
Chapter 9

Automated Internet Trading Based on
Optimized Physics Models of Markets

L. Ingber and R.P. Mondescu

We describe a real-time, internet-based S&P futures trading system,
including a description of general aspects of internet-mediated inter-
actions with electronic exchanges. Inner-shell stochastic nonlinear
dynamic models are developed, and Canonical Momenta Indicators
(CMI) are derived from a fitted Lagrangian used by outer-shell trad-
ing models dependent on these indicators. Recursive and adaptive
optimization using Adaptive Simulated Annealing (ASA) is used for
fitting parameters shared across these shells of dynamic and trading
models.

1 Introduction

Launching and exploiting a successful automated trading system im-
plies accomplishing two major tasks, of almost equal significance:
� designing and developing a robust trading model of markets of

interest,
� connecting the system to markets, addressing two problems

– the communications hardware infrastructure,
– the software interface.

To develop a robust and consistent model of markets, we should re-
mark that real-world problems are rarely solved in closed algebraic
form, yet methods must be devised to deal with this complexity to
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extract practical informations in finite time. This is indeed true in the
field of financial engineering, where time series of various financial
instruments reflect non-equilibrium, highly non-linear, possibly even
chaotic (Peters 1991) underlying processes. A further difficulty is the
huge amount of data necessary to be processed. Under these circum-
stances, to develop models and schemes for automated, profitable
trading is a non-trivial task.

Apparently, the connectivity task involves mostly a programming ef-
fort, where a host of technical tools may considerably simplify the
task. In practice an equal amount of work must be devoted to a proper
design of various software components and solving multiple hard-
ware problems, given the following constraints:
� necessity of accessing multiple markets.
� lack of a standard API (Application Programming Interface) for

accessing different exchanges.
� lack of an universal language of communication between financial

institutions.
� stringent reliability requirements posed on the communication in-

frastructure.

Currently, there are sustained efforts toward an unified, non-propri-
etary financial “electronic” language (FIX – Financial Information
Exchange – open protocol (FIX Protocol 2000)). FIX approach is to
define and promote a common set of types of messages, their for-
mat and the session-level interaction, for communicating securities
transactions between two parties, in a real-time electronic trading
environment.

1.1 Approaches

Detailed discussions pertinent to the theoretical model underlying
the trading system and computational aspects were published previ-
ously, see (Ingber and Mondescu 2001).
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Regarding the financial modeling aspect, in the context of this chap-
ter, it is important to stress that dealing with such complex systems
invariably requires modeling of dynamics, modeling of actions on
these dynamics, and algorithms to fit parameters in these models to
real data. We have elected to use methods of mathematical physics
for our models of the dynamics, artificial intelligence (AI) heuris-
tics for our models of trading rules acting on indicators derived from
our dynamics, and methods of sampling global optimization for fit-
ting our parameters. Too often there is confusion about how these
three elements are being used for a complete system. For example, in
the literature often there is discussion of neural net trading systems
or genetic algorithm trading systems. However, neural net models
(used for either or both models discussed here) also require some
method of fitting their parameters, and genetic algorithms must have
some kind of cost function or process specified to sample a parameter
space, and so on.

Some powerful methods have emerged during years, appearing from
at least two directions: One direction is based on inferring rules from
past and current behavior of market data leading to learning-based,
inductive techniques, such as neural networks, or fuzzy logic. An-
other direction starts from the bottom-up, trying to build physical
and mathematical models based on different economic prototypes.
In many ways, these two directions are complementary and a proper
understanding of their main strengths and weaknesses should lead to
synergetic effects beneficial to their common goals.

Among approaches in the first direction, neural networks already
have won a prominent role in the financial community. This is due
to their ability to handle large quantities of data and to uncover and
model nonlinear functional relationships between various combina-
tions of fundamental indicators and price data (Azoff 1994, Gately
1996).

In the second direction we can include models based on non-
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equilibrium statistical mechanics (Ingber 2000) fractal geometry
(Mandelbrot 1997), turbulence (Mantegna and Stanley 1996), spin
glasses and random matrix theory (Laloux et al. 1999), renormal-
ization group (Johansen et al. 1999), and gauge theory (Ilinsky and
Kalinin 1997). Although the very complex nonlinear multivariate
character of financial markets is recognized (Hull 2000), these ap-
proaches seem to have had a lesser impact on current quantitative
finance practice, although it is increasing becoming clear that this
direction can lead to practical trading strategies and models.

To bridge the gap between theory and practice, as well as to afford a
comparison with neural networks techniques, we focus on presenting
an effective trading system of S&P futures, anchored in the physical
principles of non-equilibrium statistical mechanics applied to finan-
cial markets (Ingber 1984, 2000).

Starting with nonlinear, multivariate, nonlinear stochastic differen-
tial equation descriptions of the price evolution of cash and fu-
tures indices, we build an algebraic cost function in terms of a La-
grangian. Then, a maximum likelihood fit to the data is performed us-
ing a global optimization algorithm, Adaptive Simulated Annealing
(ASA) (Ingber 1993a). As firmly rooted in field theoretical concepts,
we derive market canonical momenta indicators, and we use these
as technical signals in a recursive ASA optimization that tunes the
outer-shell of trading rules. We do not employ metaphors for these
physical indicators, but rather derive them directly from models fit to
data.

The outline of the chapter is as follows: Just below we briefly discuss
the optimization method and momenta indicators.

In Section 2 we discuss some general, technical elements related to
building an internet-based interface between the provider of financial
services (e.g., an exchange) and the client using an electronic trading
system.
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In the ensuing two sections we establish the theoretical framework
supporting our model, and the statistical mechanics approach to-
gether with the optimization method, respectively. In Section 5 we
detail the trading system, and in Section 6 we describe our results.
Our conclusions are presented in Section 7.

1.2 Optimization

Large-scale, non-linear fits of stochastic nonlinear forms to finan-
cial data require methods robust enough across data sets. (Just one
day, tick data for regular trading hours could reach 10,000-30,000
data points.) Simple regression techniques exhibit deficiencies with
respect to obtaining reasonable fits. They too often get trapped in lo-
cal minima typically found in nonlinear stochastic models of such
data. ASA is a global optimization algorithm that has the advantage
– with respect to other global optimization methods as genetic al-
gorithms, combinatorial optimization, and so on – not only to be
efficient in its importance-sampling search strategy, but to have the
statistical guarantee of finding the best optima (Ingber 1989, Ingber
and Rosen 1993). This gives some confidence that a global minimum
can be found, of course provided care is taken as necessary to tune
the algorithm (Ingber 1996a).

It should be noted that such powerful sampling algorithms also are
often required by other models of complex systems than those we
use here (Ingber 1993b). For example, neural network models have
taken advantage of ASA (Cohen 1994, Cozzio-Buëler 1995, Indiveri
et al. 1993), as have other financial and economic studies (Mayer et
al. 1996, Sakata and White 1998).

1.3 Indicators

In general, neural network approaches attempt classification and
identification of patterns, or try forecasting patterns and future evolu-
tion of financial time series. Statistical mechanical methods attempt
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to find dynamic indicators derived from physical models based on
general principles of non-equilibrium stochastic processes that re-
flect certain market factors. These indicators are used subsequently
to generate trading signals or to try forecasting upcoming data.

In this chapter, the main indicators are called Canonical Momenta
Indicators (CMI), as they faithfully mathematically carry the signif-
icance of market momentum, where the “mass” is inversely propor-
tional to the price volatility (the “masses” are just the elements of the
metric tensor in this Lagrangian formalism) and the “velocity” is the
rate of price changes.

