and ts = ts + ∆t/2 . This choice is consistent with

other physical systems, and allows the use of standard calculus.

The Fokker-Planck equation generalized from Eq. (4) is

∂P

∂t
= VP +

∂(−gGP)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ , (8)

gG = f G +
1

2
ĝG′

i
∂ĝG

i

∂MG′ ,

gGG′ = ĝG
i ĝG′

i ,

where a ‘‘potential’’ V may be added, and is often useful to simulate boundary conditions. Note that the
microscopic sources of the variances, indexed by i , are summed over and do not need to be fitted in this
‘‘mesoscopic’’ representation.

The path integral generalized from Eq. (6) is written as

P = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLs) ,  (9)

DM = g1/2
0+

(2π∆t)−1/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

α =1
Σ ∆MG

α s , MG
0 = MG

t0
, MG

u+1 = MG
t ,

L =
1

2
(ṀG − hG)gGG′(Ṁ

G′ − hG′) +
1

2
hG

;G + R/6 − V ,

[. . .],G =
∂[. . .]

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,
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gGG′ = (gGG′)−1 ,

gs[M
G(ts), ts] = det(gGG′)s , gs+ = gs[M

G
s+1, ts] ,

hG
;G = hG

,G + ΓF
GFhG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK, L] = gLF (gJL,K + gKL,J − gJK,L) ,

R = gJLRJL = gJLgJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK,FL − gFL,JK + gJL,FK )

+gMN(ΓM
FK ΓN

JL − ΓM
FLΓN

JK) .

Note that the variance gGG′ is the GG′-matrix inverse of the G-space metric gGG′ , R is calculated to be
the Riemannian curvature scalar, and ΓF

JK is the affine connection in this space.

(C) Many Cells

For many cells, i.e., Λ cells indexed by ν , the path integral in Eq. (9) is further generalized, essentially by
expanding the parameter space from the set { G} to the set { G,ν } .

P̃ = ∫ . . . ∫ DM̃ exp (−
u

s=0
Σ ∆t L̃s) ,  (10)

M̃ = { MGν
s |G = 1, . . . Θ;ν = 1, . . . , Λ; s = 1, . . . , u} ,

DM̃ = g̃1/2
0+

(2π∆t)−1/2
u

s=1
Π g̃1/2

s+

Θ

G=1
Π

Λ

ν =1
Π (2π∆t)−1/2dMGν

s ,

g̃s[M
Gν (ts), ts] = det(gGG′νν ′)s , g̃s+

= g̃s[M
Gν
s+1, ts] ,

∫ dMGν
s →

NG

α =1
Σ ∆MGν

α s , MGν
0 = MGν

t0
, MGν

u+1 = MGν
t ,

L̃ =
1

2
(ṀGν − hGν )gGG′νν ′(Ṁ

G′ν ′ − hG′ν ′)

+
1

2
hGν

;Gν + R̃/6 − Ṽ .

Constraints may be placed on variables by adding them to the potential Ṽs , e.g., as JsGν MGν
s with

Lagrange multipliers JsGν .

If a prepoint-discretization rule is adopted, transforming from the midpoint-discretized Feynman L̃s and
g̃s+

, to define ṀGν (ts) = (MGν
s+1 − MGν

s )/∆t , MGν (ts) = MGν
s , ts = ts, and g̃s+

= g̃s, then a simpler expres-
sion is obtained for the Lagrangian, one in which the Riemannian terms are not explicitly present.

L̃′ =
1

2
(ṀGν − gGν )gGG′νν ′(Ṁ

G′ν ′ − gG′ν ′) − Ṽ . (11)

However, although P̃ is invariant under this transformation, L̃′ does not possess the variational principle
possessed by the Feynman Lagrangian L̃, so that if the prepoint-discretized L̃′ and g̃s+

are used to fit the
data, then some tests must still be made to see how efficiently the path integral can be calculated using L̃′
instead of L̃ to globally scan the data.

(D) Fitting the Information in the Lagrangian
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The quantity to be fit will be the information, i.e., the ‘‘entropy,’’ Ĩ ,

Ĩ = − ∫ dM̃t P̃ ln(P̃/P̃) ,  (12)

where P̃ is a reference state. P̃ approximates the WKB most probable P̃WKB, using L̃WKB = L̃ − R̃/12
with exp(−Σu

s=0 ∆t R̃/12) absorbed in DWKB M̃ , but using L̃ has computational advantages, admitting the
variational principle.

