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ABSTRACT

The Black-Scholes theory of option pricing has been considered for many years as an

important but very approximate zeroth-order description of actual market behavior. We

generalize the functional form of the diffusion of these systems and also consider multi-factor

models including stochastic volatility. We use a previous development of a statistical

mechanics of financial markets to model these issues. Daily Eurodollar futures prices and

implied volatilities are fit to determine exponents of functional behavior of diffusions using

methods of global optimization, Adaptive Simulated Annealing (ASA), to generate tight fits

across moving time windows of Eurodollar contracts. These short-time fitted distributions

are then developed into long-time distributions using a robust non-Monte Carlo path-integral

algorithm, PATHINT, to generate prices and derivatives commonly used by option traders.

The results of our study show that there is only a very small change in at-the money option

prices for different probability distributions, both for the one-factor and two-factor models.

There still are significant differences in risk parameters, partial derivatives, using more

sophisticated models, especially for out-of-the-money options.

Ke ywords: options; eurodollar; volatility; path integral; optimization; statistical mechanics
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1. INTRODUCTION

1.1. Background

There always is much interest in developing more sophisticated pricing models for financial instruments.

In particular, there currently is much interest in improving option pricing models, particularly with respect

to stochastic variables [1-4].

The standard Black-Scholes (BS) theory assumes a lognormal distribution of market prices, i.e., a

diffusion linearly proportional to the market price. However, many texts include outlines of more general

diffusions proportional to an arbitrary power of the market price [5].

The above aspects of stochastic volatility and of more general functional dependencies of diffusions

are most often “swept under the rug” of a simple lognormal form. Experienced traders often use their

own intuition to put volatility “smiles” into the BS theoretical constant coefficient in the BS lognormal

distribution to compensate for these aspects.

It is generally acknowledged that since the market crash of 1987, markets have been increasingly

difficult to describe using the BS model, and so better modelling and computational techniques should be

used traders [6], although in practice simple BS models are the rule rather than the exception simply

because they are easy to use [7]. To a large extent, previous modelling that has included stochastic

volatility and multiple factors has been driven more by the desire to either delve into mathematics

tangential to these issues, or to deal only with models that can accommodate closed-form algebraic

expressions. We do not see much of the philosophy in the literature that has long driven the natural

sciences: to respect first raw data, secondly models of raw data, and finally the use of numerical

techniques that do not excessively distort models for the sake of ease of analysis and speed of

computation. Indeed, very often the reverse set of priorities is seen in mathematical finance.

1.2. Our Approach

We address the above issues in detail in this paper within the framework of a previously developed

statistical mechanics of financial markets (SMFM) [8-12].

Our approach requires three sensible parts. Part one is the formulation of the model, which to some

extent also involves specification of the specific market(s) data to be addressed. Part two is the fitting of
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the model to specific market data. Part three is the use of the resulting model to calculate option prices

and their Greeks (partial derivatives of the prices with respect to their independent variables), which are

used as risk parameters by traders. Each part requires some specific numerical tuning keeping the real

market under consideration. These three parts must be performed in serial. The choice of details for the

first part must be made before doing the second part; the choice of details for the second part must be

made before doing the third part. Changes in part one require redoing calculations in parts two and three.

Changes in part two require redoing calculations in part three.

The first part was to develop the algebraic model to replace/generalize BS, including the possibility

of also addressing how to handle data regions not previously observed in trading. This is not absurd;

perhaps what is absurd is that current BS models perform integrals that must include a much influence

from fat tails that include data regions never seen or likely to be seen in real-world markets. There are

some issues as to whether we should take seriously the notion that the market is strongly driven by some

element of a “self-fulfilling prophesy” by the BS model [13], but in any case our models have parameters

to handle a wide range of possible cases that might arise.

We hav e developed two parallel tracks starting with part one, a one-factor and a two-factor model.

The two-factor model includes stochastic volatility. At first we sensed the need to develop this two-factor

model, we now see that this is at the least an important benchmark against which to judge the worth of the

one-factor model.

The second part was to fit the actual raw data so we can come up with real distributions. Some tests

illustrated that standard quasi-linear fitting routines, even simplex codes, could not get the proper fits, and

so we used a more powerful global optimization, Adaptive Simulated Annealing (ASA) [14]. Tuning and

selection of the time periods to perform the fits to the data were not trivial aspects of this research.

Practical decisions had to be made on the time span of data to be fit and how to aggregate the fits to get

sensible “fair values” for reasonable standard deviations of the exponents in the diffusions. Also, recall

the serial nature of the parts: As we did fits and learned more about this unchartered area, changes in the

models in part one required new fits in part two, etc.

The third part was to develop Greeks and risk parameters from these distributions without making

premature approximations just to ease the analysis. Perhaps someday, simple approximations and

intuitions similar to what traders now use for BS models will be available for these models, but we do not
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think the best approach is to start out with such approximations until we first see proper calculations,

especially in this uncharted territory. When it seemed that Cox-Ross-Rubenstein (CRR) standard tree

codes (discretized approximations to partial differential equations) [15] were not stable for general

exponents, i.e., for other than the lognormal case, we turned to a PATHINT code developed a decade ago

for some hard nonlinear multifactor problems [16], e.g., combat analyses [17], neuroscience [18,19], and

potentially chaotic systems [20,21]. In 1990 and 1991 papers on financial applications, it was mentioned

how these techniques could be used for stochastic interest rates and bonds [9,10]. The modifications

required here for one-factor European and then American cases went surprisingly smoothly; we still had

to tune the meshes, etc. The two-factor model presented a technical problem to the algorithm, which we

have reasonably handled using a combination of selection of the model in part one (remember the serial

nature of the parts ...) and a reasonable approach to developing the meshes. The biggest problem with the

two-factor code is that it takes very long to run.

1.3. Outline of Paper

Section 1 is this introduction. Section 2 describes the nature of Eurodollar (ED) futures data and

the evidence for stochastic volatility. Section 3 outlines the algebra of modelling options, including the

standard BS theory and our generalizations. Section 4 outlines the three equivalent mathematical

representations used by SMFM; this is required to understand the development of the short-time

distribution that defines the cost function we derive for global optimization, as well as the numerical

methods we have dev eloped to calculate the long-time evolution of these short-time distributions. Section

5 outlines ASA and explains its use to fit short-time probability distributions defined by our models to the

Eurodollar data; we offer the fitted exponent in the diffusion as a new important technical indicator of

market behavior. Section 6 outlines PATHINT and explains its use to develop long-time probability

distributions from the fitted short-time probability distributions, for both the one-factor and two-factor

tracks. Section 7 describes how we use these long-time probability distributions to calculate European

and American option prices and Greeks; here we give numerical tests of our approach to BS CRR

algorithms. Section 8 is our conclusion.
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2. DAT A

2.1. Eurodollars

Eurodollars are fixed-rate time deposits held primarily by overseas banks, but denominated in US

dollars. They are not subject to US banking regulations and therefore tend to have a tighter bid-ask

spread than deposits held in the United States [22].