The concept of momentum is at least intuitively appreciated by all
traders. Many traders use some algorithm to calculate the momenta
of markets they are trading, e.g., perhaps to use as supplemental in-
dicators to confirm other indicators to act on trades.

Markets increasingly are becoming inter-dependent, effectively
defining a larger collective multivariate market. Many traders ac-
count for such circumstances by at least following indicators of
other markets in addition to those they are explicitly trading. Clearly,
it would be beneficial to have accurate measures of such inter-
dependencies, beyond statistical correlations, to have indicators that
measure the importance of inter-dependencies of the dynamic evo-
lution of the markets. However, it also would be useful if such in-
formation could be presented in an understandable intuitive manner,
without altering any detailed content. Canonical momenta can sat-
isfy this wish-list, and a detailed application to trading is described
below.

2 Connection to Electronic Exchanges

The growth of internet as a communication infrastructure and the
exponential increase in computer power drastically altered the me-
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chanics of securities trading. Electronic matching of orders elimi-
nates market makers and brokers as intermediaries, allowing a vast
increase in the number of market participants and better terms for
financial execution of trading orders.

Despite more or less visible obstructions by the traditional players,
electronic exchanges appeared or traditional exchanges converted to
electronic ones (DTB – Germany, Matif – France, LIFFE – UK, Eu-
rex – Germany and Switzerland merged futures exchanges) and their
volume exploded (Burghardt 2001).

Intra-day price feeds, real-time streaming quotes (even order books –
commonly referred to as Level II quotes – (Archipelago 2001)) and
integrated trade systems are available at almost no cost, and compli-
cated models could be programmed and run by all market partici-
pants.

Sophisticated automated systems at large financial institutions could
browse a wealth of data and filtered it, based on various theoretical
models, in the search of the arbitrage opportunity.

All these developments have made more prominent the role and the
functionality of the interface connecting the trading system to the
provider of financial services (which include both data sources and
exchanges). By financial services we refer throughout to services re-
lated to trading (submission of orders, trading support or clearing
services) provided by an exchange or other financial institutions to
an end user client.

As a software application, a trading system has mainly two compo-
nents: the computational kernel and the connection API. We talk here
about the connection API at the client organization level. The API is
the software layer allowing a trading tool of the client, the trader, to
communicate with the software of the exchange or other provider of
financial services.
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Based on the data (prices, volume, time, various indicators) input and
on the theoretical model used, the computational kernel generates
the trading signals and sends them to the order execution module, a
component of the connection API.

The connection API must address two classes of problems:
1. Access to real-time price quotes.
2. Execution of the trade order.

We remark that above and in what follows we choose to use – for
clarity purposes – the term connection API as a rather broad group-
ing of functional units that may not necessarily reflect a more con-
strained software engineering point of view. For example, in most
cases the data access component requires a separate, independent
development effort from the order execution module.

A more complex, commercial version of a connection API should
have certain features, among which we list
� enables universal access to multiple exchanges with unique API,
� allows proprietary trading tools or other systems to connect to the

order execution system,
� provides compatibility with multiple financial instruments

(stocks, bonds, futures, and so on),
� provides order routing service with real-time updates and various

execution types and order qualifiers,
� provides back-office services (trade confirmations, profit/loss

reports, execution reports, full order book update, settlement
prices),

� provides market news services (market opening/closing an-
nouncements, market updates, instruments status/specifications
changes),

� provides queries service: range of trades, range of prices, product
specification changes.
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Collecting and processing real-time price data could be done using
3rd party applications (two random examples: Reuters Triarch real-
time services, ESignal data services (eSignal 2001)), or by directly
writing into the API provided by the exchange, e.g., the Chicago
Mercantile Exchange (CME) Market Data API – MDAPI 1.0 – or
the Eurex Values/Gate 3.0 API (Eurex 2001).

Usually, most vendors provide integrated solutions, essentially trad-
ing applications that combine both the data and the execution sys-
tems. These applications are usually black-box systems that does not
offer a lower level control of data, trading signals and trading orders,
imperative requirements for building a proprietary trading tool.

We focus next on describing the technological and design aspects
common to the connection API, with emphasis on the order routing
component of the API. We choose to do so because it is more com-
plex than the data access module and less details are available to a
general audience.

2.1 Internet Connectivity: Overview

In general, connecting a trading system directly to one (or multiple)
exchanges is a process requiring support and control from the ded-
icated technology and marketing departments of the exchange. It is
reasonably understood that the trading system cannot be launched
live without passing several quality control check-points, imposed
both by in-house and exchange Quality Assurance (QA) depart-
ments.

The evolution of the trading application from concept to production
tool could be subscribed to the following milestones:
� initial software development (concept, design, proto-type),
� advanced development,
� technical certification with sub-stages

– functional testing,
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– failover/recovery testing,
– stress testing,

� network certification,
� pre-production testing

– connectivity testing,
– clearing cycle (end-to-end) testing.

Associated with these development stages, various requirements
(hardware and software) must be met within the automated trading
environment. We describe these requirements below.

2.2 Internet Connectivity: Hardware
Requirements

Reliable data feeds are critical components of a successful auto-
mated trading system. Internet access to exchanges through 3rd party
applications/intermediaries and standard communication infrastruc-
ture (modems, cable modems, DSL, and so on) is possible, but due
to reliability concerns and higher probability of connection break-
downs, it is limited for trading systems operating at longer time
scales (daily, weekly trades) and lower trading volumes, or to per-
sonal trading.

When trading time scale decreases to minutes or seconds and large
transactions, direct access to exchanges, with dedicated lines is re-
quired.

For both data access and order routing, the development, initial test-
ing and certification phases require at least an ISDN line. The pro-
duction stage necessitates frame relay (e.g., 256k AT&T) and ISDN
connections as main communication backbone, and back-up lines,
respectively.

Routers (e.g., Cisco 800, 2610) and possibly, a separate diagnostic
line, are also required, as well as some 3rd party software applica-
tions (e.g., Reuters TIBCO).
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All this equipment is usually installed by exchange personnel in
collaboration hardware manufacturers technical support. Costs and
timelines for hardware deployment should be factored in when eval-
uating capabilities of a trading model.

2.3 Internet Connectivity: Software
Requirements

Besides design aspects, important considerations are the choice of
language and development platform. At this moment, preponderantly
for trading engines requiring fast execution, Java still does not offer
the required speed and reliability. The languages of choice remain
C++ and C.

Although at the client level, the computational kernel could be de-
veloped on any software platform, the need to interface with the API
provided by exchanges limits considerably the platform choices: cur-
rently, Windows NT and Sun Solaris are the preferred operating sys-
tems, with some exchanges supporting also IBM AIX.

Moreover, commercial development environments (as Microsoft Vi-
sual Studio or Sun Workshop) and sometimes 3rd party libraries
(e.g., Rogue Wave (RogueWave 2001)) are also necessary (at least
when reaching certification and production levels), as only these are
usually supported by exchanges.

2.4 API Order Execution Module: Components
and Functionality

In terms of design, the connection API must insulate the computa-
tional kernel of various code changes operated by outside providers
(e.g., exchanges) to which the system is connected. Function of
specific interests, various design patterns (factory, template, bridge,
façade, adapter (Gamma et al. 1994)) could be applied.
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The basic order of events necessary to be handled by the order rout-
ing and execution component of the connection API is:
1. initialization (instantiate various object factories, register with the

server to receive responses, and so on),
2. connect to exchange API server (open session),
3. authenticate connection (login),
4. subscribe to a particular instrument (or multiple instruments), or

to a particular field of a instrument (e.g., bid prices for a certain
stock),

5. create and submit orders,
6. terminate communication with the exchange server and discon-

nect.