It is physically reasonable to assume, at least for a first-order fit to data, that a ν -mesh can be chosen such
that f Gν and ĝGν

i , generalized from Eq. (7), depend functionally only only on nearest-neighbor (NN)
interactions between cells, i.e., they are functions of MGν and MGν NN, where ν NN represents NN cells to
cell ν . Also, it is reasonable to require that summing over i-sources of noise in ĝGν

i ĝG′ν ′
i that contribute to

gGG′νν ′ enforces NN correlations between ν and ν ′. (The deterministic aspect of longer ranged trajecto-
ries still can be modeled by the functional form given to f Gν , and both f Gν and ĝGν

i may depend explic-
itly on the time variable.) Then, in L̃′ in Eq. (11) all implied sums Σν Σν ′ reduce to Σν Σν NN

, and L̃′ is
limited to contributions from NN and next-nearest-neighbor (N2N) interactions picked up from products
of the means and variances. L̃ in Eq. (10) picks up higher order neighbors from the Riemannian terms,
which must be kept in the absence of any other physical assumptions about the system. For some systems
it may be reasonable to assume that only Ṽ contains NN interactions in L̃ or L̃′, especially if the NN inter-
actions are small enough to be expanded and separated out.

There is a price to pay for the conceptual simplicity achieved by Eq. (10), i.e., relatively complicated alge-
braic expressions, but this price is paid by coding the proper functional form of L̃. Howev er, there is an
important trade-off for the time of calculation. L̃ is a relatively large expression to be calculated, but the
size of the calculation of P̃ goes up only as ln[ ΠsGν NG] ,  which is relatively very efficient for a large
number of target and decision-making variables.

Eq. (10) [or first its equivalent prepoint discretization given in Eq. (11)] will be fit to the data by assuming
functional forms for Ṽs , gGν

s and gGG′νν ′
s . The convergence of L̃ or L̃′ is expected to be quite good. I.e.,

ev en polynomial forms for gGν
s and gGG′νν ′

s , with coefficients to be fit, define a Padé approximate to L̃
usually giving better convergence than obtained for gGν

s or gGG′νν ′
s separately. Also, note that L̃s is a sin-

gle scalar function to be fit.

III. Related Work
(A) Basic Mathematical Physics

Since the late 1970’s, several mathematicians and physicists have dev eloped previous techniques of func-
tional integration of classical mechanical Fokker-Planck and quantum mechanical Schrödinger-type par-
tial differential equations [1], to explore the statistical mechanics of quite general nonlinear nonequilib-
rium Gaussian Markovian systems—sometimes referred to as Langevin systems with ‘‘colored’’ or ‘‘mul-
tiplicative’’ Gaussian noise [2-16]. The development of a path-integral Lagrangian permits calculation of
an explicit probability distribution describing the evolution/filtering of input patterns of information. Fur-
thermore, a true variational principle permits efficient examination of many properties of such systems,
and the path integral directly presents itself for numerical calculations using importance-sampling Monte
Carlo techniques [15, 17, 18]. Riemannian geometry [19] facilitates, but is not necessary, to derive these
results.

From the Langevin equations, other models may be derived, such as the times-series model and the
Kalman filter method of control theory. Howev er, in the process of this transformation, the Markovian
description typically is lost by projection onto a smaller state space [20, 21]. This work only considers
multiplicative Gaussian noise. These methods are not conveniently used for other sources of noise, e.g.,
Poisson processes or Bernoulli processes. It remains to be seen if colored noise can emulate these pro-
cesses in the empirical ranges of interest, in some reasonable limits [22]. For example, within limited
ranges, log-normal distributions can approximate 1/ f distributions, and Pareto-Lévy tails may be modeled
as subordinated log-normal distributions with amplification mechanisms [23]. At this time, certainly the
proper inclusion of colored noise, using parameters fit to data to model general sources of noise, is prefer-
able to improper inclusion or exclusion of any noise.
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It should be noted that while progress has been made in extending the application of the path-integral
approach to abstract nonlinear nonequilibrium systems, there also has been much progress made in devel-
oping algorithms bringing other physical systems within range of the more conventional approaches of
the equivalent Langevin equations, e.g., models of military conflict [24, 25], as well as of path-integrals
directly, e.g., wav e propagation [26-31] and optimization of wiring of computer chips [32]. However, I
believe that the three systems outlined next—in (B), (C) and (D)—represent the first published works to
require the application of the full nonlinear analysis.

(B) Neuroscience

I hav e detailed a theory of neocortical interactions which permits mesoscopic calculations of macroscopic
activity based on microscopic interactions [33-38]. The rationale for this theory is at least partially justi-
fied by its results: a precise description of statistical influences on synaptic modification, including a
model of long-term-memory and the dynamics underlying neuronal interactions, with detailed analytic
and numerical support including Monte Carlo calculations [34, 35]; a derivation of the 7±2 rule of short-
term-memory (STM) capacity yielding 7±2 statistically favorable information-states during observed time
scales with properties reflecting the primacy versus recency effect [36, 37]; and calculations of macro-
scopic wav e-like activity [38] consistent with other EEG studies and yielding propagation velocities con-
sistent with movements of attention and hallucinations across the visual field.