2.2. Futures

The three-month Eurodollar futures contract is one of the most actively traded futures markets in

the world. The contract is quoted as an index where the yield is equal to the Eurodollar price subtracted

from 100. This yield is equal to the fixed rate of interest paid by Eurodollar time deposits upon maturity

and is expressed as an annualized interest rate based on a 360-day year. The Eurodollar futures are cash

settled based on the 90-day London Interbank Offer Rate (LIBOR). A “notional” principal amount of $1

million, is used to determine the change in the total interest payable on a hypothetical underlying time

deposit, but is never actually paid or received [22].

Currently a total of 40 quarterly Eurodollar futures contracts (or ten years worth) are listed, with

expirations annually in March, June, September and December.

2.3. Options on Futures

The options traded on the Eurodollar futures include not only 18 months of options expiring at the

same time as the underlying future, but also various short dated options which themselves expire up to

one year prior to the expiration of the underlying futures contract.

2.4. Front/Back Month Contracts

For purposes of risk minimization, as discussed in a previous paper [4], traders put on spreads

across a variety of option contracts. One common example is to trade the spread on contracts expiring

one year apart, where the future closer to expiration is referred to as the front month contract, and the

future expiring one year later is called the back month. The availability of short dated or “mid-curve”

options which are based on an underlying back month futures contract, but expire at the same time as the
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front month, allow one to trade the volatility ratios of the front and back month futures contracts without

having to take the time differences in option expirations into consideration. We studied the volatilities of

these types of front and back month contracts. Here, we give analyses with respect only to quarterly data

longer than six months from expiration.

2.5. Stochastic Volatility

Below we dev elop two-factor models to address stochastic volatility. In a previous paper, we hav e

performed empirical studies of Eurodollar futures to support the necessity of dealing with these issues [4].

2.5.1. Eurodollar Volatility of Historical Volatility

Fig. 1(a) gives a  comparison of Basis-Point Volatility (BPV), standard deviation of BPV (SDBPV),

and standard deviation of differenced BPV (SDDBPV), for Front and Back contracts, marked to the

number of days to expiration of the Front contract, for years 1995, 1996, and 1997, respectively. The

SDBPV illustrate that there exists a distribution of volatilities about the mean volatility. The SDDBPV

illustrate that this distribution likely is a stochastic process with a constant diffusion.

Fig. 1(b) gives a comparison of standard deviation of differenced Basis-Point Volatility (SDDBPV)

with and standard deviation of differenced Black-Scholes Volatility (SDDBSV), for Front and Back

contracts. The SDDBSV have been scaled to the SDDBPV by multiplying them by the rounded average

of the yields, i.e., 6.0. Note that after scaling, they consistently lie close to each other. Thus, both the

BPV and Black-Scholes Volatility (BSV) have volatilities that can be considered to be stochastic

processes with constant diffusion.

Fig. 1.

2.5.2. Eurodollar Volatility of Implied Volatility

Fig. 1(c) shows the Basis-Point Implied Volatility (BPIV) of Front and Back contracts.

Fig. 1(d) shows the standard deviation of differenced Basis-Point Implied Volatility (SDDBPIV) of

Front and Back contracts. Note that, similar to the results with historical volatilities, this illustrates that
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the volatility of the implied volatilities appears to be a stochastic process with constant diffusion for times

less than 30 days before expiration; afterwards, the values still are within the same scale.

3. MODELS

3.1. Random walk model

The use of Brownian motion as a model for financial systems is generally attributed to

Bachelier [23], though he incorrectly intuited that the noise scaled linearly instead of as the square root

relative to the random log-price variable. Einstein is generally credited with using the correct

mathematical description in a larger physical context of statistical systems. However, sev eral studies

imply that changing prices of many markets do not follow a random walk, that they may have long-term

dependences in price correlations, and that they may not be efficient in quickly arbitraging new

information [24-26]. A random walk for returns, rate of change of prices over prices, is described by a

Langevin equation with simple additive noiseη, typically representing the continual random influx of

information into the market.

Γ̇ =  −γ1 + γ2η ,

Γ̇ = dΓ/dt ,

< η(t) >η= 0 , < η(t),η(t′) >η= δ (t − t′) ,  (1)

whereγ1 andγ2 are constants, andΓ is the logarithm of (scaled) price. Price, although the most dramatic

observable, may not be the only appropriate dependent variable or order parameter for the system of

markets [27]. This possibility has also been called the “semistrong form of the efficient market

hypothesis” [24].

The generalization of this approach to include multivariate nonlinear nonequilibrium markets led to

a model of statistical mechanics of financial markets (SMFM) [8].

3.2. Black-Scholes (BS) Theory

The standard partial-differential equation used to formulate most variants of Black-Scholes (BS)

models describing the market value of an option,V , is
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∂V

∂t
+

1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 ,  (2)

where S is the asset price, andσ is the standard deviation, or volatility ofS, and r is the short-term

interest rate. The solution depends on boundary conditions, subject to a number of interpretations, some

requiring minor transformations of the basic BS equation or its solution. For example, the basic equation

can apply to a number of one-dimensional models of interpretations of prices given toV , e.g., puts or

calls, and toS, e.g., stocks or futures, dividends, etc.

For instance, ifV is set toC, a call on an European option with exercise priceE with maturity atT ,

the solution is

C(S, t) = SN (d1) − Ee−r(T −t) N (d2) ,

d1 =
ln(S/E) + (r +

1

2
σ 2)(T − t)

σ (T − t)1/2
,

d2 =
ln(S/E) + (r −

1

2
σ 2)(T − t)

σ (T − t)1/2
. (3)

In practice, the volatilityσ is the least known parameter in this equation, and its estimation is

generally the most important part of pricing options. Usually the volatility is given in a yearly basis,

baselined to some standard, e.g., 252 trading days per year, or 360 or 365 calendar days. Therefore, all

values of volatility given in the graphs in this paper, based on daily data, would be annualized by

multiplying the standard deviations of the yields by√252= 15. 87. We hav e used this factor to present our

implied volatilities as daily movements.