After opening the trading session, the connection API should insure
(when queried) that connection status and execution reports are avail-
able.

Various types of order (market order, stop order, limit order, stop
limit order, market if touched = the opposite of a stop order) and
types of time-in-force (we list here only those suitable for automated
trading) must be handled by the order routing module. The particular
order type and time-in-force type applied in actual trading are chosen
function of the characteristics of the trading model:
� fill-or-kill, a limit order, which is canceled if not filled immedi-

ately and completely,
� fill-and-kill, a limit order that, if not filled completely, all remain-

ing quantity is cancelled,
� good-till-cancel, an order to be held until filled or until is can-

celled.

Note that not all of these above qualifiers are necessarily supported
by the exchange of interest.

The main task of the order execution API is to create orders. An order
will contain several fields, among which we list the most important:
� order identification number,
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� exchange identification code,
� instrument identifier,
� order type (market, limit, stop,...),
� execution type (fill-and-kill, and so on),
� price (for stop, limit, stop-limit orders),
� quantity,
� time of entry.

The order execution API component sends and receives (generally
FIX-compliant) messages. We quote several of them below:
� single order (new order for a single instrument),
� cancel request (request to cancel an order),
� cancel/replace request (a request to cancel a previous order and

replace it with a new order),
� status request (a request for status of an order),
� heartbeat (a periodic signal send by exchange server to verify that

connection is alive),
� reject (the order was rejected by the exchange server),
� cancel reject (the cancel request send by the client was rejected

by the exchange server),
� execution report.

Logic for taking appropriate action function of the message (or com-
bination of messages) received must be implemented at the API
level, in connection with signals produced by the computational en-
gine.

Finally, from a development point of view, correct processing of pre-
vious categories of messages is essential. In particular some points
need attention:
� the cancel/replace logic, which may depend on the exchange (e.g.,

with the CME FIX API the client needs to send a status request to
check the state of an order),

� the closing of a session (should be done gracefully, otherwise lost
messages or damaged session accounting could occur),
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� error handling (all possible errors/exceptions should be dealt
properly),

� connection management (a crucial component of a connection
API. The API should dynamically monitor and react to connec-
tivity problems).

3 Models

3.1 Langevin Equations for Random Walks

The use of Brownian motion as a model for financial systems is gen-
erally attributed to Bachelier (Bachelier 1900), though he incorrectly
intuited that the noise scaled linearly instead of as the square root
relative to the random log-price variable. Einstein is generally cred-
ited with using the correct mathematical description in a larger phys-
ical context of statistical systems. However, several studies imply
that changing prices of many markets do not follow a random walk,
that they may have long-term dependences in price correlations, and
that they may not be efficient in quickly arbitraging new informa-
tion (Jensen 1978, Mandelbrot 1971, Taylor 1982). A random walk
for returns, rate of change of prices over prices, is described by a
Langevin equation with simple additive noise �, typically represent-
ing the continual random influx of information into the market.

�� � �� � ���

�� �
��

��
� (1)

� ���� 	�� �� � ����� ����� 	�� Æ��� ����

where � and � are constants, and � is the logarithm of (scaled) price,
���� � ��	 �
 ����
 �� � ����. Price, although the most dramatic
observable, may not be the only appropriate dependent variable or
order parameter for the system of markets (Brown et al. 1983). This
possibility has also been called the “semi-strong form of the efficient
market hypothesis” (Jensen 1978).
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The generalization of this approach to include multivariate nonlinear
non-equilibrium markets led to a model of statistical mechanics of
financial markets (SMFM) (Ingber 1984).

3.2 Adaptive Optimization of �� Models

Our S&P model for the evolution of futures price � is

�� � 
��� �� ����

� �� 	 � �� (2)

� ����� ������ 	 � ��Æ��� ����

where the exponent � of � is one of the dynamical parameters to be
fit to futures data together with 
 and �.

We have used this model in several ways to fit the distribution’s
volatility defined in terms of a scale and an exponent of the inde-
pendent variable (Ingber 2000).

A major component of our trading system is the use of adaptive op-
timization, essentially constantly retuning the parameters of our dy-
namic model each time new data is encountered in our training, test-
ing and real-time applications. The parameters �
� �� are constantly
tuned using a quasi-local simplex code (Barabino et al. 1980, Nelder
and Mead 1964) included with the ASA (Adaptive Simulated An-
nealing) code (Ingber 1993a).

We have tested several quasi-local codes for this kind of trading prob-
lem, versus using robust ASA adaptive optimizations, and the faster
quasi-local codes seem to work quite well for adaptive updates after
a zeroth order parameters set is found by ASA (Ingber 1996b,c).
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4 Statistical Mechanics of Financial
Markets (SMFM)

4.1 Statistical Mechanics of Large Systems

Aggregation problems in nonlinear nonequilibrium systems typically
are “solved” (accommodated) by having new entities/languages de-
veloped at these disparate scales in order to efficiently pass informa-
tion back and forth between scales. This is quite different from the
nature of quasi-equilibrium quasi-linear systems, where thermody-
namic or cybernetic approaches are possible. These thermodynamic
approaches typically fail for nonequilibrium nonlinear systems.

Many systems are aptly modeled in terms of multivariate differential
rate-equations, known as Langevin equations (Haken 1983),

��� � �� � 
��� �
�� �� � �� � � � ����� � �� � � � � ���

��� �
���

��
� (3)

� ����� 	�� �� � ������ ��
�

���� 	�� Æ��
�

Æ��� ����

where �� and 
��� are generally nonlinear functions of mesoscopic
order parameters ��, � is an index indicating the source of fluctu-
ations, and � � �. The Einstein convention of summing over re-
peated indices is used. Vertical bars on an index, e.g., ���, imply no
sum is to be taken on repeated indices. The “microscopic” index �
relates to the typical physical nature of fluctuations in such statisti-
cal mechanical systems, wherein the variables � are considered to be
aggregated from finer scales relative to the “mesoscopic” variables
� .

Via a somewhat lengthy, albeit instructive calculation, outlined in
several other papers (Ingber 1984, 1991, Ingber et al.1991), involv-
ing an intermediate derivation of a corresponding Fokker-Planck or
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Schrödinger-type equation for the conditional probability distribu-
tion 
 
�����������, the Langevin rate Eq. (3) is developed into
the more useful probability distribution for �� at long-time macro-
scopic time event ���� � �� � ��� � ��, in terms of a Stratonovich
path-integral over mesoscopic Gaussian conditional probabilities
(Cheng 1972, Dekker 1979, Graham 1978, Langouche et al.1979,
1980). Here, macroscopic variables are defined as the long-time limit
of the evolving mesoscopic system.

The corresponding Schrödinger-type equation is (Graham 1978,
Langouche et al. 1979)

�


��
�
�

�
����

�


 ����� � ���
 ��� � ��

���
�

� Æ��
��� 
�
��

� �

�� � �� �
�

�
Æ��
��

�

� 
�
�
����� (4)


� � ���� �
�
� � ��

���
�

This is properly referred to as a Fokker-Planck equation when � � �.
Note that although the partial differential Eq. (4) contains informa-
tion regarding �� as in the stochastic differential Eq. (3), all refer-
ences to � have been properly averaged over. I.e., 
��� in Eq. (3) is an
entity with parameters in both microscopic and mesoscopic spaces,
but � is a purely mesoscopic variable, and this is more clearly re-
flected in Eq. (4). In the following, we often drop superscripts on
� for clarity, with the understanding that � represents the vector
����.

