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It is proposed to incorporate ‘‘intuition’’ into large complex multivariate nonlinear C3I
systems requiring stochastic or probabilistic treatment, i.e., to seek regions of variable-space
where more local analytic resources can be optimally allocated. These mathematical tech-
niques have been utilized for a variety of other systems, ranging from neuroscience, to
nuclear physics, to financial markets. The experiences gained by detailing each of these sys-
tems offers specific insights by which to approach C3I systems.

I. INTRODUCTION
Even without having agreement on just what is C3I, there is widespread criticism that we do not

spend enough on C3I relative to what we spend on specific weapons systems [1]. The Eastport Study
Group [2] has made this issue its primary concern with regard to the SDI program. There is also an ever-
present problem of weighing the political and military aspects between hierarchical and distributed design
of C3I, the former being politically desirable and appropriate for deterministic or modestly stochastic
operations, and the latter being more appropriate for severely stochastic systems [3]. Future battle man-
agement, e.g., as being investigated by the SDI program, certainly must consider distributive adaptive C3I
for severely stochastic systems [2].

In this paper I will outline an interdisciplinary approach that is attempting to piece together a spe-
cific coherent C3I model that may yield insights into C3I systems most appropriate for severely stochastic
combat operations.

Section II motivates the necessity of formulating ‘‘order parameters’’ relevant to specific situations,
which views the physiology (function) of C3I systems as complementary to their anatomy (structure), by
outlining a theory of personal combat [4-7]. There can be no pretense that personal combat is equivalent
to international combat, but there are some similarities that deserve mention.

Section III outlines a theory I have formulated of mesoscopic and macroscopic brain function,
derived from microscopic synaptic chemical-electrical interactions [8-15]. Since many inv estigators now
find it useful to use brain function as a metaphor for other processes they perceive to be present in their
own disciplines, it is relevant to discuss the actual brain and the processes by which it performs ‘‘Biologi-
cal Intelligence’’ (BI). The mathematical formalism used turns out to describe a parallel processing of
mesoscopic information in a distributed adaptive system that we know exists, and that we know to be
robust under many changes in its internal and external environments. Indeed, in many circumstances,
especially those requiring pattern recognition under uncertainty [16-18], BI is still superior to AI which
typically requires a deterministic and hierarchical spine on which to grow tree- and loop-like structures.

These technical methods are quite general, and I also have applied them to nuclear physics —
detailing Riemannian contributions to the binding energy of nucleons interacting via exchanges of
mesons [19-22], and to financial markets — defining an approach to explain various phenomena such as
leptokurtosis, the biasing of price data [23]. These systems are all quite different in their natures, but they
do share a common approach by these methods of nonlinear nonequilibrium statistical mechanics. The
nuclear physics system illustrates how patterns of information can be represented by eigenfunctions of the
probability distribution. The markets system illustrates how the mesoscopic scale can be formulated phe-
nomenologically, without the luxury of deriving it from a microscopic system as was done for the
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neocortical system.

Section IV outlines how the mathematics used for BI can be used to develop a distributive adaptive
system capable of processing more general types of information relevant to C3I.

Section V discusses work in progress in which we are attempting to use BI to fit data from combat
training simulations. We are using these simulations because data is available to fit our theory, and
because we can then test our theory by seeing if the dynamic probability distribution we develop can be
used successfully in future simulations to enhance the chances of victory. Perhaps these methods will be
useful for SDI BM/C3I systems as well.

Section VI discusses how these tools might be used as decision-making aids in a C3I system in real
time combat situations.

I emphasize that these methods have not been previously applied to C3 systems, although they hav e
been tested in other systems. Very approximately, this approach can be considered a nonlinear stochastic
generalization of Lanchester theory [24].

II. ANAT OMY VS. PHYSIOLOGY OF C3I
A typical C3I org anization-chart—e.g., Sense, Process, Decide, Act, Analysis, Environment,

etc.—might well be useful for allocating resources to build a system for combat, or even be useful for
developing training methods to keep each component fit and ready for battle. However, especially in this
simple example, it is easy to intuit that this outline is not directly useable in actual combat, since in a real-
time situation, only a small subset of these parameters, possibly even an entirely new subset aggregated
from those given, is of immediate concern to a commander.

Establishing the function (physiology) of C3I systems seems today to be at least as much an art as a
science. However, this function is extremely important, as it defines the actual variables, or order parame-
ters, that a commander requires in combat operations.

For example, in the context that there is much to learn for C3I systems from the function of the
human brain, there is a counterpart to the three levels of processing in processes of attention. I refer to
three levels of attention required in personal combat between highly skilled opponents. As a first approxi-
mation, time resources are roughly equivalent to distance between opponents.

At a ‘‘far’’ distance, i.e., beyond the distance at which either side can touch the other within a single
movement, there is so much uncertainty as to future possibilities, that the only realistic techniques called
upon are strategic feints and ‘‘themes’’ of sparring, often categorized by five elements (earth, air, fire,
water, void), to cause and break rhythms in the opponent [7]. This is akin to a gross macroscopic percep-
tion of the engagement.

At a ‘‘medium’’ distance, i.e., just within the distance at which either side can strike each other with
a single movement, skills required are strategic and tactical feint-defense-attack combinations composed
of arhythmic spurts of several techniques, somewhat similar to the ‘‘middle’’ game of chess, with the
dimension of time thrown in [4-7]. This is akin to a mesoscopic perception of the engagement, wherein
the order parameters are the individual combinatoric phrases rather than their individual techniques.

At a ‘‘close’’ distance, i.e., within the distance at which either side can reach or lunge with elbows
and knees, one must function within critical reaction times of very few tenths of a second. At this micro-
scopic perception it is more sheer power and chance than strategy or even tactics, that determines the out-
come, as only simple repeated firings of techniques are realistic.

Some other interesting analogies between C3I systems and personal combat can be drawn. In order
to be effective within tenths of a seconds against strong opponents, one must train to have distributed con-
trol at many stages of the C3I-karate organization. Visual and auditory senses must be trained to receive
information in parallel with somatic senses actively seeking information. Imaginary scenarios and fore-
casts must be made in parallel with decisions being made in real time. The trained body must coordinate
itself to perform techniques, just using quite general constraints imposed by these decisions: there are
many techniques that might accomplish similar goals, but the choice of technique does not seem to made
by one central command center.
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Perhaps the most important analogy to stress emphasize, and that I will also stress in my outline of
my work in neocortex, is that the concept of ‘‘scaling’’ should be applied to C3I systems to determine the
relevant order parameters describing levels of distributed command and control.