3.3. Some Key Issues in Derivation of BS

The basic BS model considers a portfolio in terms ofdelta (∆),

Π = V − ∆S (4)

in a market with Gaussian-Markovian (“white”) noiseX and driftµ,

dS

S
= σ dX + µdt , (5)
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whereV (S, t) inherits a random process fromS,

dV = σ S
∂V

∂S
dX +





µS
∂V

∂S
+

1

2
σ 2S2 ∂2V

∂S2
+

∂V

∂t




dt . (6)

This yields

dΠ = σ 


∂V

∂S
− ∆


dX +





µS
∂V

∂S
+

1

2
σ 2S2 ∂2V

∂S2
+

∂V

∂t
− µ∆S




dt . (7)

The expected risk-neutral return ofΠ is

dΠ = rΠdt = r(V − ∆S)dt . (8)

OptionsV on futuresF can be derived, e.g., using simple transformations to take cost of carry into

consideration, such as

F = Ser(T −t) , (9)

and setting

dΠ = rV dt . (10)

The corresponding BS equation for futuresF is

∂V

∂t
+

1

2
σ 2F2 ∂2V

∂S2
− rV = 0 .  (11)

At least two advantages are present if∆ is chosen such that

∆ =
∂V

∂S
. (12)

Then, the portfolio can be instantaneously “risk-neutral,” in terms of zeroing the coefficient ofX , as well

as independent of the direction of market, in terms of zeroing the coefficient ofµ. For the above example

of V = C,

∆ = N (d1) .  (13)

Other trading strategies based on this simple model use similar constructs as risk parameters, e.g.,

gamma (Γ), theta (Θ), vega, rho (ρ) [5],
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Γ =
∂2Π
∂S2

,

Θ =
∂Π
∂t

,

vega=
∂Π
∂σ

,

ρ =
∂Π
∂r

. (14)

The BS equation, Eq. (2), may be written as

Θ + rS∆ +
1

2
(σ S)2Γ = rf . (15)

3.4. Some Generalizations of BS

The volatility σ may depend on other variables, and the BS model may be generalized to

multivariable models. However, within the framework of the basic BS model, ifσ and r are time-

dependent, then it turns out that the above solutions of the basic BS, and the use of the above set of

{∆, Γ, Θ, vega,ρ}, etc., can be used without change, provided an “effective” volatility, ˆσ , is defined in

terms ofσ (t), and an “effective” interest-rate, ˆr, is defined in terms ofr(t), are defined.

This can be developed by considering a slight generalization of the above BSequation for the

variable V̂ , using methods given in a standard text [28]. A transformation of variables is used to

transform away any time-dependent coefficients,

Ŝ = Seα (t) ,

V̂ = Veβ (t) ,

t̂ = γ (t) .  (16)

This leads to

dγ (t)

dt

∂V̂

∂t̂
+

1

2
σ (t)2Ŝ

2 ∂2V̂

∂Ŝ
2 + ((r(t) +

dα (t)

dt
))Ŝ

∂V̂

∂Ŝ
− ((r(t) +

d β (t)

dt
))V̂ = 0 .  (17)

Taking
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α (t) =
T

t
∫ r(τ )dτ ,

β (t) =
T

t
∫ r(τ )dτ ,

γ (t) =
T

t
∫ σ 2(τ )dτ , (18)

leads to

∂V̂

∂t̂
=

1

2
Ŝ

2 ∂2V̂

∂Ŝ
2 , (19)

with coefficients independent of timet (the motivation for this transformation). In terms ofV ,

V (S, t) = e−β (t)V̂ 

Seα (t),γ (t)


. (20)

To get the explicit form of the solution, consider the original BS model with constant coefficients

and solutionVBS :

VBS = e−(T −t)rV̂BS


Se−(T −t)r , (T − t)σ 2)


, (21)

for some solution̂VBS . Therefore, the standard BS solutions for various products can be used ifσ and/or

r are time-dependent, by replacingσ in the original equation by ˆσ , and by replacingr in the original

equation by ˆr,

σ 2 → σ̂ 2 =
1

T − t

T

t
∫ σ 2(τ )dτ ,

r → r̂ =
1

T − t

T

t
∫ r(τ )dτ . (22)
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3.5. S x Models

Our two-factor model includes stochastic volatilityσ of the underlyingS,

dS = µ dt + σ F(S, S0, S∞, x, y) dzS

dσ = ν dt + ε dzσ

< dzi >= 0 , i = {S,σ }

< dzi(t) dz j(t′) > = dt δ (t − t′) , i = j

< dzi(t) dz j(t′) > = ρ dt δ (t − t′) , i ≠ j

F(S, S0, S∞, x, y) =







S,

S x S1−x
0 ,

S yS1−x
0 S x−y

∞ ,

S < S0

S0 ≤ S ≤ S∞
S > S∞

(23)

whereS0 andS∞ are selected to lie outside the data region used to fit the other parameters, e.g.,S0 = 1/2

and S∞ = 20 for fits to Eurodollar futures which historically have a very tight range relative to other

markets. We hav e used the Black-Scholes formF = S insideS < S0 to obtain the usual benefits, e.g., no

negative prices as the distribution is naturally excluded fromS < 0  and preservation of put-call parity.

Put-call parity for European options is derived quite independent of any mathematical model of

options [5]. In its simplest form, it is given by

c + Xe−r(T −t) = p + S (24)

wherec (p) is the fair price of a call (put),X is the strike price,r is the risk-free interest rate,t is the

present time,T is the time of expiration, andS is the underlying market. We hav e takeny = 0, a normal

distribution, to reflect total ignorance of markets outside the range ofS > S∞. The one-factor model just

assumes a constantσ . It is often noted that BS models incorrectly include untenable contributions from

largeS regions because of their fat tails [29]. (If we wished to handle negative interest rates, ED prices >

100, we would move shift theS = 0 axis to someS < 0 value.)

We found that the abrupt, albeit continuous, changes acrossS0 especially forx ≤ 0 did not cause

any similar effects in the distributions evolved using these diffusions, as reported below.
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The formula for pricing an optionP, derived in a Black-Scholes generalized framework after

factoring out interest-rate discounting, is equivalent to using the form

dS = µ S dt + σ F(S, S0, S∞, x, y) dzS

dσ = ν dt + ε dzσ (25)

We experimented with some alternative functional forms, primarily to apply some smooth cutoffs

across the above three regions ofS. For example, we usedF ′, a functionF designed to revert to the

lognormal Black-Scholes model in several limits,

F ′(S, S0, S∞, x) = S C0 + (1 − C0) ((S x S1−x
0 C∞ + S0(1 − C∞)))

C0 = exp



−


S

S0

|1− x|

1 + |1− x|



|2−x|+1



C∞ = exp



−


S

S∞




2



S→∞, x≠1
lim F ′(S, S0, S∞, x) = S0 = constant

S→0+
lim F ′(S, S0, S∞, x) =

x→1
lim F ′(S, S0, S∞, x) = S (26)

However, our fits were most sensitive to the data when we permitted the central region to be pureS x using

F above.

3.5.1. Various F(S, x) Diffusions

Fig. 2 gives examples ofF(S, S0, S∞, x, y) dzS for x in {-1, 0, 1, 2}. The other parameters are

S = 5, S0 = 0. 5,S∞ = 20, y = 0.

Fig. 2.
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4. STATISTICAL MECHANICS OF FINANCIAL MARKETS (SMFM)

4.1. Statistical Mechanics of Large Systems

Aggregation problems in nonlinear nonequilibrium systems typically are “solved” (accommodated)

by having new entities/languages developed at these disparate scales in order to efficiently pass

information back and forth. This is quite different from the nature of quasi-equilibrium quasi-linear

systems, where thermodynamic or cybernetic approaches are possible. These approaches typically fail for

nonequilibrium nonlinear systems.