The calculation of the long-time evolution of these distributions most
often defies any algebraic solution, and special techniques must be
utilized. This is required, for example, to calculate many kinds of fi-
nancial instruments, e.g., bond prices, options, derivatives, and so on.
People have developed numerical algorithms for each representation,
i.e., for the Langevin, Fokker-Planck and the Lagrangian probability
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representations. Methods to treat the latter are developed around the
path-integral formalism:

The path integral representation can be written in terms of the pre-
point discretized Lagrangian �, further discussed below (Graham
1978, Langouche et al.1980, 1982),
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�
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�
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�

����

� � ���������� (5)

Mesoscopic variables have been defined as �� in the Langevin
and Fokker-Planck representations, in terms of their development
from the microscopic system labeled by �. The entity ���� , is a
bona fide metric of this space (Graham 1978). Short-time “fore-
cast” of data points is realized using the most probable path equation
(Dekker 1980)

���

��
� �� � ��
�����
����

�

����� (6)

In the literature on economics, there appears to be sentiment to de-
fine Eq. (3) by the It
�, rather than the Stratonovich prescription. It
is true that It
� integrals have Martingale properties not possessed by
Stratonovich integrals (Oksendal 1998) which leads to risk-neural
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theorems for markets (Harrison and Kreps 1979, Pliska 1997), but
the nature of the proper mathematics – actually a simple transfor-
mation between these two discretizations – should eventually be
determined by proper aggregation of relatively microscopic mod-
els of markets. It should be noted that virtually all investigations
of other physical systems, which are also continuous time mod-
els of discrete processes, conclude that the Stratonovich interpre-
tation coincides with reality, when multiplicative noise with zero
correlation time, modeled in terms of white noise � �, is properly
considered as the limit of real noise with finite correlation time
(Gardiner 1983). The path integral succinctly demonstrates the dif-
ference between the two: The It
� prescription corresponds to the pre-
point discretization of �, wherein � ����� 	 ���	��� ����	� and
���� 	 ���	�. The Stratonovich prescription corresponds to the
midpoint discretization of �, wherein � ����� 	 ���	��� ����	�
and ����	 �

�
����	�������	��. In terms of the functions appear-

ing in the Fokker-Planck Eq. (4), the It
� prescription of the prepoint
discretized Lagrangian �, Eq. (5), is relatively simple, albeit decep-
tively so because of its nonstandard calculus. In the absence of a non-
phenomenological microscopic theory, the difference between a It
�
prescription and a Stratonovich prescription is simply a transformed
drift (Langouche et al. 1982).

There are several other advantages to Eq. (5) over Eq. (3). Extrema
and most probable states of ��,
�� �, are simply derived by a
variational principle, similar to conditions sought in previous studies
(Merton 1973). In the Stratonovich prescription, necessary, albeit not
sufficient, conditions are given by

Æ�� � ��� � �� ���� � ��

�� ���� � �� ����

����

� �� �� ���

����

� (7)

For stationary states, ��� � �, and � ���� ��� � � defines 

��� �, where the bars identify stationary variables; in this case,

the macroscopic variables are equal to their mesoscopic counterparts.
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Note that �� is not the stationary solution of the system, e.g., to Eq. (4)
with �
��� � �. However, in some cases (Ingber 1985), �� is a defi-
nite aid to finding such stationary states. Many times only properties
of stationary states are examined, but here a temporal dependence
is included. E.g., the ��� terms in � permit steady states and their
fluctuations to be investigated in a nonequilibrium context. Note that
Eq. (7) must be derived from the path integral, Eq. (5), which is at
least one reason to justify its development.

4.2 Algebraic Complexity Yields Simple Intuitive
Results

It must be emphasized that the output of this formalism is not con-
fined to complex algebraic forms or tables of numbers. Because �
possesses a variational principle, sets of contour graphs, at different
long-time epochs of the path-integral of 
 over its variables at all
intermediate times, give a visually intuitive and accurate decision-
aid to view the dynamic evolution of the scenario. For example, this
Lagrangian approach permits a quantitative assessment of concepts
usually only loosely defined.
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where �� are the variables and � is the Lagrangian. These physical
entities provide another form of intuitive, but quantitatively precise,
presentation of these analyses. For example, daily newspapers use
some of this terminology to discuss the movement of security prices.
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In this chapter, the �� serve as canonical momenta indicators (CMI)
for these systems.

4.2.1 Derived Canonical Momenta Indicators (CMI)

The extreme sensitivity of the CMI gives rapid feedback on changes
in trends as well as the volatility of markets, and therefore are good
indicators to use for trading rules (Ingber 1996b). A time-locked
moving average provides manageable indicators for trading signals.
This current project uses such CMI developed as a byproduct of the
ASA fits described below.

4.2.2 Intuitive Value of CMI

In the context of other invariant measures, the CMI transform co-
variantly under Riemannian transformations, but are more sensitive
measures of activity than other invariants such as the energy density,
effectively the square of the CMI, or the information which also ef-
fectively is in terms of the square of the CMI (essentially integrals
over quantities proportional to the energy times a factor of an ex-
ponential including the energy as an argument). Neither the energy
or the information give details of the components as do the CMI. In
oscillatory markets the relative signs of such activity can be quite
important.

The CMI present single indicators for each member of a set of corre-
lated markets, “orthogonal” in the defined metric space. Each indica-
tor is a dynamic weighting of short-time differenced deviations from
drifts (trends) divided by covariances (risks). Thus the CMI also give
information complementary to just trends or standard deviations sep-
arately.

4.3 Correlations

In this chapter we report results of our one-variable trading model.
However, it is straightforward to include multi-variable trading mod-
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els in our approach, and we have done this, for example, with coupled
cash and futures S&P markets.

Correlations between variables are modeled explicitly in the La-
grangian as a parameter usually designated �. This section uses a
simple two-factor model to develop the correspondence between the
correlation � in the Lagrangian and that among the commonly writ-
ten Wiener distribution ��.

Consider coupled stochastic differential equations for futures � and
cash �:

�� � �� �������� 
�� ���������� � (9a)

�� � ���������� 
������������ � (9b)

� ��
 	 � �� � � ������ (9c)

� ��
��������
�� 	 � ��Æ��� ���� � � �� (9d)

� ��
��������
�� 	 � ���Æ��� ���� � �� �� (9e)

where � � 	 denotes expectations with respect to the multivariate
distribution.

These can be rewritten as Langevin equations (in the It
� prepoint
discretization)
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where "� and "� are independent [0,1] Gaussian distributions.