III. BIOLOGICAL INTELLIGENCE (BI)

1. Introduction—Theory vs. Model
BI demonstrates the physiology of neocortex. Proper treatment of nonlinearities demonstrates how

multiple hypotheses are generated and processed by STM. Similarly, it should be expected that useful
decision aids to commanders will require robust C3I nonlinear models of previous combat operations.

Modern technology has made it possible to detail actual properties of many physical and biological
nonlinear nonequilibrium systems, i.e., in contrast to performing otherwise important investigations of
(quasi-)linearized approximate models. Typically, the price paid for this detail is that a set of complemen-
tary approaches, sometimes mutually exclusive, must be used for particular aspects [25]. C3I and neocor-
tex present similar challenges.

A series of publications has detailed a statistical mechanics approach to macroscopic regions of
neocortex, derived from statistical aggregates of microscopic neurons, i.e., a statistical mechanics of neo-
cortical interactions (SMNI) [8-14]. As found necessary for other nonlinear nonequilibrium systems, a
mesoscopic scale is sought to develop a Gaussian-Markovian statistics for further macroscopic
development [26, 27]. This mesoscopic scale is found in the observed physiology of columnar interac-
tions. Long-term-memory (LTM) properties and the duration and capacity of short-term-memory (STM),
i.e., the ‘‘7± 2 rule,’’ hav e been derived from multiple minima of a nonlinear Lagrangian (time-dependent
and space-dependent ‘‘cost function’’); the alpha frequency and velocity of propagation of columnar
information-processing, consistent with observed movements of attention across the visual field, have
been derived in linearized ranges within these minima.

Coarse-graining is an important general method of treating nonlinear nonequilibrium statistical sys-
tems, e.g., in order to develop Gaussian-Markovian probability distributions. Also, less resources are
required to process the coarser variables, which is efficient if that is all that is required for macroscopic
function. The theory capable of treating these systems require mathematical tools only developed in the
late 1970’s [28-39], including quite general nonlinear nonequilibrium structures into previously linear
treatments of Gaussian-Markovian systems [40].

This theory is geared to explain macroscopic neocortical activity, retaining as much correct descrip-
tion of underlying microscopic synaptic activity as can be carried by modern mathematical physics, which
turns out to be sufficient for several important circumstances. Only after this process is completed, are
approximate numerical and algebraic methods applied to solve the resulting mathematics. It is atthis
stage that modelling is most useful. The 1980’s already have demonstrated that many systems require the
use of several complementary algebraic and numerical algorithms to detail several scales of
interaction [25]. Neocortex is not unique in requiring several approaches, nor is it unique in requiring it
own unique algorithms.

For example, without sufficient mathematical or physical justification, many models assume
(quasi-)linear deterministic rate equations—analogous to conserved quadratic ‘‘Hamiltonians’’—to postu-
late ‘‘average’’ neurons, thereby neglecting statistical and stochastic background interactions, nonlineari-
ties induced by interactions among neurons, and spatial-temporal statistics of large ensembles of these
interacting neurons. In fact, these nonlinearities and statistics are essential mechanisms of STM [11, 13],
and possibly of alpha rhythm observed in electroencephalographic (EEG) and magnetoencephalographic
(MEG) [41] activity [12]. These results are not obtained by ‘‘fitting’’ theoretical parameters mocking
neuronal mechanisms to empirical data. Rather, these results are obtained by taking reasonable synaptic
parameters, developing the statistical mechanics of neocortical interactions, and then discovering that
indeed they are consistent with the empirical macroscopic data. Other models which have offered plausi-
ble brain mechanisms can be processed by this theory, extending their ranges of validity [8, 9].



9th MIT.ONR C3 Workshop - 4 -  Lester Ingber

2. Description of Theory

Microscopic Neurons

When describing the activity of large ensembles of neocortical neurons, each one typically having
many thousands of synaptic interactions it is a reasonable assumption that simple algebraic summation of
excitatory (E) depolarizations and inhibitory (I ) hyperpolarizations at the base of the inner axonal mem-
brane determine the firing depolarization response of a neuron within its absolute and relative refractory
periods [42].

This is straightforwardly mathematically summarized. Withinτ j ∼ 5−10 msec, the conditional prob-
ability that neuronj fires, given its previous interactions withk neurons, is

pσ j
≈ Γ Ψ

≈
exp(−σ j F j)

expF j + exp(−F j)
,

F j =
V j −

k
Σ a∗jk v jk




π

k ′
Σ a∗jk ′(v jk ′

2 +φ jk ′
2)




1/2 ,

a jk =
1

2
A jk(σ k + 1)+ B jk . (1)

This is true forΓ Poisson, and forΨ Poisson or Gaussian.V j is the axonal depolarization threshold,v jk
is the induced synaptic polarization ofE or I type at the axon, andφ jk is its variance. The efficacya jk ,
related to the inverse conductivity across synaptic gaps, is composed of a contributionA jk from the con-
nectivity between neurons which is activated if the impingingk-neuron fires, and a contributionB jk from
spontaneous background noise.

Mesoscopic Domains

As is found for most nonequilibrium systems, a mesoscopic scale is required to formulate the statis-
tical mechanics of the microscopic system, from which the macroscopic scale can be developed [26].
Neocortex is particularly interesting in this context in that a clear scale for the mesoscopic system exists,
both anatomically (structurally) and physiologically (functionally). ‘‘Minicolumns’’ of aboutN≈100 neu-
rons (about 200 in visual cortex) comprise modular units vertically oriented relative to the warped and
convoluted neocortical surface throughout most, if not all, regions of neocortex [43-47]. Clusters of about
100 neurons have been deduced to be reasonable from other considerations as well [48]. The overwhelm-
ing majority of neuronal interactions are short-ranged, diverging out via efferent minicolumnar fibers to
within ∼ 1 mm, which is the extent of a ‘‘macrocolumn’’ comprising∼ 103 minicolumns ofN ∗ ≈105 neu-
rons. Macrocolumns also exhibit rather specific information-processing features. This theory has
retained the divergence:convergence of minicolumn:macrocolumn efferent:afferent interactions by consid-
ering domains of minicolumns as having similar synaptic interactions within the extent of a macrocolumn.
This dynamically macrocolumnar-averaged minicolumn is designated in this theory as a ‘‘mesocolumn.’’