Many systems are aptly modeled in terms of multivariate differential rate-equations, known as

Langevin equations,

ṀG = f G + ĝG
j η j , (G = 1,. . . , Λ) , ( j = 1,. . . , N ) ,

ṀG = dMG /dt ,

< η j(t) >η= 0 , < η j(t),η j′(t′) >η= δ jj′δ (t − t′) ,  (27)

where f G and ĝG
j are generally nonlinear functions of mesoscopic order parametersMG , j is a

microscopic index indicating the source of fluctuations, andN ≥ Λ. The Einstein convention of summing

over repeated indices is used. Vertical bars on an index, e.g., |j|, imply no sum is to be taken on repeated

indices.

Via a somewhat lengthy, albeit instructive calculation, outlined in several other papers [8,10,30],

involving an intermediate derivation of a corresponding Fokker-Planck or Schr¨odinger-type equation for

the conditional probability distributionP[M(t)|M(t0)], the Langevin rate Eq. (27) is developed into the

more useful probability distribution forMG at long-time macroscopic time eventt = (u + 1)θ + t0, in

terms of a Stratonovich path-integral over mesoscopic Gaussian conditional probabilities [31-35]. Here,

macroscopic variables are defined as the long-time limit of the evolving mesoscopic system.

The corresponding Schr¨odinger-type equation is [33,34]

∂P/∂t =
1

2
(gGG′P),GG′ − (gG P),G + V ,

gGG′ = kT δ jk ĝG
j ĝG′

k ,
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gG = f G +
1

2
δ jk ĝG′

j ĝG
k,G′ ,

[. . .],G = ∂[. . .]/∂MG . (28)

This is properly referred to as a Fokker-Planck equation whenV ≡ 0. Note that although the partial

differential Eq. (28) contains equivalent information regardingMG as in the stochastic differential Eq.

(27), all references toj have been properly averaged over. I.e., ˆgG
j in Eq. (27) is an entity with parameters

in both microscopic and mesoscopic spaces, butM is a purely mesoscopic variable, and this is more

clearly reflected in Eq. (28).

The path integral representation is given in terms of the LagrangianL.

P[Mt |Mt0]dM(t) = ∫ . . . ∫ DM exp(−S)δ [M(t0) = M0]δ [M(t) = Mt ] ,

S = k−1
T min

t

t0
∫ dt′L ,

DM =
u→∞
lim

u+1

ρ=1
Π g1/2

G
Π (2πθ )−1/2dMG

ρ ,

L(ṀG , MG , t) =
1

2
(ṀG − hG)gGG′(ṀG′ − hG′) +

1

2
hG

;G + R/6 − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

g = det(gGG′) ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) .  (29)
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Mesoscopic variables have been defined asMG in the Langevin and Fokker-Planck representations, in

terms of their development from the microscopic system labeled byj. The Riemannian curvature termR

arises from nonlineargGG′, which is a bona fide metric of this space [33]. Even if a stationary solution,

i.e., ṀG = 0, is ultimately sought, a necessarily prior stochastic treatment ofṀG terms gives rise to these

Riemannian “corrections.” Even for a constant metric, the termhG
;G contributes toL for a nonlinear

meanhG . V may include terms such as
T ′
Σ JT ′G MG , where the Lagrange multipliersJT ′G are constraints

on MG , which are advantageously modeled as extrinsic sources in this representation; they too may be

time-dependent. Using the variational principle,JTG may also be used to constrainMG to regions where

they are empirically bound. More complicated constraints may be affixed toL using methods of optimal

control theory [36]. With respect to a steady stateP, when it exists, the information gain in stateP is

defined by

ϒ[P] = ∫ . . . ∫ DM ′ P ln (P/P) ,

DM ′ = DM /dMu+1 . (30)

In the economics literature, there appears to be sentiment to define Eq. (27) by the Ito, rather than

the Stratonovich prescription. It is true that Ito integrals have Martingale properties not possessed by

Stratonovich integrals [37] which leads to risk-neural theorems for markets [38,39], but the nature of the

proper mathematics should eventually be determined by proper aggregation of relatively microscopic

models of markets. It should be noted that virtually all investigations of other physical systems, which are

also continuous time models of discrete processes, conclude that the Stratonovich interpretation coincides

with reality, when multiplicative noise with zero correlation time, modeled in terms of white noiseη j , is

properly considered as the limit of real noise with finite correlation time [40]. The path integral

succinctly demonstrates the difference between the two: The Ito prescription corresponds to the prepoint

discretization of L, wherein θ Ṁ(t) → Mρ+1 − Mρ and M(t) → Mρ . The Stratonovich prescription

corresponds to the midpoint discretization ofL, wherein θ Ṁ(t) → Mρ+1 − Mρ and

M(t) →
1

2
(Mρ+1 + Mρ ). In terms of the functions appearing in the Fokker-Planck Eq. (28), the Ito

prescription of the prepoint discretized Lagrangian,LI , is relatively simple, albeit deceptively so because

of its nonstandard calculus.
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LI (ṀG , MG , t) =
1

2
(ṀG − gG)gGG′(ṀG′ − gG′) − V . (31)

In the absence of a nonphenomenological microscopic theory, the difference between a Ito prescription

and a Stratonovich prescription is simply a transformed drift [41].

There are several other advantages to Eq. (29) over Eq. (27). Extrema and most probable states of

MG , << MG >>, are simply derived by a variational principle, similar to conditions sought in previous

studies [42]. In the Stratonovich prescription, necessary, albeit not sufficient, conditions are given by

δG L = L,G − L,Ġ:t = 0 ,

L,Ġ:t = L,ĠG′ Ṁ
G′ + L,ĠĠ′ M̈

G′ . (32)

For stationary states,̇MG = 0, and∂L/∂MG = 0 defines << MG >>, where the bars identify stationary

variables; in this case, the macroscopic variables are equal to their mesoscopic counterparts.[Note thatL

is not the stationary solution of the system, e.g., to Eq. (28) with∂P/∂t = 0. However, in some cases [43],

L is a definite aid to finding such stationary states.] Many times only properties of stationary states are

examined, but here a temporal dependence is included. E.g., theṀG terms inL permit steady states and

their fluctuations to be investigated in a nonequilibrium context. Note that Eq. (32) must be derived from

the path integral, Eq. (29), which is at least one reason to justify its development.

4.2. Algebraic Complexity Yields Simple Intuitive Results

It must be emphasized that the output need not be confined to complex algebraic forms or tables of

numbers. BecauseL possesses a variational principle, sets of contour graphs, at different long-time

epochs of the path-integral ofP over its variables at all intermediate times, give a visually intuitive and

accurate decision-aid to view the dynamic evolution of the scenario. For example, this Lagrangian

approach permits a quantitative assessment of concepts usually only loosely defined.

“Momentum” = ΠG =
∂L

∂(∂MG /∂t)
,

“Mass”gGG′ =
∂2L

∂(∂MG /∂t)∂(∂MG′/∂t)
,

“Force” =
∂L

∂MG
,
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“F = ma ”: δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG /∂t)
, (33)

where MG are the variables andL is the Lagrangian. These physical entities provide another form of

intuitive, but quantitatively precise, presentation of these analyses. For example, daily newspapers use

some of this terminology to discuss the movement of security prices. In this paper, theΠG serve as

canonical momenta indicators (CMI) for these systems.