The equivalent short-time probability distribution, 
 , for the above
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set of equations is
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�, the metric in �����-space, is the inverse of the covariance matrix,
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The CMI indicators are given by the formulas
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4.4 ASA Outline

The algorithm Adaptive Simulated Annealing (ASA) fits short-time
probability distributions to observed data, using a maximum like-
lihood technique on the Lagrangian. This algorithm has been de-
veloped to fit observed data to a theoretical cost function over a
�-dimensional parameter space (Ingber 1989), adapting for varying
sensitivities of parameters during the fit. The ASA code can be ob-
tained at no charge, via WWW from http://www.ingber.com/ or via
FTP from ftp.ingber.com (Ingber 1993a).
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4.4.1 General Description

It helps to visualize the problems presented by such complex systems
as a geographical terrain. For example, consider a mountain range,
with two “parameters,” e.g., along the NorthSouth and EastWest
directions. We wish to find the lowest valley in this terrain. ASA
approaches this problem similar to using a bouncing ball that can
bounce over mountains from valley to valley. We start at a high “tem-
perature,” where the temperature is an ASA parameter that mimics
the effect of a fast moving particle in a hot object like a hot molten
metal, thereby permitting the ball to make very high bounces and
being able to bounce over any mountain to access any valley, given
enough bounces. As the temperature is made relatively colder, the
ball cannot bounce so high, and it also can settle to become trapped
in relatively smaller ranges of valleys.

We imagine that our mountain range is aptly described by a “cost
function.” We define probability distributions of the two directional
parameters, called generating distributions since they generate possi-
ble valleys or states we are to explore. We define another distribution,
called the acceptance distribution, which depends on the difference
of cost functions of the present generated valley we are to explore
and the last saved lowest valley. The acceptance distribution decides
probabilistically whether to stay in a new lower valley or to bounce
out of it. All the generating and acceptance distributions depend on
“temperatures.”

Simulated annealing (SA) was developed in 1983 to deal with highly
nonlinear problems (Kirkpatrick et al. 1983), as an extension of a
Monte-Carlo importance-sampling technique developed in 1953 for
chemical physics problems. In 1984 (Geman and Geman 1984), it
was established that SA possessed a proof that, by carefully control-
ling the rates of cooling of temperatures, it could statistically find
the best minimum, e.g., the lowest valley of our example above.
This was good news for people trying to solve hard problems which
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could not be solved by other algorithms. The bad news was that
the guarantee was only good if they were willing to run SA for-
ever. In 1987, a method of fast annealing (FA) was developed (Szu
and Hartley 1987), which permitted lowering the temperature expo-
nentially faster, thereby statistically guaranteeing that the minimum
could be found in some finite time. However, that time still could
be quite long. Shortly thereafter, Very Fast Simulated Reannealing
(VFSR) was developed in 1987 (Ingber 1989), now called Adaptive
Simulated Annealing (ASA), which is exponentially faster than FA.

ASA has been applied to many problems by many people in many
disciplines (Ingber 1993b, 1996a, Wofsey 1993). The feedback of
many users regularly scrutinizing the source code ensures its sound-
ness as it becomes more flexible and powerful.

4.4.2 Multiple Local Minima

Our criteria for the global minimum of our cost function is minus
the largest profit over a selected training data set (or in some cases,
this value divided by the maximum drawdown). However, in many
cases this may not give us the best set of parameters to find profitable
trading in test sets or in real-time trading. Other considerations such
as the total number of trades developed by the global minimum ver-
sus other close local minima may be relevant. For example, if the
global minimum has just a few trades, while some nearby local min-
ima (in terms of the value of the cost function) have many trades and
was profitable in spite of our slippage factors, then the scenario with
more trades might be more statistically dependable to deliver profits
across testing and real-time data sets.

Therefore, for the outer-shell global optimization of training sets,
we have used an ASA OPTION, MULTI MIN, which saves a user-
defined number of closest local minima within a user-defined resolu-
tion of the parameters. We then examine these results under several
testing sets.
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5 Trading System

5.1 Use of CMI

As the CMI formalism carries the relevant information regarding the
prices dynamics, we have used it as a signal generator for an auto-
mated trading system for S&P futures.

While currently we are integrating fast-response CMI signals into the
trading model, next we discuss averaged CMI signals characterizing
longer time scales.

Based on a previous work (Ingber 1996c) applied to daily closing
data, the overall structure of the trading system consists in 2 layers,
as follows: We first construct the “short-time” Lagrangian function
in the It
� representation (with the notation introduced in Section 3.3)
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��
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(14)

with � the post-point index, corresponding to the one factor price
model

�� � ����� �� ������� (15)

where �� and � 	 � are taken to be constants, � ��� is the S&P future
price, and �� is the standard Gaussian noise with zero mean and unit
standard deviation. We perform a global, maximum likelihood fit to
the whole set of price data using ASA. This procedure produces the
optimization parameters ��� ��� that are used to generate the CMI.
One computational approach was to fix the diffusion multiplier � to
1 during training for convenience, but used as free parameters in the
adaptive testing and real-time fits. Another approach was to fix the
scale of the volatility, using an improved model,
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� � 	

��
������ (16)



Automated Internet Trading 331

where � now is calculated as the standard deviation of the price in-
crements $�����
�, and � � 	 is just the average of the prices.

As already remarked, to enhance the CMI sensitivity and response
time to local variations (across a certain window size) in the distri-
bution of price increments, the momenta are generated applying an
adaptive procedure, i.e., after each new data reading another set of
��� � �� parameters are calculated for the last window of data, with
the exponent � – a contextual indicator of the noise statistics – fixed
to the value obtained from the global fit.

The CMI computed in this manner are fed into the outer shell of the
trading system, where an AI-type optimization of the trading rules is
executed, using ASA once again.

The trading rules are a collection of logical conditions among the
CMI, prices and optimization parameters that could be window sizes,
time resolutions, or trigger thresholds. Based on the relationships be-
tween CMI and optimization parameters, a trading decision is made.
The cost function in the outer shell is either the overall equity or the
risk-adjusted profit (essentially the return). The inner and outer shell
optimizations are coupled through some of the optimization param-
eters (e.g., time resolution of the data, window sizes), which justifies
the recursive nature of the optimization.

Next, we describe in more details the concrete implementation of this
system.

5.2 Data Processing

The CMI formalism is general and by construction permits us to treat
multivariate coupled markets. In certain conditions (e.g., shorter time
scales of data), and also due to superior scalability across different
markets, it is desirable to have a trading system for a single instru-
ment, in our case the S&P futures contracts that are traded electron-
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ically on Chicago Mercantile Exchange (CME). The focus of our
system was intra-day trading, at time scales of data used in gener-
ating the buy/sell signals from 10 to 60 secs. In particular, we here
give some results obtained when using data having a time resolu-
tion $� of 55 secs (the time between consecutive data elements is
55 secs). This particular choice of time resolution reflects the set of
optimization parameters that have been applied in actual trading.

It is important to remark that a data point in our model does not
necessarily mean an actual tick datum. For some trading time scales
and for noise reduction purposes, data is pre-processed into sam-
pling bins of length $� using either a standard averaging procedure
or spectral filtering (e.g., wavelets, Fourier) of the tick data. Alterna-
tively, the data can be defined in block bins that contain disjoint sets
of averaged tick data, or in overlapping bins of widths$� that update
at every $�� � $�, such that an effective resolution $�� shorter than
the width of the sampling bin is obtained. We present here work in
which we have used disjoint block bins and a standard average of the
tick data with time stamps falling within the bin width.

In Figures 1 and 2 we present examples of S&P futures data sampled
with 55 secs resolution. We remark that there are several time scales
– from minutes to one hour – at which an automated trading system
might extract profits.

Figure 1 illustrates that the profitable regions are prominent even for
data representing a relatively flat market period. I.e., June 20 shows
an uptrend region of about 1 hour 20 minutes and several short and
long trading domains between 10 minutes and 20 minutes.

Figure 2 illustrates the sustained short trading region of 1.5 hours
and several shorter long and short trading regions of about 10–20
minutes.