This being the empirical situation, it is interesting thatN≈102 is just the right order of magnitude to
permit a formal analysis using methods of mathematical physics just developed for statistical systems in
the late 1970’s [34, 37].N is small enough to permit nearest-neighbor (NN) interactions to be formu-
lated, such that interactions between mesocolumns are small enough to be considered gradient perturba-
tions on otherwise independent mesocolumnar firing states. This is consistent with rather continuous spa-
tial gradient interactions observed among columns [49], and with the basic hypothesis that nonrandom
differentiation of properties among broadly tuned individual neurons coexists with functional columnar
av erages representing superpositions of patterned information [50]. This is a definite mathematical con-
venience, else a macrocolumn of∼ 103 minicolumns would have to be described by a system of
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minicolumns with up to sixteenth order next-nearest neighbors. Also,N is large enough to permit the
derived binomial distribution of afferent minicolumnar firing states to be well approximated by a Gaus-
sian distribution, a luxury not afforded to an ‘‘average’’ neuron even in this otherwise similar physical
context. Finally, mesocolumnar interactions are observed to take place via one to several relays of neu-
ronal interactions, so that their time scales are similarlyτ ≈5−10 msec.

After statistically shaping the microscopic system, the parameters of the mesoscopic system are
minicolumnar-averaged synaptic parameters. i.e., reflecting the statistics of millions of synapses with
regard to their chemical and electrical properties. Explicit laminar circuitry, and more complicated synap-
tic interactions, e.g., dependent on all combinations of presynaptic and postsynaptic firings, can be
included without loss of detailed analysis [10].

The mathematical development of mesocolumns establishes a mesoscopic LagrangianL, which
may be considered as a ‘‘cost function.’’ The Einstein summation convention is used for compactness,
whereby any index appearing more than once among factors in any term is assumed to be summed over,
unless otherwise indicated by vertical bars, e.g., |G|.
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where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies,vG
G′ andφG

G′ are aver-
aged means and variances of contributions to neuronal electric polarizations, and NN interactionsV ′ are
detailed in other SMNI papers.

Macroscopic Regions

Inclusion of all the above microscopic and mesoscopic features of neocortex permits a true nonphe-
nomenological Gaussian-Markovian formal development for macroscopic regions encompassing∼ 5× 105

minicolumns of spatial extent∼ 5× 109 µm2, albeit one that is still highly nonlinear and nonequilibrium.
The development of mesocolumnar domains presents conditional probability distributions for
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mesocolumnar firings with spatially coupled NN interactions. The macroscopic spatial folding of these
mesoscopic domains and their macroscopic temporal folding of tens to hundreds ofτ , with a resolution of
at leastτ /N [11], yields a true path-integral formulation, in terms of a Lagrangian possessing abona fide
variational principle for most-probable firing states. At this point in formal development, no continuous-
time approximation has yet been made; this is done, with clear justification, for some applications dis-
cussed in the next section. This is relevant, e.g., to the possibility of chaotic behavior in neocortex [10],
which, neglecting NN interactions, is essentially a time-discretized, two-dimensional (MG), dissipative,
stochastic system. Much of this algebra is greatly facilitated by, but does not require, the use of Rieman-
nian geometry to develop the nonlinear means, variances, and ‘‘potential’’ contributions to the
Lagrangian [37].

The mathematical macroscopic development proceeds by ‘‘folding’’ the mesoscopic probability dis-
tribution over and over, in timeθ ,

ṀG = [MG(t +θ ) − MG(t)]/θ , θ < τ , (3)

and in a space∼ Λ∼ 5× 105 macrocolumns∼ 5× 109 µm2. For momentary simplicity, consider the fold-
ing of just one variableM at just one spatial point over many time epochs: Labellingu intermediate time
epochs bys, i.e., ts = t0 + s∆t, in the limits limu→∞ and lim∆t→0, and assumingMt0 = M(t0) and
Mt = M(t ≡ tu+1) are fixed,

P[Mt |Mt0] = ∫ . . . ∫ dMt−∆t dMt−2∆t
. . .dMt0+∆t

×P[Mt |Mt−∆t ]P[Mt−∆t |Mt−2∆t ] × . . . P[Mt0+∆t |Mt0] ,

P[Mt |Mt0] = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆t Ls) ,

DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s∆t)−1/2dMs ,

∫ dMs →
N

α =1
Σ ∆Mα s , M0 = Mt0 , Mu+1 = Mt , (4)

whereα labels the range of N values ofM . Extension to multiple variables, e.g.,G = E and I , and to
many cells, e.g., a region of mesocolumns, is discussed in Section IV.2 below.

Mesocolumns were derived in a ‘‘prepoint’’ discretization, e.g.,

ṀG
s = [MG(t +θ ) − M(t)]/θ ,

gG
s = gG [MG(t), t] .  (5)

There are a number of non-trivial technical points which must be considered when dealing with
multivariate nonlinear systems. Very fortunate for this theory, the necessary mathematical techniques for
handling such systems were developed by physicists is the late 1970’s, and this neuroscience problem is
the first physical system that used these methods.

To capture a flavor of some of the mathematical technicalities, consider that there exists a transfor-
mation to the midpoint discretization, in which the standard rules of differential calculus hold for the
same distribution in terms of a transformedL, defined as a Feynman LagrangianLF .

MG(ts) =
1

2
(MG

s+1 + MG
s ) , ṀG(ts) = (MG

s+1 − MG
s )/θ . (6)

I.e., expanding all prepoint-discretized functions about the midpoint (t +θ /2 above) introduces many
additional terms, which are recognized as having the same structure of a Riemannian geometry induced
on theMG variables. These will be specified in more detail in Section IV.2.
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Using the midpoint discretization, the variational principle offers insight, but the prepoint dis-
cretization does not contain explicit Riemannian terms. The nonlinear variances considerably complicate
the algebra required. Riemannian geometry facilitates, but is not necessary, to derive these results. The
Riemannian geometry is a reflection that the probability distribution is invariant under general nonlinear
transformations of these variables. In other words, the same information content can be expressed in a
variety of ways. For example, sensory cortex may transmit information to motor cortex, although they
have somewhat different neuronal structures or neuronal languages. Information can be transmitted
between ‘‘different-looking’’ regions, e.g., between motor cortex and sensory cortex:

I = ∫ DM̃ P̃ ln(P̃/P) .  (7)

3. Applications
Several papers have described in detail how this theory can be used to advantage [8-14]. These

applications provide a conceptual framework for treating other similar systems, e.g., those of C3I.