4.2.1. Derived Canonical Momenta Indicators (CMI)

BecauseL possesses a variational principle, sets of contour graphs, at different long-time epochs of

the path-integral ofP over its variables at all intermediate times, give a visually intuitive and accurate

decision-aid to view the dynamic evolution of the scenario.

The extreme sensitivity of the CMI gives rapid feedback on changes in trends as well as the

volatility of markets, and therefore are good indicators to use for trading rules [12]. A time-locked

moving average provides manageable indicators for trading signals. This is a current project using such

CMI developed as a byproduct of the ASA fits described below.

5. ADAPTIVE SIMULATED ANNEALING (ASA) FITS

5.1. ASA Outline

The algorithm developed which is now called Adaptive Simulated Annealing (ASA) [44] fits short-

time probability distributions to observed data, using a maximum likelihood technique on the Lagrangian.

This algorithm has been developed to fit observed data to a theoretical cost function over aD-dimensional

parameter space [44], adapting for varying sensitivities of parameters during the fit. The ASA code can

be obtained at no charge, via WWW from http://www.ingber.com/ or via FTP from ftp.ingber.com.

5.1.1. General description

Simulated annealing (SA) was developed in 1983 to deal with highly nonlinear problems [45], as an

extension of a Monte-Carlo importance-sampling technique developed in 1953 for chemical physics

problems. It helps to visualize the problems presented by such complex systems as a geographical terrain.
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For example, consider a mountain range, with two “parameters,” e.g., along the North−South and

East−West directions. We wish to find the lowest valley in this terrain. SA approaches this problem

similar to using a bouncing ball that can bounce over mountains from valley to valley. We start at a high

“temperature,” where the temperature is an SA parameter that mimics the effect of a fast moving particle

in a hot object like a hot molten metal, thereby permitting the ball to make very high bounces and being

able to bounce over any mountain to access any valley, giv en enough bounces. As the temperature is

made relatively colder, the ball cannot bounce so high, and it also can settle to become trapped in

relatively smaller ranges of valleys.

We imagine that our mountain range is aptly described by a “cost function.” We define probability

distributions of the two directional parameters, called generating distributions since they generate possible

valleys or states we are to explore. We define another distribution, called the acceptance distribution,

which depends on the difference of cost functions of the present generated valley we are to explore and

the last saved lowest valley. The acceptance distribution decides probabilistically whether to stay in a new

lower valley or to bounce out of it. All the generating and acceptance distributions depend on

temperatures.

In 1984 [46], it was established that SA possessed a proof that, by carefully controlling the rates of

cooling of temperatures, it could statistically find the best minimum, e.g., the lowest valley of our

example above. This was good news for people trying to solve hard problems which could not be solved

by other algorithms. The bad news was that the guarantee was only good if they were willing to run SA

forever. In 1987, a method of fast annealing (FA) was developed [47], which permitted lowering the

temperature exponentially faster, thereby statistically guaranteeing that the minimum could be found in

some finite time. However, that time still could be quite long. Shortly thereafter, Very Fast Simulated

Reannealing (VFSR) was developed in 1987 [44], now called Adaptive Simulated Annealing (ASA),

which is exponentially faster than FA.

ASA has been applied to many problems by many people in many disciplines [48-50]. The

feedback of many users regularly scrutinizing the source code ensures its soundness as it becomes more

flexible and powerful.
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5.1.2. Mathematical outline

ASA considers a parameterα i
k in dimensioni generated at annealing-timek with the range

α i
k ∈[ Ai, Bi] ,  (34)

calculated with the random variableyi,

α i
k+1 = α i

k + yi(Bi − Ai) ,

yi ∈[−1, 1] . (35)

The generating functiongT (y) is defined,

gT (y) =
D

i=1
Π 1

2(|yi| + Ti) ln(1 + 1/Ti)
≡

D

i=1
Π gi

T (yi) ,  (36)

where the subscripti on Ti specifies the parameter index, and thek-dependence inTi(k) for the annealing

schedule has been dropped for brevity. Its cumulative probability distribution is

GT (y) =
y1

−1
∫ . . .

yD

−1
∫ dy′1 . . .dy′D gT (y′) ≡

D

i=1
Π Gi

T (yi) ,

Gi
T (yi) =

1

2
+

sgn (yi)

2

ln(1 + |yi|/Ti)

ln(1 + 1/Ti)
. (37)

yi is generated from aui from the uniform distribution

ui ∈U [0, 1] ,

yi = sgn (ui −
1

2
)Ti[(1 + 1/Ti)

|2ui−1| − 1] . (38)

It is straightforward to calculate that for an annealing schedule forTi

Ti(k) = T0i exp(−ci k
1/D) ,  (39)

a global minima statistically can be obtained. I.e.,

∞

k0

Σ gk ≈
∞

k0

Σ [
D

i=1
Π 1

2|yi|ci
]

1

k
= ∞ . (40)

Control can be taken overci, such that
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T fi = T0i exp(−mi) whenk f = expni ,

ci = mi exp(−ni/D) ,  (41)

wheremi andni can be considered “free” parameters to help tune ASA for specific problems.

5.1.3. Reannealing

ASA has over 100 OPTIONS available for tuning. A few important ones are described here.

Whenever doing a multi-dimensional search in the course of a complex nonlinear physical problem,

inevitably one must deal with different changing sensitivities of theα i in the search. At any giv en

annealing-time, the range over which the relatively insensitive parameters are being searched can be

“stretched out” relative to the ranges of the more sensitive parameters. This can be accomplished by

periodically rescaling the annealing-timek, essentially reannealing, every hundred or so acceptance-

ev ents (or at some user-defined modulus of the number of accepted or generated states), in terms of the

sensitivitiessi calculated at the most current minimum value of the cost function,C,

si = ∂C/∂α i . (42)

In terms of the largestsi = smax, a default rescaling is performed for eachki of each parameter dimension,

whereby a new indexk′i is calculated from eachki,

ki → k′i ,

T ′ik′ = Tik(smax/si) ,

k′i = ((ln(Ti0/Tik′)/ci))
D . (43)

Ti0 is set to unity to begin the search, which is ample to span each parameter dimension.

5.1.4. Quenching

Another adaptive feature of ASA is its ability to perform quenching in a methodical fashion. This

is applied by noting that the temperature schedule above can be redefined as

Ti(ki) = T0i exp(−ci k
Qi/D
i ) ,

ci = mi exp(−niQi/D) ,  (44)
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in terms of the “quenching factor”Qi. The sampling proof fails ifQi > 1 as

k
Σ

D

Π 1/kQi/D =
k
Σ 1/kQi < ∞ . (45)

This simple calculation shows how the “curse of dimensionality” arises, and also gives a possible

way of living with this disease. In ASA, the influence of large dimensions becomes clearly focussed on

the exponential of the power ofk being 1/D, as the annealing required to properly sample the space

becomes prohibitively slow. So, if resources cannot be committed to properly sample the space, then for

some systems perhaps the next best procedure may be to turn on quenching, wherebyQi can become on

the order of the size of number of dimensions.