In both situations, there are a larger number of opportunities at time
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Figure 1. Futures and cash data, contract ESU0 June 20: (solid line) –
futures; (dashed line) – cash.

resolutions smaller than 5 minutes.

The time scale at which we sample the data for trading is itself a pa-
rameter that is extracted from the optimization of the trading rules
and of the Lagrangian cost function Eq. (14). This is one of the cou-
pling parameters between the inner- and the outer-shell optimiza-
tions.

5.3 Inner-Shell Optimization

A cycle of optimization runs has three parts, training and testing,
and finally real-time use – a variant of testing. Training consists in
choosing a data set and performing the recursive optimization, which
produces optimization parameters for trading. In our case there are
six parameters: the time resolution $� of price data, the length of



334 L. Ingber and R.P. Mondescu

06-22 12:56:53 06-22 13:56:30 06-22 14:56:07

TIME (mm-dd hh-mm-ss)

1450

1455

1460

1465

1470

1475

1480

1485

S
&

P

Futures

Cash

ESU0 data June 22
time resolution = 55 secs

Figure 2. Futures and cash data, contract ESU0 June 22: (solid line) –
futures; (dashed line) – cash.

window # used in the local fitting procedures and in computation
of moving averages of trading signals, the drift � � , volatility coeffi-
cient � and exponent � from Eq. (15), and a multiplicative factor �
necessary for the trading rules module, as discussed below.

The optimization parameters computed from the training set are ap-
plied then to various test sets and final profit/loss analyses are pro-
duced. Based on these, the best set of optimization parameters are
chosen to be applied in real-time trading runs. We remark once again
that a single training data set could support more than one profitable
sets of parameters and can be a function of the trader’s interest and
the specific market dynamics targeted (e.g., short/long time scales).
The optimization parameters corresponding to the global minimum
in the training session may not necessarily represent the parameters
that led to robust profits across real-time data.
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The training optimization occurs in two inter-related stages. An
inner-shell maximum likelihood optimization over all training data
is performed. The cost function that is fitted to data is the effective
action constructed from the Lagrangian Eq. (14) including the pre-
factors coming from the measure element in the expression of the
short-time probability distribution Eq. (11). This is based on the fact
(Langouche et al. 1982) that in the context of Gaussian multiplicative
stochastic noise, the macroscopic transition probability 
 ��� ��� �� ���
to start with the price � ��� �
��� at ���� �
��� and reach the price
� �� �
� at ��� �
�$ is determined by the short-time Lagrangian Eq.
(14),
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with ��
 � �
� �
��. Recall that the main assumption of our model is
that price increments (or the logarithm of price ratios, depending on
which variables are considered independent) could be described by
a system of coupled stochastic, non-linear equations as in Eq. (9a).
These equations are deceptively simple in structure, yet depending
on the functional form of the drift coefficients and the multiplicative
noise, they could describe a variety of interactions between financial
instruments in various market conditions (e.g., constant elasticity of
variance model (Cox and Ross 1976), stochastic volatility models,
and so on). In particular, this type of models include the case of
Black-Scholes price dynamics (� � �).

In the system presented here, we have applied the model from Eq.
(15). The fitted parameters were the drift coefficient �� and the ex-
ponent �. In the case of a coupled futures and cash system, besides
the corresponding values of �� and � for the cash index, another pa-
rameter, the correlation coefficient � as introduced in Eq. (9a), must
be considered.
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5.4 Trading Rules (Outer-Shell) Recursive
Optimization

In the second part of the training optimization, we calculate the CMI
and execute trades as required by a selected set of trading rules based
on CMI values, price data or combinations of both indicators.

Recall that three external shell optimization parameters are defined:
the time resolution $� of the data expressed as the time interval be-
tween consecutive data points, the window length # (in number of
time epochs or data points) used in the adaptive calculation of CMI,
and a numerical coefficient � that scales the momentum uncertainty
discussed below.

At each moment a local refit of �� and � over data in the local win-
dow # is executed, moving the window � across the training data
set and using the zeroth order optimization parameters � � and � re-
sulting from the inner-shell optimization as a first guess. It was found
that a faster quasi-local code is sufficient for computational purposes
for these adaptive updates. In more complicated models, ASA can
be successfully applied recursively, although in real-time trading the
response time of the system is a major factor that requires attention.

All expressions that follow can be generalized to coupled systems
in the manner described in Section 3. Here we use the one factor
nonlinear model given by Eq. (15). At each time epoch we calculate
the following momentum related quantities:
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where we have used � �� 	� � as implied by Eqs. (15) and (14).
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In the previous expressions, �� is the CMI, ��
� is the neutral line

or the momentum of a zero change in prices, and $�� is the uncer-
tainty of momentum. The last quantity reflects the Heisenberg prin-
ciple, as derived from Eq. (15) by calculating

$� � � ���� � �� 	�� 	�
�� �� �


���

$�� $� � �� (19)

where all expectations are in terms of the exact noise distribution,
and the calculation implies the It
� approximation (equivalent to
considering non-anticipative functions). Various moving averages
of these momentum signals are also constructed. Other dynamical
quantities, as the Hamiltonian, could be used as well. (By analogy to
the energy concept, we found that the Hamiltonian carries informa-
tion regarding the overall trend of the market, giving another useful
measure of price volatility.)

Regarding the practical implementation of the previous relations for
trading, some comments are necessary. In terms of discretization, if
the CMI are calculated at epoch �, then ��
 � �
 � �
��, ��
 �
�
 � �
�� � $�, and all prefactors are computed at moment � � � by
the It
� prescription (e.g., �� � � �� �


��). The momentum uncertainty
band $�� can be calculated from the discretized theoretical value
Eq. (18), or by computing the estimator of the standard deviation
from the actual time series of �� .

There are also two ways of calculating averages over CMI values:
One way is to use the set of local optimization parameters �� � � ��
obtained from the local fit procedure in the current window # for
all CMI data within that window (local-model average). The sec-
ond way is to calculate each CMI in the current local window #
with another set ��� � �� obtained from a previous local fit window
measured from the CMI data backwards # points (multiple-models
averaged, as each CMI corresponds to a different model in terms of
the fitting parameters ��� � ��).
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The last observation is that the neutral line divides all CMI in two
classes: long signals, when �� 	 ��

� , as any CMI satisfying this
condition indicates a positive price change, and short signals when
�� � ��

� , which reflects a negative price change.

After the CMI are calculated, based on their meaning as statistical
momentum indicators, trades are executed following a relatively sim-
ple model: Entry in and exit from a long (short) trade points are de-
fined as points where the value of CMIs is greater (smaller) than a
certain fraction of the uncertainty band � $�� (�� $�� ), where
� is the multiplicative factor mentioned in the beginning of this sub-
section. This is a choice of a symmetric trading rule, as � is the same
for long and short trading signals, which is suitable for volatile mar-
kets without a sustained trend, yet without diminishing too severely
profits in a strictly bull or bear region.

Inside the momentum uncertainty band, one could define rules to
stay in a previously open trade, or exit immediately, because by its
nature the momentum uncertainty band implies that the probabilities
of price movements in either direction (up or down) are balanced.
From another perspective, this type of trading rule exploits the re-
laxation time of a strong market advance or decline, until a trend
reversal occurs or it becomes more probable.

Other sets of trading rules are certainly possible, by utilizing not only
the current values of the momenta indicators, but also their local-
model or multiple-models averages. A trading rule based on the max-
imum distance between the current CMI data ��


 and the neutral line
��

� shows faster response to markets evolution and may be more
suitable to automatic trading in certain conditions.