(A) Intuitive view of statistical analyses. Three-dimensional views overE − I of the stationary
Lagrangian offers an intuitive ‘‘potential’’ description of neocortical interactions, detailing local minima
and maxima [9, 10]. Such pairwise presentation of variables offers an intuitive and accurate estimate of
relative probabilities and variances associated with multiple minima.

(B) Inclusion of global circuitry. The path-integral formalism permits straightforward extension of
this development to include constraints on short-ranged mesocolumnar interactions induced by long-
ranged fibers of greater spatial extent than macrocolumnar distances, e.g., long-ranged excitatory fibers
from ipsilateral association, contralateral commissural, and thalamocortical processes [9, 10]. Such con-
straints may be viewed as global commands issued to mesoscopic domains, which must use their own
internal algorithms on their microscopic units to meet these constraints.

(C) Processing of patterned information. Firing states linearized about stationary firing states, give
rise to simple eigenfunction expansions of the macroscopic probability distribution [8, 9]. These eigen-
functions are to be identified with the algebraic vector spaces utilized to great advantage by other
investigators [51, 52], but not derived by them from realistic synaptic interactions respecting the nonlinear
statistical nature of this dynamic system. This identification will permit detailed numerical calculation of
associative learning, retrieval and storage of memories, etc. For example, the accuracy of retrieval of a
specific pattern is directly proportional to the overlap of a STM ‘‘search’’-eigenfunction with a long-term
memory (LTM) stored eigenfunction. These eigenfunctions may encompass various degrees of neural
mass [50], ranging from minicolumns, to aggregates of mesocolumns coupled by NN interactions, to
regions coupled by long-ranged fibers.

More specifically, learning and retrieval mechanisms can be developed by first determining expan-
sion coefficients of eigenfunction expansions of the differential Fokker-Planck distributions, e.g., consid-
ering stationary states as Hermite polynomials in neighborhoods of minima. Although this is a reason-
ably large computer calculation, similar calculations of greater computational difficulty have been per-
formed many years ago, e.g., when calculating quantum states of Schr¨odinger wav e-functions of nucleon-
nucleon scattering and of nuclear matter, using realistic forces—i.e., quite nonlinear nucleon-nucleon
forces derived from meson-exchange forces [19]. The Fokker-Planck equation is quite similar to the
Schr̈odinger equation, and this analogy recently has been used to great advantage, to apply the modern
methods used here for neocortex to determine Riemannian contributions to nuclear forces [20-22]. These
methods can be very useful for classical systems as well.

(D) Phase transitions and Catastrophes. Higher-order polynomial expansions about stationary
states yield Ginsburg-Landau expressions, from which first-order and second-order phase transitions can
be exhibited, if they exist [10, 53]. The polynomial expansions, with coefficients derived from empirical
synaptic parameters, are a starting point from which to apply methods of Catastrophe Theory, e.g., as dis-
cussed by Alex Woodcock at this conference. Such investigations can offer insights into mechanisms that
severely alter the global context of a system.

(E) Coding of long-term-memory. A precise scenario of neocortical information processing is
detailed, from coding of long-ranged firings from stimuli external to a macrocolumn by short-ranged
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mesocolumnar firings, to STM storage via hysteresis, and to LTM storage via plastic deformation [10]. In
contrast to the appearance of multiple minima in the interior ofMG-space, which are candidates for mul-
tiple STM under conditions of sensitive adjustment of synaptic interactions, (see sub-Section G
below) [11], typically one or at most a few minima appear at the corners ofMG-space, corresponding to
all G-neurons collectively firing or not firing [10]. When these corner minima are present, they are typi-
cally much deeper than those found for the interior minima, corresponding to longer-lived states with
properties of hysteresis rather than simple jumps. These corner minima are therefore candidates for LTM
phenomena. Similar properties of corner minima in simpler models of neocortex hav e been shown to sat-
isfy properties desirable for multistable perception [54] and for collective computational properties [55].
LTM illustrates the adaptive capabilities of neocortex, a feature very useful for other distributed systems.

(F) Wave-propagation dispersion relations and alpha frequency. Only after the multiple minima
are established, then it may be useful to perform linear expansions about specific minima specified by the
Euler-Lagrange variational equations. This permits the development of stability analyses and dispersion
relations in frequency-wav enumber space [9, 10, 12]. This calculation requires the inclusion of global
constraints, discussed in (B) above.

More specifically, the variational principle permits derivation of the Euler-Lagrange equations.
These equations are then linearized about a given local minima to investigate oscillatory behavior. Here,
long ranged constraints in the form of Lagrange multipliersJG were used to efficiently search for minima,
corresponding to roots of the Euler-Lagrange equations.

0 = δ̂ LF = LF ,Ġ:t − δ̂G LF

≈ − f |G|M̈
|G| + f 1

G ṀG¬

− g|G|∇
2M |G| + b|G|M

|G| + b MG¬
,

[. . .],Ġ:t = [. . .],ĠG′ Ṁ
G′ + [. . .],ĠĠ′ M̈

G′ , G¬ ≠ G ,

MG = MG− << MG >> ,

MG = ReMG
oscexp[−i(ξ ⋅ r −ωt)] , ξ = |ξ | ,

MG
osc(r, t) = ∫ d2ξ dω M̂

G
osc(ξ ,ω) exp[i(ξ ⋅ r −ωt)] ,

ωτ = ±{ − 1. 86+ 2. 38(ξ ρ )2;−1. 25i + 1. 51i(ξ ρ )2} . (8)

It is calculated that

ω∼ 102 sec−1 , (9)

which is equivalent to

ν = ω/(2π) = 16 cps (Hz) , (10)

as observed for the alpha frequency.

The propagation velocityv is calculated from

v = dω/dξ ≈1 cm/sec ,ξ ∼ 30ρ , (11)

which tests the NN interactions. Thus, within 10−1 sec, short-ranged interactions over sev eral mini-
columns of 10−1 cm may simultaneously interact with long-ranged interactions over tens of cm, since the
long-ranged interactions are speeded by myelinated fibers affording velocities of 600−900 cm/sec [56]. In
other words, interaction among different neocortical modalities, e.g., visual, auditory, etc., may simultane-
ously interact within the same time scales, as observed.

This propagation velocity is consistent with the observed movement of attention [57] and with the
observed movement of hallucinations across the visual field [58], of∼ 1/2 mm/sec, about 5 times as slow
as v. (I.e., the observed movement is∼ 8 msec/°, and a macrocolumn∼ mm processes 180° of visual
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field.) Therefore, NN interactions may play some part, i.e., within several interations of interactions, in
disengaging and orienting selective attention.