The scale of the power of 1/D temperature schedule used for the acceptance function can be altered

in a similar fashion. However, this does not affect the annealing proof of ASA, and so this may used

without damaging the sampling property.

5.1.5. Widespread use and comparisons

The file http://www.ingber.com/MISC.DIR/asa_examples has several templates of “toy” test

problems, especially illustrating how tuning can increase the efficiency of ASA by orders of magnitude.

The file http://www.ingber.com/asa_papers has references to the the use of ASA by some other

researchers, e.g., in studies ranging from: comparisons among SA algorithms and between ASA and

genetic algorithms, tabu and hillclimbing [51-55], to molecular models [56], to imaging [57], to neural

networks [58], to econometrics [59], to geophysical inversion [60], to wide-spread use in financial

institutions [48], etc.

5.2. Description of Fits

5.2.1. x-Indicator of Market Contexts

Our studies of contexts of markets well recognized by option traders to have significantly different

volatility behavior show that the exponentsx are reasonably faithful indicators defining these different

contexts.
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We feel the two-factor model is more accurate because the data indeed demonstrate stochastic

volatility [4]. We also note that the two-factorx’s are quite robust and uniform when being fit by ASA

across the last few years; this is not true of the one-factor ASA fittedx’s. Differences are primarily due to

the stochasticσ parameters, in accord with the sense traders have about the nature of changing volatilities

across this time period. When stochastic volatility is properly treated, it is interesting that the two-factor

x’s are not so far from the BSx = 1.

Fig. 3 shows the one-factor and two-factor exponents, the two-factor correlationρ, and the raw data

used for these fits, the ED contract expiring in September 1999 during the period June 1998 through

March 1999, using a moving two-month window of data. In ASA, we placed boundaries on the one-

factor exponent to lie between -3 and 2, just because we did not see any reason to examine models with

very extremex’s.

The one-factorx’s, albeit they are stochastic, do exhibit systematics of market contexts. For

example, in our 1998 fits, there are two distinct periods, positivex until the last quarter and then negative

x. Once the fits reach 1999,x turns positive again.

Fig. 3.

It should be noted that our two-factor fits use price and implied volatility data. Of course, the

implied volatility data is derived by vendors from standard Black-Scholes-type calculations, whereas we

are fitting a multivariateS x process. In practice, over the range of the data to be fit, the basis-point

volatility in the empirical data, independent of any options model, is approximately the same for anyx we

are considering. Also, other parameters in the model are involved in the fitting process, e.g., especiallyν

andε in theσ equation, which offer tight resolution of the model within reasonable variances.

Fig. 4 shows the mean and standard deviation of the short-time differenced one-factor exponents.

The one-factor exponents exhibit a random process that is approximately defined as a simple normal

processη x with meanµ x and standard deviationσ x ,

ẋ =
dx

dt
= µ x + σ xη x (46)

When averaging over a sev eral month period, we can deriveµ x ≈ 0 and haveσ x essentially span allx’s.



Statistical Mechanics ... - 24 -  L Ingber & JK Wilson

However, it is clear that there are shorter periods of stochasticx which can be modeled independently,

yielding a one-factorx as an indicator of market contexts. An additional problem arises if too short

periods are selected for moving averages; drift can become significant for large movement in the price

data. This is only a practical problem, in that traders most often compare volatilities across models over

time periods which are large enough so that drifts are negligible.

Most important, the reasonable interpretation of our results is that suppression of stochastic

volatility in the one-factor model just leaks out into stochasticity of parameters in the model, e.g.,

especially inx. By comparison, thex-exponents in the two-factor fits are quite stable.

Fig. 4.

6. PATH-INTEGRAL (PATHINT) DEVELOPMENT

6.1. PATHINT Outline

The fits described above clearly demonstrate the need to incorporate stochastic volatility in option

pricing models. If one-factor fits are desired, e.g., for efficiency of calculation, then at the least the

exponent of pricex should be permitted to freely adapt to the data. In either case, it is required to develop

a full set of Greeks for trading. To meet these needs, we have used a path-integral code, PATHINT,

described below, with great success. At this time, the two-factor code takes too long to run for daily use,

but it proves to be a good weekly baseline for the one-factor code.

The PATHINT algorithm develops the long-time probability distribution from the Lagrangian fit by

the first optimization code. A robust and accurate histogram-based (non-Monte Carlo) path-integral

algorithm to calculate the long-time probability distribution has been developed to handle nonlinear

Lagrangians [17-19,21,61-63],

The histogram procedure recognizes that the distribution can be numerically approximated to a high

degree of accuracy as sum of rectangles at pointsMi of heightPi and width∆Mi. For convenience, just

consider a one-dimensional system. The above path-integral representation can be rewritten, for each of

its intermediate integrals, as
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P(M ; t + ∆t) = ∫ dM ′[g1/2
s (2π ∆t)−1/2 exp(−Ls∆t)]P(M ′; t) = ∫ dM ′G(M , M ′; ∆t)P(M ′; t) ,

P(M ; t) =
N

i=1
Σ π (M − Mi)Pi(t)

π (M − Mi) =







0 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

1 ,  otherwise ,
(47)

which yields

Pi(t + ∆t) = Tij(∆t)P j(t) ,

Tij(∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ M j+∆M j /2

M j−∆M j−1/2
dM ′G(M , M ′; ∆t) .  (48)

Tij is a banded matrix representing the Gaussian nature of the short-time probability centered about the

(varying) drift.

Care must be used in developing the mesh in∆MG , which is strongly dependent on the diagonal

elements of the diffusion matrix, e.g.,

∆MG ≈ (∆tg|G||G|)1/2 . (49)

Presently, this constrains the dependence of the covariance of each variable to be a nonlinear function of

that variable, albeit arbitrarily nonlinear, in order to present a straightforward rectangular underlying

mesh. Below we address how we hav e handled this problem in our two-factor stochastic-volatility model.

Fitting data with the short-time probability distribution, effectively using an integral over this

epoch, permits the use of coarser meshes than the corresponding stochastic differential equation. The

coarser resolution is appropriate, typically required, for numerical solution of the time-dependent path-

integral: By considering the contributions to the first and second moments of∆MG for small time slicesθ ,

conditions on the time and variable meshes can be derived [61]. The time slice essentially is determined

by θ ≤ L−1, whereL is the “static” Lagrangian withdMG /dt = 0, throughout the ranges ofMG giving the

most important contributions to the probability distributionP. The variable mesh, a function ofMG , is

optimally chosen such that∆MG is measured by the covariancegGG′, or ∆MG∼(gGGθ )1/2.