Stepping through the trading decisions each trading day of the train-
ing set determined the profit/loss of the training set as a single value
of the outer-sell cost function. As ASA importance-sampled the
outer-shell parameter space �$��#���, these parameters are fed
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into the inner shell, and a new inner-shell recursive optimization cy-
cle begins. The final values for the optimization parameters in the
training set are fixed when the largest net profit (calculated from the
total equity by subtracting the transactions costs defined by the slip-
page factor) is realized. In practice, we have collected optimization
parameters from multiple local minima that are near the global mini-
mum (the outer-shell cost function is defined with the sign reversed)
of the training set.

The values of the optimization parameters �$��#��� � � � �� �� re-
sulting from a training cycle are then applied to out-of-sample test
sets. During the test run, the drift coefficient � � and the volatility co-
efficient � are refitted adaptively as described previously. All other
parameters are fixed. We have mentioned that the optimization pa-
rameters corresponding to the highest profit in the training set may
not be the sufficiently robust across test sets. Then, for all test sets,
we have tested optimization parameters related to the multiple min-
ima (i.e., the global maximum profit, the second best profit, and so
on) resulting from the training set.

We performed a bootstrap-type reversal of the training-test sets (re-
peating the training runs procedures using one of the test sets, in-
cluding the previous training set in the new batch of test sets), fol-
lowed by a selection of the best parameters across all data sets. This
is necessary to increase the chances of successful trading sessions in
real-time.

6 Results

6.1 Alternative Algorithms

In the previous sections we noted that there are different combina-
tions of methods of processing data, methods of computing the CMI
and various sets of trading rules that need to be tested – at least in a
sampling manner – before launching trading runs in real-time:
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1. Data can be preprocessed in block or overlapping bins, or
forecasted data derived from the most probable transition path
(Dekker 1980) could be used as in one of our most recent models.

2. Exponential smoothing, wavelets or Fourier decomposition can be
applied for statistical processing. We presently favor exponential
moving averages.

3. The CMI can be calculated using averaged data or directly with
tick data, although the optimization parameters were fitted from
preprocessed (averaged) price data.

4. The trading rules can be based on current signals (no average is
performed over the signal themselves), on various averages of the
CMI trading signals, on various combination of CMI data (mo-
menta, neutral line, uncertainty band), on symmetric or asymmet-
ric trading rules, or on mixed price-CMI trading signals.

5. Different models (one and two-factors coupled) can be applied to
the same market instrument, e.g., to define complementary indi-
cators.

The selection process evidently must consider many specific eco-
nomic factors (e.g., liquidity of a given market), besides all other
physical, mathematical and technical considerations. In the work
presented here, as we tested our system and using previous expe-
rience, we focused toward S&P500 futures electronic trading, us-
ing block processed data, and symmetric, local-model and multiple-
models trading rules based on CMI neutral line and stay-in condi-
tions.

6.2 Trading System Design

The design of a successful electronic trading system is complex as it
must incorporate several aspects of a trader’s actions that sometimes
are difficult to translate into computer code. Three important features
that must be implemented are factoring in the transactions costs, de-
vising money management techniques, and coping with execution
deficiencies.
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Generally, most trading costs can be included under the “slippage
factor,” although this could easily lead to poor estimates. Given that
the margin of profits from exploiting market inefficiencies are thin,
a high slippage factor can easily result in a non-profitable trading
system. In our situation, for testing purposes we used a $35 slippage
factor per buy & sell order, a value we believe is rather high for an
electronic trading environment, although it represents less than three
ticks of a mini-S&P futures contract. (The mini-S&P is the S&P
futures contract that is traded electronically on CME.) This higher
value was chosen to protect ourselves against the bid-ask spread, as
our trigger price (at what price the CMI was generated) and execution
price (at what price a trade signaled by a CMI was executed) were
taken to be equal to the trading price. (We have changed this aspect
of our algorithm in later models.) The slippage is also strongly in-
fluenced by the time resolution of the data. Although the slippage is
linked to bid-ask spreads and markets volatility in various formulas
(Kaufman 1998), the best estimate is obtained from experience and
actual trading.

Money management was introduced in terms of a trailing stop condi-
tion that is a function of the price volatility, and a stop-loss threshold
that we fixed by experiment to a multiple of the mini-S&P contract
value ($200). It is tempting to tighten the trailing stop or to work
with a small stop-loss value, yet we found – as otherwise expected –
that higher losses occurred as the signals generated by our stochastic
model were bypassed.

Regarding the execution process, we have to account for the response
of the system to various execution conditions in the interaction with
the electronic exchange: partial fills, rejections, uptick rule (for eq-
uity trading), and so on. Except for some special conditions, all these
steps must be automated.
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6.3 Some Explicit Results

Typical CMI data in Figures 3 and 4 (obtained from real-time trad-
ing after a full cycle of training-testing was performed) are related
to the price data in Figures 1 and 2. We have plotted the fastest (55
secs apart) CMI values �� , the neutral line ��

� and the uncertainty
band $�� . All CMI data were produced using the optimization pa-
rameters set �%%��"�� &&���"'�� ���%� of the second-best net profit
obtained with a training set based on the March data of the ESM0
contract (mini-S&P June 2000 contract). We recall the meaning of
the optimization parameters from 5.4: the first factor is the frequency
of CMI signals (or time-step between consecutive CMIs), the second
parameter is the width in time-step units of the time-window used
for local statistics, and the third parameter is the scaling factor of the
momentum uncertainty.

06-20 10:46:16 06-20 11:45:53 06-20 12:45:30 06-20 13:45:07 06-20 14:44:44

TIME (mm-dd hh-mm-ss)
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C
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I
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 (CMI Futures)

ΠF

0
 (neutral CMI)

∆ΠF
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Canonical Momenta Indicators (CMI)

time resolution = 55 secs

Figure 3. CMI data, real-time trading June 20: (solid line) – CMI; (dashed
line) – neutral line; (dotted line) – uncertainty band.
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Figure 4. CMI data, real-time trading, June 22: (solid line) – CMI; (dashed
line) – neutral line; (dotted line) – uncertainty band.

Although the CMIs exhibit an inherently ragged nature and oscillate
around a zero mean value within the uncertainty band – the width
of which is decreasing with increasing price volatility, as the uncer-
tainty principle would also indicate – time scales at which the CMI
average or some persistence time are not balanced about the neutral
line.

These characteristics, which we try to exploit in our system, are bet-
ter depicted in Figures 5 and 6.

One set of trading signals, the local-model average of the neutral line
� ��

� 	 and the uncertainty band multiplied by the optimization
factor � � ���%, and centered around the theoretical zero mean
of the CMI, is represented versus time. Note entry points in a short
trading position (� ��

� 	 	 � $�� ) at around 10:41 (Figure 5
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Figure 5. CMI trading signals, real-time trading June 20: (dashed line) –
local-model average of the neutral line; (dotted line) – uncertainty band
multiplied by the optimization parameter� � ����.

in conjunction with S&P data in Figure 1) with a possible exit at
11:21 (or later), and a first long entry (� ��

� 	 � �� $�� ) at
12:15. After 14:35, a stay long region appears (� ��

� 	� �), which
indicates correctly the price movement in Figure 1.