This work may be considered a prototypical description of how an information-processing system may
perform global scans of data seeking statistical matching of patterns, prior to or in parallel with more
detailed local analyses.

(C) Nuclear Physics

I also have applied modern methods of functional integration and statistical mechanics used to investigate
neocortex, to quantum systems, discovering a new effect in velocity-dependent nuclear forces [39] con-
tributing to the binding energy of nucleii [40-42].

This work describes how eigenfunction expansions [43] can be used to great advantage in matching pat-
terns of highly nonlinear theoretical constructs with empirical data. This numerical problem is now rela-
tively common in several disciplines, such as in nuclear physics [39, 44-47].

(D) Economics

Additionally, I hav e applied these methods to the study of financial markets [48].

This work describes how to approach the ‘‘inverse’’ problem of constructing a predictive model from pre-
vious data. Here, the microscopic details at time scales required for action are insufficient to detail the
functional form of the probability distribution at the coarser level required for analysis and decision-mak-
ing.

In this context, I find it interesting that these mathematical methods appear to quite well model processing
of patterned information gathered by a global attention similar to that required in describing neocortex, as
discussed in (B) above, and as more commonly experienced in disciplines requiring the formulating of
winning strategies within short time scales in situations of conflict and/or complexity [49-53].

(E) Artificial Intelligence—Contrast and Compatibility

For the purposes of this study, it is appropriate to simplify the definition of Artificial Intelligence (AI), to
include software and hardwiring algorithms designed to process information categorized by trees and
loops of multiple indicators and patterns of these indicators. Sometimes these indicators are given graded
weights to simulate uncertainty, without attempting to define bona fideprobability distributions. Also, the
enormous ranges of research and applications of AI methods, and the resulting software and hardwiring
algorithms developed [54], may be inappropriate or too costly for many projects. E.g., much AI work
pertaining to natural-knowledge interfacing and categorization of data bases is not relevant or useful for
dynamic (changing in time) open (nonequilibrium) systems requiring short response-times and having
some degree of unpredictability [55, 56].

However, SMART and AI methods may be complementary, useful for performing global and local
searches, respectively, sequentially or simultaneously.



SMART - 8 -  Lester Ingber

(F) SMART Computer Hardwiring

As discussed in the next Section, SMART software using the theoretical and numerical developments
described in the previous section may be implemented into SMART hardwiring, to design a Statistical
Algorithm Multiprocessor (SAM). These SMART SAM hardwiring requirements are somewhat different
than those currently being implemented on parallel processors [57-60], and are modeled after my work in
neuroscience discussed in (B) above.

IV. Future Research and Development
(A) SMART Software

An early part of sample data will be used to fit parameters to SMART, and then SMART will be tested, by
comparing how well it does in predicting future alternative responses, relative to what actually transpires
in the latter part of the data.

SMART can be integrated with some other AI-type algorithms, e.g., trees and loops of weighted indica-
tors, to see if performance can be enhanced within required response times. For example, SMART can
scan for multiple minima of L̃, representing possible optimal patterns of response to targets, using rela-
tively coarse meshes for time epochs and parameter increments during the fitting process. In comparison
with results obtained by making this mesh finer, other AI-type search algorithms may do better within
these restricted parameter ranges. Either SMART or the AI-type codes may call each other as subroutines
to find optimal responses within required response-times.

(B) SMART SAM hardwiring

My work in neuroscience discussed above suggests an approach for implementing SMART into hard-
wiring, to design a Statistical Algorithm Multiprocessor (SAM).

Figure 2. Statistical Algorithm Multiprocessor (SAM)

Consider Fig. 2 to have each cell of the ‘‘radar’’ screen in Fig. 1 now be represented as one ν -cell of
SMART SAM at a given time labeled by s. Each circle consists of ∼ 102 on-off bits, representing NG

α -states of one G-variable MGν
α s in that ν -cell at time s, which therefore represents a field rather than a

simple binary node. Each circle statistically reacts to the other circles in that cell and in ν NN cells at time
s− 1, according to an importance-sampling Monte Carlo algorithm encoded in each ν -cell, e.g., as repre-
sented by Eq. (10) or (11). Long-ranged constraints might be added by superimposing (magnetic) fields,
i.e., modeling the JsGν constraints described in Section (IIC) above.

(C) Application to Other Systems

It should be apparent that SMART and/or SAM can be used to solve pressing problems of industrial and
governmental concern, ranging from adaptations for targeting and response systems, to developing sound
probabilistic analyses aiding institutional investors in financial markets.
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