Statistical Mechanics ... - 26 -  L Ingber & JK Wilson

The PATHINT algorithm in its present form can “theoretically” handle any n-factor model subject

to its diffusion-mesh constraints. In practice, the calculation of 3-factor models likely will wait until giga-

hertz speeds and giga-byte RAM are commonplace.

6.2. Development of Long-Time Probabilities

The noise determined empirically as the diffusion of the data is the same independent ofx within

our approach. Therefore, setting the strikeX to theS underlying, the at-the-money (ATM) diffusions, the

square of the “basis-point volatilities” (BPV), are scaled to be equivalent. Then, there is not a very drastic

change in ATM option prices for different exponentsx. This is not the case for out of the money strikes.

This implies that current pricing models are not radically mispricing the markets, but there still are

significant changes in Greeks using more sophisticated models.

6.3. Dependence of Probabilities on S and x

Fig. 5 gives examples of the short-time distribution evolved out toT = 0. 5 year forx in {-1, 0, 1,

2}, with 500 intermediate epochs/foldings, and BSσ = 0. 0075. Each calculation scalesσ by multiplying

by S/F(S, S0, S∞, x, y).

Fig. 5.

Fig. 6 gives an example of a two-factor distribution evolved out toT = 0. 5 year forx = 0. 7.

Fig. 6.

6.4. Two-Factor Volatility and PATHINT Modifications

In our two-factor model, the mesh ofS would depend onσ and cause some problems in any

PATHINT grid to be developed inS-σ .

For some time we have considered how to handle this generic problem forn-factor multivariate

systems with truly multivariate diffusions. In one case, we have taken advantage of the Riemannian
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invariance of the probability distribution as discussed above, to transform to a system where the diffusions

have only “diagonal” multiplicative dependence [18]. However, this leads to cumbersome numerical

problems with the transformed boundary conditions [19]. Another method, not yet fully tested, is to

develop a tiling of diagonal meshes for each factori that often are suitable for off-diagonal regions in an

n-factor system, e.g.,

∆Mi
k = 2mi

k ∆Mi
0

∆Mi
0 ≈ √ g|i||i|

k0
∆t (50)

where the mesh of variablei at a given point labeled byk is an exponentiation of 2, labeled bymi
k ; the

integral powermi
k is determined such that it gives a good approximation to the diagonal mesh given by

the one-factor PATHINT mesh conditions, in terms of some minimal mesh∆Mi
0, throughout regions of

the Lagrangian giving most important contributions to the distribution as predetermined by a scan of the

system. This tiling of the kernel is to be used together with interpolation of intermediate distributions.

The results of our study here are that, after the at-the-money BPV are scaled to be equivalent, there

is not a very drastic change in the one-factor ATM Greeks developed below. Therefore, while we have

not at all changed the functional dependence of the Lagrangian onS and σ , we hav e determined our

meshes using a diffusion for theS equation asσ0 F(S, S0, S∞, x, y), whereσ0 is determined by the same

BPV-equivalent condition as imposed on the one-factor models. This seems to work very well, especially

since we have taken ourσ equation to be normal with a limited range of influence in the calculations.

Future work yet has to establish a more definitive distribution forσ .

7. CALCULATION OF DERIVATIVES

7.1. Primary Use of Probabilities For European Options

We could have modified PATHINT to develop the distribution of the option value back in time from

expiration. This is the standard approach used by CRR, explicit and implicit Crank-Nicolson models,

etc [28].

However, we decided to take advantage of the accuracy of PATHINT enhanced by normalizing the

distribution as well as the kernel at each iteration. Therefore, we have calculated our option prices and
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Greeks using the most elementary and intuitive definition of the option’s priceV [64], which is the

expected value

V =< max[z(S − X), 0] > ,




z = 1 ,

z = −1 ,

call

put
(51)

where X is the strike price, and the expected value < . >  is taken with respect to therisk-neutral

distribution of the underlying marketS. It should be noted that, while the standard approach of

developing the option price delivers at the present time a range of underlying values for a given strike, our

approach delivers a more practical complete range of strikes for a given underlying at the present time.

The risk-neutral distribution is effectively calculated taking the drift as the cost-of-carryb timesS, using

the above arguments leading to the BS formula. We hav e designed our codes to use parameters risk-free-

rater and cost-of-carryb such that

b = r, cost of carry on nondividend stock

b = r − q, cost of carry on stock paying dividend yieldq

b = 0, cost of carry on future contract

b = r − r f , cost of carry on currency with rater f (52)

which is similar to how generalized European BS codes useb andr [65].

Using this approach, the European priceVE is calculated as

VE = << max[[z(e(b−r)T ST − e−rT X), 0]] >> (53)

The American priceV A must be calculated using a different kernel going back in time from

expiration, using as “initial conditions” the option values used in the above average. This kernel is the

transposed matrix used for the European case, and includes additional drift and “potential” terms due to

the need to develop this back in time. This can be viewed as requiring the adjoint partial differential

equation or a postpoint Lagrangian in real time. The Greeks{∆, Γ, Θ} are directly taken off the final

developed option. We get excellent results for all Greeks.
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7.2. PATHINT Baselined to CRR and BS

The CRR method is a simple binomial tree which in a specific limit approaches the BS partial

differential equation. It has the virtues of being fast and readily accommodates European and American

calculations. However, it suffers a number of numerical problems, e.g., a systematic bias in the tree

approximation and an oscillatory error as a function of the number of intermediate epochs/iterations in its

time mesh. Some Greeks like{∆, Γ, Θ} can be directly taken off the tree used for pricing with reasonable

approximations (at epochs just before the actual current time). The first problem for American options

can be alleviated somewhat by using the variant method [5],

CRRvariant = CRRAmerican− CRREuropean+ BS (54)

The second problem can be alleviated somewhat by averaging runs ofn iterations with runs ofn + 1

iterations [66]. This four-fold increase of runs is rarely used, though perhaps it should be more often.

Furthermore, if increased accuracy in price is needed in order to take numerical derivatives, typically

200−300 iterations should be used for expirations some months away, not 30−70 as too often used in

practice.

When taking numerical derivatives there can arise a need to tune increments taken for the

differentials. For some Greeks like∆ andΓ the size of the best differentials to use may vary with strikes

that have different sensitivities to parts of the underlying distribution. One method of building in some

adaptive flexibility across many such strikes is to increase the order of terms used in taking numerical

derivatives. (This was not required for results presented here.) For example, it is straightforward to verify

that, while the central difference

df

dx
=

f (x + dx) − f (x − dx)

2dx
(55)

is typically good too(((dx)3)),

df

dx
=

− f (x + 2dx) + 8 f (x + dx) − 8 f (x − dx) + f (x − 2dx)

12dx
(56)

is typically good too(((dx)5)). Similarly, while

d2 f

dx2
=

f (x + dx) − 2 f (x) + f (x − dx)

dx dx
(57)

is typically good to (((dx)4)),
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d2 f

dx2
=

−d(x + 2dx) + 16 f (x + dx) − 30 f (x) + 16 f (x − dx) − f (x − 2dx)

12dx dx
(58)

is typically good to (((dx)6)).