(G) Short-term-memory capacity. The most detailed and dramatic application of this theory has
been to predict a stochastic mechanism underlying the phenomena of human STM capacity [11, 13], tran-
spiring on the order of tenths of a second to seconds, limited to the retention of 7± 2 items [59]. This is
true even for apparently exceptional memory performers who, while they may be capable of more effi-
cient encoding and retrieval of STM, and while they may be more efficient in ‘‘chunking’’ larger patterns
of information into single items, nevertheless also are limited to a STM capacity of 7± 2 items [60]. This
‘‘rule’’ is verified for acoustical STM, but for visual or semantic STM, which typically require longer
times for rehearsal in an hypothesized articulatory loop of individual items, STM capacity may be limited
to as few as two or three chunks [61]. This STM capacity-limited chunking phenomena also has been
noted with items requiring varying depths and breadths of processing [5-7, 16, 17]. Another interesting
phenomena of STM capacity explained by this theory is the primacy vs. recency effect in STM serial pro-
cessing, wherein first-learned items are recalled most error-free, with last-learned items still more error-
free than those in the middle [62].

STM is the mechanism by which neocortex holds multiple hypotheses for further processing. Mul-
tiple minima of Lagrangians modeling similar systems can be similarly analyzed. Contour plots of the
stationary Lagrangian,L, for typical synaptic parameters balanced between predominately inhibitory and
predominately excitatory firing states, are examined at many scales when the background synaptic noise is
only modestly shifted to cause both efferent and afferent mesocolumnar firing states to have a common
most-probable firing, centered at [11]

MG = M ∗ G = 0 .  (12)

Within the range of synaptic parameters considered, for values ofτ L∼ 10−2, this ‘‘centering’’ mechanism
causes the appearance of from 5 to 10−11 extrema for values ofτ L on the order of∼ 10−2. In the absence
of external constraints and this centering mechanism, no stable minima are found in the interior ofMG

space. I.e., the system either shuts down, with no firings, or it becomes epileptic, with maximal firings at
the upper limits of excitatory or of excitatory and inhibitory firings. The appearance of these extrema due
to the centering mechanism is clearly dependent on the nonlinearities present in the derived Lagrangian,
stressing competition and cooperation among excitatory and inhibitory interactions at columnar as well as
at neuronal scales.

These number of minima are determined when the resolution of the contours is commensurate with
the resolution of columnar firings, i.e., on the order of five to ten neuronal firing per columnar mesh point.
Most important contributions to the probability distributionP come from ranges of the time-sliceθ and
the ‘‘action’’ N L, such thatθN L ≤ 1. By considering the contributions to the first and second moments
of ∆MG for small time slicesθ , conditions on the time and variable meshes can be derived [63, 64].

< MG(t +θ ) − MG(t) > ≈gG(t)θ ,

< [MG(t +θ ) − MG(t)]2 > ≈gGG(t)θ . (13)

The time slice is determined byθ ≤ (N L)−1 throughout the ranges ofMG giving the most important con-
tributions to the probability distributionP. The variable mesh, a function ofMG , is optimally chosen
such that∆MG is measured by the covariancegGG′ (diagonal in neocortex due to independence ofE and
I chemical interactions), or∆MG ∼ (gGGθ )1/2 in the notation of the SMNI papers. ForN ∼ 102 and
L∼ 10−2/τ , it is reasonable to pickθ∼ τ . Then it is calculated that that optimal meshes are∆M E ∼ 7 and
∆M I ∼ 4, essentially the resolutions used in the coarse contour plots.

Since the extrema appear to lie fairly well along a line in the two-dimensionalMG-space, and since
coefficients of slowly varyingdMG /dt terms in the nonstationaryL are noted to be small perturbations on
L [10], a solution to the stationary probability distribution was hypothesized to be proportional to
exp(−Φ/D), whereΦ =CN2L, the diffusionD = N /τ , andC a constant.

Pstat≈Nstatg
1/2 exp(−Φ/D) ,
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Φ =CN2L∼ CN2 ∫ dMG L,G ,

D = N /τ . (14)

Along the line of the extrema, forC≈1, thisΦ is determined to be an accurate solution to the full
two-dimensional Fokker-Planck equation [13], and a weak-noise high-barrier regime defined by
∆Φ/D > 1, where∆Φ is the difference inΦ from minima to maxima, can be assumed for further
analyses [65].

0 =
∂P

∂t
=

1

2
(gGG′P),GG′ − (gG P),G + NV P . (15)

This is extremely useful, as a linear stability analysis,

δ ṀG≈ − N2L,GG′δMG′ , (16)

shows that stability with respect to mesocolumnar fluctuations induced by several neurons changing their
firings is determined by the second derivatives of−Φ [66]; here this just measures the parabolic curvature
of L at the extrema. Thus, all the extrema of the stationary Lagrangian are determined to be stable min-
ima of the time-dependent dynamic system. Note however, that it is unlikely that a true potential exists
over all MG-space [67].

This stationary solution is also useful for calculating the time of first passage,tvp, to fluctuate out of
a valley in one minima over a peak to another minima.

tvp≈πN−2

|L,GG′(<< M >>p)| L,GG′(<< M >>v)



−1/2

×exp{CNτ [L(<< M >>p) − L(<< M >>v)]} . (17)

It turns out that the values ofτ L∼ 10−2 for which the minima exist are just right to givetvp on the order of
tenths a second for about 9 of the minima when the maximum of 10−11 are present. The other minima
give tvp on the order of many seconds, which is large enough to cause hysteresis to dominate single jumps
between other minima [11]. Thus, 7± 2 is the capacity of STM, for memories or new patterns which can
be accessed in any order during tenths of a second, all as observed empirically [60]. (When the number of
neurons/minicolumn is taken to be∼ 220, modeling visual neocortex [11], then the minima become deeper
and sharper, consistent with sharper depth of processing, but several minima become isolated from the
main group. This effect might be responsible for the lowering of STM capacity for visual processing,
mentioned above.)

This is a very sensitive calculation. IfN were a factor of 10 larger, or ifτ L∼ 0. 1 at the minima,
then tvp is on the order of hours instead of tenths of seconds, becoming unrealistic for STM durations.
Oppositely, if tvp were much smaller, i.e., less than∼ 5τ , this would be inconsistent with empirical time
scales necessary for formation of any memory trace [68]. In this context, it is noted that the threshold fac-
tor of the probability distribution scales as (N ∗ N )1/2, demanding that both the macrocolumnar divergence
and minicolumnar convergence of mesocolumnar firings be tested by these calculations.