In Figure 6 corresponding to June 22 price data from Figure 2, a first
long signal is generated at around 12:56 and a first short signal is
generated at 14:16 that reflects the long downtrend region in Figure
2. Due to the averaging process, a time lag is introduced, reflected
by the long signal at 12:56 in Figure 4, related to a past upward trend
seen in Figure 2; yet the neutral line relaxes rather rapidly (given the
55-second time resolution and the window of 88 � 1.5 hour) toward
the uncertainty band. A judicious choice of trading rules, or avoiding
standard averaging methods, helps in controlling this lag problem.
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Figure 6. CMI trading signals, real-time trading June 22: (dashed line) –
local-model average of the neutral line; (dotted line) – uncertainty band
multiplied by the optimization parameter� � ����.

Recall that the trading rules presented are symmetric (the long and
short entry/exit signals are controlled by the same � factor), and we
apply a stay-long condition if the neutral-line is below the average
momentum � �� 	� � and stay-short if � ��

� 		 �. The drift ��

and volatility coefficient � are refitted adaptively and the exponent �
is fixed to the value obtained in the training set. Typical values are
�� � �
����( # ���%�, � � �
���� # ���(�. During the local fit, due
to the shorter time scale involved, the drift may increase by a factor
of ten, and � � 
���� # ����.

We note that the most robust optimization factors – in terms of max-
imum cumulative profit resulted for all test sets – do not correspond
to the maximum profit in the training sets: For the local-model rules,
the optimum parameters are �%%� &&� ���%�, and for the multiple mod-
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els rules the optimum set is �)%� *�� ����, both realized by a four-
days training set from the March 2000 mini-S&P contract (Ingber
and Mondescu 2001).

Other observations are that, for the data presented here, the multiple-
models averages trading rules consistently performed better and are
more robust than the local-model averages trading rules. The number
of trades is similar, varying between 15 and 35 (eliminating cumu-
lative values smaller than 10 trades), and the time scale of the local
fit is rather long in the 30 minutes to 1.5 hour range. In the current
set-up, this extended time scale implies that is advisable to deploy
this system as a trader-assisted tool.

An important factor is the average length of the trades. For the type
of rules presented in this work, this length is of several minutes, up to
one hour, as the time scale of the local fit window mentioned above
suggested.

Related to the length of a trade is the length of a winning long/short
trade in comparison to a losing long/short trade. Our experience in-
dicates that a ratio of 2:1 between the length of a winning trade and
the length of a losing trade is desirable for a reliable trading system.
Here, using the local-model trading rules seems to offer an advan-
tage, although this is not as clear as one would expect. More details
regarding the data and results obtained with the trading system are
given in our earlier work (Ingber and Mondescu 2001).

7 Conclusions

7.1 Main Features

The main stages of building and testing this system are summarized
in the followiong lines:
1. We developed a multivariate, nonlinear statistical mechanics
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model of S&P futures and cash markets, based on a system of
coupled stochastic differential equations.

2. We constructed a two-stage, recursive optimization procedure us-
ing methods of ASA global optimization: An inner-shell extracts
the characteristics of the stochastic price distribution and an outer-
shell generates the technical indicators and optimize the trading
rules.

3. We trained the system on different sets of data and retained the
multiple minima generated (corresponding to the global maxi-
mum net profit realized and the neighboring profit maxima).

4. We tested the system on out-of-sample data sets, searching for
most robust optimization parameters to be used in real-time
trading. Robustness was estimated by the cumulative profit/loss
across diverse test sets, and by testing the system against a
bootstrap-type reversal of training-testing sets in the optimization
cycle.

Modeling the market as a dynamical physical system makes pos-
sible a direct representation of empirical notions as market mo-
mentum in terms of CMI derived naturally from our theoretical
model. We have shown that other physical concepts as the uncer-
tainty principle may lead to quantitative signals (the momentum
uncertainty band $�� ) that captures other aspects of market dy-
namics and which can be used in real-time trading.

5. We presented and discussed the main aspects of developing an
internet-based interface (API) for connecting a proprietary trading
system to an exchange.

7.2 Summary

We have presented an internet-enabled trading system with its two
components: the connection API and the computational trading en-
gine.

The trading engine is composed of an outer-shell trading-rule model
and an inner-shell nonlinear stochastic dynamic model of the market
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of interest, S&P500. The inner-shell is developed adhering to the
mathematical physics of multivariate nonlinear statistical mechanics,
from which we develop indicators for the trading-rule model, i.e.,
canonical momenta indicators (CMI). We have found that keeping
our model faithful to the underlying mathematical physics is not a
limiting constraint on profitability of our system; quite the contrary.

An important result of our work is that the ideas for our algorithms,
and the proper use of the mathematical physics faithful to these al-
gorithms, must be supplemented by many practical considerations
en route to developing a profitable trading system. For example,
since there is a subset of parameters, e.g., time resolution parame-
ters, shared by the inner- and outer-shell models, recursive optimiza-
tion is used to get the best fits to data, as well as developing multiple
minima with approximate similar profitability. The multiple minima
often have additional features requiring consideration for real-time
trading, e.g., more trades per day increasing robustness of the sys-
tem, and so on. The nonlinear stochastic nature of our data required
a robust global optimization algorithm. The output of these param-
eters from these training sets were then applied to testing sets on
out-of-sample data. The best models and parameters were then used
in real-time by traders, further testing the models as a precursor to
eventual deployment in automated electronic trading.

We have used methods of statistical mechanics to develop our inner-
shell model of market dynamics and a heuristic AI type model for our
outer-shell trading-rule model, but there are many other candidate
(quasi-)global algorithms for developing a cost function that can be
used to fit parameters to data, e.g., neural nets, fractal scaling models,
and so on. To perform our fits to data, we selected an algorithm,
Adaptive Simulated Annealing (ASA), that we were familiar with,
but there are several other candidate algorithms that likely would
suffice, e.g., genetic algorithms, tabu search, and so on.

We have shown that a minimal set of trading signals (the CMI, the
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neutral line representing the momentum of the trend of a given time
window of data, and the momentum uncertainty band) can generate a
rich and robust set of trading rules that identify profitable domains of
trading at various time scales. This is a confirmation of the hypothe-
sis that markets are not efficient, as noted in other studies (Brock et
al.1992, Ingber 1984, 1996c).

7.3 Future Directions

Although this chapter focused on trading of a single instrument,
the futures S&P 500, the code we have developed can accommo-
date trading on multiple markets. For example, in the case of tick-
resolution coupled cash and futures markets, which was previously
prototyped for inter-day trading (Ingber 1996b,c),the utility of CMI
stems from three directions:
1. The inner-shell fitting process requires a global optimization of

all parameters in both futures and cash markets.
2. The CMI for futures contain, by our Lagrangian construction, the

coupling with the cash market through the off-diagonal correla-
tion terms of the metric tensor. The correlation between the fu-
tures and cash markets is explicitly present in all futures variables.

3. The CMI of both markets can be used as complimentary technical
indicators for trading in futures market.

Several near term future directions are of interest:
� finalizing the production-level order execution API,
� orienting the system toward shorter trading time scales (10-30

secs) more suitable for electronic trading,
� introducing fast response “averaging” methods and time scale

identifiers (exponential smoothing, wavelets decomposition),
� identifying mini-crashes points using renormalization group tech-

niques,
� investigating the use of CMI in pattern-recognition based trading

rules,
� exploring the use of forecasted data evaluated from most probable

transition path formalism.
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7.4 Standard Disclaimer

We must emphasize that there are no claims that all results are pos-
itive or that the present system is a safe source of riskless profits.
There as many negative results as positive, and a lot of work is nec-
essary to extract meaningful information.
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