Table 1 gives an example of baselining our one-factor PATHINT code to the CRR and BS codes

using the above safeguards for an option whose American price is the same as its European counterpart, a

typical circumstance [65]. In the literature, the CRR code is most often taken as the benchmark for

American calculations. We took the number of intermediate epochs/points to be 300 for each calculation.

Parameters used for this particular ATM call areT = 0. 5 years,r = 0. 05,b = 0, σ = 0. 10.

Table 1.

Tests with American CRR and American PATHINT lead to results with the same degrees of

accuracy.

7.3. Two-Factor PATHINT Baselined to One-Factor PATHINT

Previous papers and tests have demonstrated that the two-factor PATHINT code performs as

expected. The code was developed with only a few lines to be changed for running anyn-factor problem.

Tests were performed by combining two one-factor problems, and there is no loss of accuracy. Howev er,

here we are making some additional mesh approximations as discussed above toaccommodateσ in theS

diffusion. This seems quite reasonable, but there is no sure test of the accuracy. We indeed see that the

ATM results are very close acrossx’s, similar to our ATM comparisons between BS and our one-factor

PATHINT results for variousx’s, where again scaling is performed to have all models used the same BPV

(using theσ0 procedure described above for the two-factor model).

The logical extension of Greeks for the two-factor model is to develop derivatives of price with

respect toρ andε in σ volatility equation. However, we did not find a two-factor proxy for the one-factor

vega, the derivative of price with respect to the one-factorσ constant. We get very good ATM veg a

comparisons between BS and our one-factor models with variousx’s. We tried simply multiplying the

noise in the two-factor stochastic volatility in the price equation by a parameter with deviations from 1 to

get numerical derivatives of PATHINT solutions, but this did not give good agreement with the ATM
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BPV-scaled BS veg a. Perhaps this is not too surprising, especially given the correlation substantialρ

between the price and volatility equations which we do not neglect.

8. CONCLUSIONS

The results of our study are that, after the at-the-money basis-point volatilities are scaled to be

equivalent, there is only a very small change in option prices for different exponentsx, both for the one-

factor and two-factor models. There still are significant differences in Greeks using more sophisticated

models, especially for out-of-the-money options. This implies that current pricing models are not

radically mispricing the markets.

Our studies point to contexts of markets well recognized by option traders to have significantly

different volatility behavior. Suppression of stochastic volatility in the one-factor model just leaks out

into stochasticity of parameters in the model, e.g., especially inx. Our studies show that the two-factor

exponentsx are reasonably faithful indicators defining these different contexts. By comparison, thex-

exponents in the two-factor fits are quite stable. As such, especially the two-factorx can be considered as

a “context indicator” over a longer time scale than other indicators typically used by traders.

The two-factor fits also exhibit differences due to theσ parameters, including theρ correlations, in

accord with the sense traders have about the nature of changing volatilities across this time period. When

stochastic volatility is properly treated, the two-factorx’s also are quite close to the BSx = 1.

Modern methods of developing multivariate nonlinear multiplicative Gaussian-Markovian systems

are quite important, as there are many such systems and the mathematics must be diligently exercised if

such models are to faithfully represent the data they describe. Similarly, sophisticated numerical

techniques, e.g., global optimization and path integration are important tools to carry out the modeling

and fitting to data without compromising the model, e.g., by unwarranted quasi-linear approximations.

Three quite different systems have benefited from this approach.

The large-scale modeling of neocortical interactions has benefited from the use of intuitive

constructs that yet are faithful to the complex algebra describing this multiple-scaled complex system.

For example, canonical-momenta indicators have been successfully applied to multivariate financial

markets.



Statistical Mechanics ... - 32 -  L Ingber & JK Wilson

It is clear that ASA optimization and PATHINT path-integral tools are very useful to develop the

algebra of statistical mechanics for a large class of nonlinear stochastic systems encountered in finance.

However, it also is clear that each system typically presents its own non-typical unique character and this

must be included in any such analysis. A virtue of this statistical mechanics approach and these

associated tools is they appear to be flexible and robust to handle quite different systems.
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FIGURE CAPTIONS

FIG. 1. (a) Comparison of Basis-Point Volatility (BPV), standard deviation of BPV (SDBPV), and

standard deviation of differenced BPV (SDDBPV), for Front and Back contracts. (b) Comparison of

standard deviation of differenced Basis-Point Volatility (SDDBPV) with and standard deviation of

differenced Black-Scholes Volatility (SDDBSV), for Front and Back contracts. The SDDBSV have been

scaled to the SDDBPV by multiplying them by the rounded average of the yields, i.e., 6.0. (c) Basis-

Point Implied Volatility (BPIV) of Front and Back contracts. (d) Standard deviation of differenced Basis-

Point Implied Volatility (SDDBPIV) of Front and Back contracts.

FIG. 2. (a)F(S, S0, S∞, x, y) for x = 1, the Black-Scholes case. The other parameters areS = 5,

S0 = 0. 5, S∞ = 20, y = 0. (b) F(S, S0, S∞, x, y) for x = 0, the normal distribution. (c)F(S, S0, S∞, x, y)

for x = −1. (d)F(S, S0, S∞, x, y) for x = 2.

FIG. 3. (a) Weekly two-month moving-averaged one-factor and two-factor exponents for ED

contract expiring in September 1999 during the period June 1998 through March 1999. (b) Weekly two-

month moving-averaged two-factor correlationρ for this same data. (c) Raw price data used in fits for the

above parameters. (d) Implied-volatility data used in fits for the above parameters.

FIG. 4. The means and standard deviations of the short-time differenced one-factor exponents.

FIG. 5. The short-time probability distribution at timeT = 0. 5 years forx = 1, the (truncated)

Black-Scholes distribution. The short-time probability distribution at timeT = 0. 5 years forx = 0, the

normal distribution. The short-time probability distribution at timeT = 0. 5 years forx = −1. The short-

time probability distribution at timeT = 0. 5 years forx = 2.

FIG. 6. A two-factor distribution evolved out toT = 0. 5 year forx = 0. 7.
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TABLE CAPTIONS

Table 1. Calculation of prices and Greeks are given for closed form BS (only valid for European

options), binomial tree CRREuropean, CRRAmerican, CRRvariant, and PATHINT. As verified by calculation,

the American option would not be exercised early, so the PATHINT results are identical to the European

option. The CRRAmerican differs somewhat from the CRREuropean due to the discrete nature of the

calculation. All CRR calculations include averaging over 300 and 301 iterations to minimize oscillatory

errors.
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Greek BS CRREuropean CRRAmerican CRRvariant PATHINT

Price 0.138 0.138 0.138 0.138 0.138

Delta 0.501 0.530 0.534 0.506 0.501

Gamma 1.100 1.142 1.159 1.116 1.100

Theta -0.131 -0.130 -0.132 -0.133 -0.131

Rho -0.0688 -0.0688 -0.0530 -0.0530 -0.0688

Ve ga 1.375 1.375 1.382 1.382 1.375