Yin-Yang Processing of Information

This theory demonstrates that, relatively independent of local information-processing at the sub-
microscopic synaptic and microscopic neuronal scales, there is statistical global processing of patterns of
information at the mesoscopic and macroscopic scales.

This picture represents neocortex as a pattern-processing computer. The underlying mathematical
theory, i.e., the path-integral approach, specifies a parallel-processing algorithm which statistically finds
those parameter-regions of firing which contribute most to the overall probability distribution: This is a
kind of ‘‘intuitive’’ algorithm, globally searching a large multivariate data base to find parameter-regions
deserving more detailed local information-processing. The derived probability distribution can be thought
of as a filter, or processor, of incoming patterns of information. This filter is adaptive, as it can be



9th MIT.ONR C3 Workshop - 11 - Lester Ingber

modified as it interacts with previously stored patterns of information, changing the mesoscopic synaptic
parameters.

IV. APPLICATIONS OF BI TO C3I

1. A Generic System
(A) Target Variables—Recognition In order to make the mathematics more transparent, consider a

grid defined within a given time epoch, where the grid is to be conceived as a generalized ‘‘radar’’ screen,
representing data being accumulated by multiple sensors. Each cell has information pertaining to relocat-
able targets that may be moving between cells. Each ‘‘×’’ represents a minimal set of targets, e.g., clus-
ters of targets, which have a number of associated variables, e.g., coordinate position, velocity, accelera-
tion, numbers of targets within these categories, etc. The information collected within each time epoch
serves to define changes in these variables between neighboring epochs, both within each cell and
between neighboring cells.

Thus, large sets of problems are defined by requiring algorithms to recognize and parametrize
changing patterns of these target variables.

(B) Decision-Making Variables—Response It must also be assumed, if objective responses to targets
are required, that decision-making variables be defined and functionally parametrized. These variables
may include properties of actions to be taken, consistently scaled to match target variables.

Thus, larger sets of problems are defined by requiring algorithms to parameterize and to optimally
allocate decision-making variables according to the perceived changing patterns of target variables
defined in (A). It is also reasonable to expect that any algorithm for response, i.e., in contradistinction to
mere recognition, somehow consistently fold in the parameters of both (A) and (B).

(C) Response-Time and Computational Constraints These problems are further exasperated by the
real nature of physical systems. Not much time may be available to optimally solve the problems defined
in (A) and (B).

Thus, larger sets of problems are defined by requiring algorithms to respond to problems in (A) and
(B), but so constrained that they may not be able to always predict the absolutely best response. It may be
necessary to settle for a ‘‘good’’ response.

(D) Fitting and Predicting Error, Noise and Risk Given the absence of perfect humans and of per-
fect machines, it is clear that any algorithm addressing the problems in (A), (B) and (C) require some
degree of parametrization and modeling. There exist some errors in attempting to match any algorithm to
a giv en genuine complex physical system. In order to minimize these errors to within required tolerances,
these errors must be quantified.

By design of the targets or by design of the sensors, there also exists some degree of background
noise tending to thwart a completely deterministic description of the target variables. This noise must be
quantified, at least in order to assess a measure of credibility given to the identification of changing pat-
terns of target variables.

The size and complexity of real physical systems, and the response-time and computational con-
straints described in (C), dictate that without always being able to make a best single decision, there exist
elements of risk in any response algorithm. This risk must be quantified, at least in order to assess the
chances to be taken by alternative responses. The ‘‘expected gain’’ of any response is the sum of products
of each possible response multiplied by its associated risk, assuming independence among responses; oth-
erwise, cross-correlations must be assessed and folded into this analysis.

Thus, larger sets of problems are defined by requiring algorithms to consistently include fits of vari-
ances (error, noise, risk) of all parameters in (A), (B) and (C). Only if variances are consistently fitted,
can the mean values (signals), approximately corresponding to the otherwise deterministic parameters in
the hypothetical absence of these variances, be extracted. Only if past events include these ‘‘2nd
moment’’ fits, i.e., only by fittingbona fide probability distributions, can the future be optimally predicted,
albeit only with some (quantifiable) degree of statistical (un)certainty.
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2. Method of Solution
(A) One Variable, One Cell There are three equivalent representations of this stochastic system.

For momentary simplicity, again consider the above ‘‘radar’’ grid, but now consider only one
parameter,M(t), in just one cell, representing just one of the variables discussed in Section (1A) or Sec-
tion (1B). The problem of determining the change ofM within time∆t is

M(t + ∆t) − M(t) = ∆t f [M(t)] , (18)

where f [M ] is some function to be fit, which describes howM is changing. For small enough∆t, and
assuming continuity ofM , this is often written as

Ṁ =
dM

dt
= f . (19)

If background noise,η , is present, assumed to be Gaussian-Markovian (‘‘white’’ noise), then this
affects the description of changingM by

Ṁ = f + ĝη ,

< η (t) >η= 0 ,

< η (t)η (t ′) >η= δ (t − t ′) ,  (20)

where ˆg2 is the (constant here) variance of the background noise. Hereη is assumed to have a zero mean.
Eq. (20) is referred to as a Langevin rate-equation in the scientific literature.

Physicists and engineers, e.g., in fluid mechanics, recognize an equivalent ‘‘diffusion’’ equation to
Eq. (20), defining a differential equation for the conditional probability distribution,P[M(t + ∆t)|M(t)],
of finding M at the timet + ∆t, giv en its value at timet.

∂P

∂t
=
∂(− fP)

∂M
+

1

2

∂2(ĝ2P)

∂M2
(21)

is known as a Fokker-Planck equation.

Some physicists, e.g., in elementary-particle physics, are familiar with yet another representation of
Eq. (20) or (21). For small time epochs, the conditional probabilityP is

P[Mt+∆t |Mt ] = (2π ĝ2∆t)−1/2 exp(−∆tL) ,

L = (Ṁ − f )2/(2 ̂g2) .  (22)

L is defined to be the Lagrangian. This representation forP permits a ‘‘global’’ path-integral description
of the evolution ofP from time t0 to a long timet, i.e., in contradistinction to the ‘‘local’’ differential Eq.
(21). Labellingu intermediate time epochs bys, i.e., ts = t0 + s∆t, in the limits limu→∞ and lim∆t→0, and
assumingMt0 = M(t0) andMt = M(t ≡ tu+1) are fixed,

P[Mt |Mt0] = ∫ . . . ∫ dMt−∆t dMt−2∆t
. . .dMt0+∆t

×P[Mt |Mt−∆t ]P[Mt−∆t |Mt−2∆t ] × . . . P[Mt0+∆t |Mt0] ,

P[Mt |Mt0] = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLs) ,

DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s∆t)−1/2dMs ,

∫ dMs →
N

α =1
Σ ∆Mα s , M0 = Mt0 , Mu+1 = Mt , (23)



9th MIT.ONR C3 Workshop - 13 - Lester Ingber

whereα labels the range of N values ofM . For notational simplicity, the indicess andα often will be
dropped in the following, but these time and range discretizations must of course be explicitly pro-
grammed in all actual numerical calculations.

There are some advantages to the path-integral representation over its equivalent Fokker-Planck and
rate-equation representations. For example, there exists a variational principle wherein a set of Euler-
Lagrange differential equations exist for the LagrangianL, directly yielding those values or trajectories of
M which give the largest contribution to the probability distributionP.

BecauseP is a bona fide probability distribution, there exist Monte Carlo numerical algorithms,
sampling theM-space without having to calculate all values ofM at all intermediate time epochs fromt0
to t to find P. This numerical algorithm also has the nice feature of avoiding traps in local minima when
there are deeper minima to be had, representing more probable states. This is so useful that noise is
sometimes artificially added to otherwise deterministic systems, e.g., as in simulated annealing [69] to
derive optimum circuitry on chips, by hypothesizing a cost function similar to the potentialΦ in Eq. (14)
in Section III. More efficient simulated annealing algorithms for finding a global minimum of a cost
function or set of data have been discussed by Harold Szu at this conference.

In practice, some of these benefits are often illusory. Monte Carlo methods are notoriously poor for
most nonstationary systems with multiple minima. However, a new method has been developed for
explicitly solving the path integral, thereby obtaining the dynamic evolution of all states (minima) of the
system [63, 64]. This cannot be done with the differential equation representations. CalculatingP via the
path integral facilitates the inclusion of boundary conditions, and the new methods also can take advan-
tage of the Gaussian-Markovian nature of the system to produce an efficient numerical algorithm.

(B) Many Nonlinear Variables It is possible to formulate Langevin equations generalized from Eq.
(20),

ṀG = f G + ĝG
i η

i ,

i = 1,. . . ,Ξ ,

G = 1,. . . ,Θ , (24)

whereG corresponds to any number ofΘ variables, e.g., target and decision-making variables in (IA) and
(IB), f G and ĝG

i are arbitrarily nonlinear functions of any or allMG , and oft, and the indexi corresponds
to recognizing that there can be many different sources contributing to the variance ofMG . The time of
evaluation of ˆgG

si during s-epochs intermediate betweent0 and t, ts betweents and ts+1 = ts + ∆t, must
now be explicitly prescribed. Unless otherwise specified, a midpoint Stratonovich rule will be chosen

here, usingMG(ts) =
1

2
(MG

s+1 + MG
s ) , ṀG(ts) = (MG

s+1 − MG
s )/∆t , and ts = ts + ∆t/2 . This choice is con-

sistent with other physical systems, and allows the use of standard calculus in Eq. (24).

The path integral generalized from Eq. (23) is written as

P = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLs) ,

DM = g1/2
0+ (2π∆t)−1/2

u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

α =1
Σ ∆MG

α s , MG
0 = MG

t0 , MG
u+1 = MG

t ,

L =
1

2
(ṀG − hG)gGG′(ṀG′ − hG′) +

1

2
hG

;G + R/6−V ,

[. . .],G =
∂[. . .]

∂MG
,
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hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(ts), ts] = det(gGG′)s , gs+ = gs[MG
s+1, ts] ,

hG
;G = hG

,G + Γ
F
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FKΓN
JL − ΓM

FLΓN
JK ) .  (25)

Note that the variancegGG′ is theGG′-matrix inverse of theG-space metricgGG′ . R is calculated to be
the Riemannian curvature scalar, andΓF

JK is the affine connection in this space.

(C) Many Cells For many cells, i.e.,Λ cells indexed byν , the path integral in Eq. (25) is further
generalized, essentially by expanding the parameter space from the set{G} to the set{G,ν } .

Constraints may be placed on variables by adding them to the potentialṼs , e.g., asJsGν MGν
s with

Lagrange multipliersJsGν .

If a prepoint-discretization rule is adopted, transforming from the midpoint-discretized FeynmanL̃s

and g̃s+, to defineṀGν (ts) = (MGν
s+1 − MGν

s )/∆t , MGν (ts) = MGν
s , ts = ts, and g̃s+ = g̃s, then a simpler

expression is obtained for the Lagrangian, one in which the Riemannian terms are not explicitly present.

L̃′ =
1

2
(ṀGν − gGν )gGG′νν ′(ṀG′ν ′ − gG′ν ′) − Ṽ . (26)

However, although̃P is invariant under this transformation,L̃′ does not possess the variational principle
possessed by the Feynman LagrangianL̃, so that if the prepoint-discretized̃L′ and g̃s+ are used to fit the
data, then some tests must still be made to see how efficiently the path integral can be calculated usingL̃′
instead ofL̃ to globally scan the data.

Eq. (25) (or first its equivalent prepoint discretization) will be fit to the data by assuming functional
forms forṼs , gGν

s andgGG′νν ′
s . The convergence of̃L or L̃′ is expected to be quite good. I.e., even poly-

nomial forms forgGν
s andgGG′νν ′

s , with coefficients to be fit, define a Pade´ rational approximate tõL usu-
ally giving better convergence than obtained forgGν

s or gGG′νν ′
s separately. Also, note that̃Ls is a single

scalar function to be fit.

gG = XG + XG
G′M

G′ + XG
G′G′′ M

G′MG′′ + . . . ,

gGG′ = YGG′ +YGG′G′′ M
G′′ +YGG′G′′G′′′ M

G′′ MG′′′ + . . . ,

MGν
s = MGν

s − << MGν
s >> . (27)

Once the parameters{ X ,Y , << M >> } are fit, the theory is ready to track or predict. Science is not
only empiricism. Modeling and chunking of information is required, not only for aesthetics, but also to
reduce required computational resources of brains as well as machines.

3. Future Research and Development
Given a complex system possessing many variables, I believe it appropriate to initially apply some

non-parametric statistical methods as a coarse ‘‘macroscopic’’ filter to discover, even in real time, some
systematics of the system. An example is mentioned in the next Section V.

These macroscopic systematics can form the basis of a first-order set of trial functions for a ‘‘meso-
scopic’’ filter, e.g., modeled as a parametric nonlinear nonequilibrium Gaussian Markovian statistical
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mechanics, as discussed above [25]. This filter can be used to ascertain just what scope of the underlying
variable space should be allocated further detailed, more expensive and time-consuming processing by
relatively microscopic algorithms. Or, this mesoscopic filter may be sufficient, e.g., for ‘‘shotgun’’
responses to clusters of targets.

The final level of detailed processing most likely needs to be performed by a ‘‘microscopic’’ fine
filter which isnot explicitly dependent on macroscopic or mesoscopic properties. Markovian or Gaussian
properties generally are only appropriate and useful for aggregates of microscopic details. Typically, spe-
cific complex systems at the microscopic level exhibit even fewer typical features than the typically novel
features discovered even at the mesoscopic level.

My work in neuroscience discussed above suggests an approach for implementing the mesoscopic
filter into hardwiring. Consider each cell of the ‘‘radar’’ screen above now berepresented as oneν -cell at
a giv en time labeled bys. Each circle consists of∼ 102 on-off bits, representingN G α -states of oneG-
variableMGν

α s in thatν -cell at times, which therefore represents a field rather than a simple binary node.
Each circle statistically reacts to the other circles in that cell and inνNN cells at times − 1, according to an
algorithm encoded in eachν -cell. Long-ranged constraints might be added by superimposing (magnetic)
fields, i.e., modeling theJsGν constraints described in Section (2C) above.

V. COMBAT SIMULATIONS
An important class of problems confronting C3I systems concerns how to pass through enough, but

not too much, timely information to decision-makers to permit them to assess the overall ‘‘macroscopic’’
nature of detailed ‘‘microscopic’’ operations unfolding in time. Similarly, there must also be a reasonable
information-conduit through which their macroscopic decisions can be effectively implemented at the
microscopic level.

It is proposed that modern methods of nonlinear nonequilibrium statistical mechanics be utilized to
approach such problems, not just to merely model abstract scenarios. Basically, this approach seeks to
define a ‘‘mesoscopic’’ scale, established between the microscopic and macroscopic scales, specifically
appropriate to each C3I system: nonlinear multivariate functions describing drifts (trends) and diffusions
(risks) must be sought. This requires trial and error, intelligence and creativity, and much experience to
be gained by dealing with at least several C3I systems. These functional forms and their coefficients must
be fit to real empirical data, e.g., initial, intermediate and final resources, to develop a time-dependent
multivariable probability distribution of order parameters defining the mesoscopic scale. Then, after this
algebraic and numerical development, there is the possibility that the resulting codes can be implemented
on small computers in the field, affording useful software support for decision-making and intelligence-
gathering, while being robust against perturbations in these functional fits.

At NPS, Stephen Upton and I are developing statistical mechanical C3I models of combat simula-
tions. As pointed out in the Introduction Section I, simulations can be an important source of empirical
data, only if their assumptions are clearly recognized. I.e., they are at best only as good as they model
actual combat [70].

Our primary focus is an NPS simulation reported at this conference by Mike Sovereign and Joe
Stewart, Interim Battle Group Tactical Trainer (IBGTT). IBGTT is rather unique in possessing a high
degree of human-machine interactions. It is hoped that by fitting nonlinear statistical mechanical models
to this data, we may capture the essence of realistic combat operations. The previous work ar NPS has
accomplished a coarse macroscopic linear regression of three years of data, e.g., as discussed in Section
IV.3. We plan to construct the mesoscopic model.

Another simulation we are investigating for a similar mesoscopic analysis is to model the C3 system
of a Marine Air-Ground Task Force (MAGTF), composed of four elements: Command, Ground Combat,
Aviation Combat, Combat Service Support. An example of such a simulation is the Tactical Warfare Sim-
ulation, Evaluation and Analysis System (TWSEAS). These are located at: MC Development and Educa-
tion Center (MCDEC), Quantico, VA; Camp Lejune, NC; Camp Pendelton, CA. There are three types of
MAGTF’s: Marine amphibious unit (MAU), Marine amphibious brigade (MAB), Marine amphibious
force (MAF). The C3 structure of all MAGTF’s is giv en in the chart below.
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The MAGTF order parametersMG of the air support might include measures of readiness (aggre-
gated by other relatively microscopic algorithms) of: (1.a) weapons carried and (1.b) personnel carried; in
turn (1.a) and (1.b) depend on the order parameters defining capabilities of the ground troops and the
logistic systems. By establishing a functional probability distribution that might truly describe the
dynamic MAGTF, i.e., admitting arbitrarily nonlinear drifts and diffusions, alternative scenarios can be
objectively assessed by commanders who are presented with information at a level commensurate with
their tasks, and their decisions can be established as constraints on the mesoscopic cells of microscopic
networks of the MAGTF.

VI. STATISTICAL BI DECISION-MAKING
A typical scenario that might take advantage of previous analysis that has fit a Lagrangian to previ-

ous data follows. For example, assume that in the middle of an engagement, a commander (human or
machine) has available data representing measures of readiness of his forces and those of his enemy. He
makes a judgement as to which of several established classes of conflict he is engaged in, e.g., possibly
severely or moderately stochastic, possibly overwhelming resources in, or not in, his favor, etc. He
chooses one of previously established Lagrangians which is a coarse description of his present engage-
ment, and sets the initial time boundary condition according to his present data.

He chooses some time in the future when he feels he will be called on to make a judgement with
regard to the deployment of his resources. He uses a small computer to determine the distribution of his
variables at the future time. Most likely, he will obtain several possible likely states, with varying degrees
of first moments (‘‘probability’’) and second moments (‘‘risk’’).

He might do this for several alternative initial parameter settings, especially if he can exercise some
immediate control of their values, thereby obtaining another possible set of future states of the engage-
ment. He also might have to fold in some constraints, in the form of Lagrange multipliers, to accommo-
date orders he has received from a higher command. He could also use the associated Euler-Lagrange
variational equations to determine the most likely trajectory that his resources would follow enroute from
his present state to his selected future state.

Thus, the commander has obtained a valuable source of information to aid him in making decisions,
and in determining sets of orders of constraints which he should pass down to his subordinates. Con-
versely, his subordinates, by aggregating their data into the specified order parameters, can communicate
information to their commander in a language readily accessible to his decision-making process.
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