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1. Introduction 

 

Although high-frequency trading (HFT) is a relatively new development in financial markets, 

it has become a primary force in market pricing. A voluminous scientific literature has been 

published to understand the nature of these forces (Ait-Sahalia & Saglam, 2017; Avellaneda 

& Stoikov, 2008; Baradely et al., 2018; Cartea et al., 2014; Cont et al., 2011; Cont et al., 2009; 

Fodra &  Labadie, 2012; Gueant, 2017; Huang  et al., 2014). 

 

Since HFT by definition implies fast trading, this has generally prevented complex 

sophisticated algorithms from being applied to trading in real time. This paper shows how 

complex algorithms can be developed, with parameters optimized by using simulated 

annealing, to produce code that can be used in real time. 

 

In this context, this paper applies a previously developed statistical mechanics of financial 

markets (SMFM) (Ingber, 1984; Ingber, 1990; Ingber, 1996a; Ingber, 1996b; Ingber, 2000; 

Ingber, 2010; Ingber, 2017a; Ingber et al., 2001; Ingber & Mondescu, 2001; Ingber  & 

Mondescu, 2003; Ingber et al., 1991; Ingber & Wilson, 1999; Ingber & Wilson, 2000), here 

applied to developing joint bid-ask probabilities to high-frequency data, using two methods 

of fitting price data or returns data to (a) the distribution and (b) fitting the returns. The 

returns are also developed into closed-form algebra using the path-integral formalism. 

 

The path-integral algebra behind the algorithms used is introduced in Section 2. This Section 

also details how three equivalent methods of treating stochastic systems are developed: (a) 

path integrals, (b) sets of stochastic differential equations, and (c) Fokker-Planck or 

Chapman-Kolmogorov partial differential equations. 

 

Section 3 describes the author’s numerical optimization algorithm, Adaptive Simulated 

Annealing (ASA). 

 

The algebraic and numerical algorithms used here have also been applied to systems in other 

disciplines, e.g., neuroscience (Ingber, 1991; Ingber, 1992; Ingber, 1996c; Ingber, 1997; 

Ingber, 1998a; Ingber, 2006; Ingber, 2009a; Ingber, 2009b; Ingber, 2012a; Ingber, 2012b; 

Ingber, 2015; Ingber, 2018a; Ingber, 2018b; Ingber, 2018c; Ingber & Nunez, 1995; Ingber &  

Nunez, 2010; Ingber et al., 2014; Ingber et al., 1996; Nunez et al., 2013) and combat 

simulations (Ingber, 1993a; Ingber, 1998b) utilizing the ASA C-code (Ingber, 1993b; Ingber, 

1996d; Ingber, 2012c). 
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As was true for these other disciplines, here too the path-integral methodology is used to 

develop canonical momenta indicators (CMI), useful to forecast the direction and strengths 

of these variables. 

 

Section 4 describes the development of the forecast code fit to data, using the algebraic 

language Maxima (maxima.sourceforge.net) to develop C code which is used both to fit data 

to parameters, as well as to run very fast in real time for HFT. The fitting process uses a 

sampling code developed for this project, to effectively sample and run a random subset of 

the data. 

 

Section 5 is the Conclusion.  

 

2. Path Integral 

  

2.1. Path Integral in Stratonovich (Midpoint) Representation 

 

The path integral in the Feynman (midpoint) representation can be developed in time-

dependent nonlinear systems (Langouche et al., 1979; Langouche et al., 1982; Schulman, 

1981). The Einstein summation convention is often used wherein repeated indices signify 

summation; bars     imply no summation. 
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A Riemannian-curvature potential     is induced for dimension   .   is the dimensionality 

of the space being considered. Boundary conditions may enter as a “potential”  .    in    

implies a prepoint evaluation.  

 

2.2. Path Integral in Ito (Prepoint) Representation 

 

An Ito prepoint discretization for the same probability distribution   gives a simpler algebraic 

form than the above midpoint discretization, 
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This Ito Lagrangian   does not satisfy a variational principle, and often finer meshes are 

required. 
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2.3. Three Approaches Mathematically Equivalent 

 

Three basic different approaches are mathematically equivalent:  

(a) Fokker-Planck/Chapman-Kolmogorov partial-differential equations,  

(b) Langevin coupled stochastic-differential equations,  

(c) Lagrangian or Hamiltonian path-integrals.  

 

The path-integral approach is useful to define intuitive physical variables from the 

Lagrangian   in terms of variables   : 

 

            
  

         
 (12) 

 

           
  

               
    

 (13) 

  

       
  

   
 (14) 

 

           
  

   
 

 

  

  

         
 (15) 

 

The Momenta are used here as canonical momenta indicators (CMI). 

 

Differentiation, especially of noisy systems, introduces more noise, and the path-integral 

often gives superior numerical performance because integration is a smoothing process. 

 

2.3.1. Stochastic Differential Equation (SDE) 

 

The Stratonovich midpoint discretized Langevin equations are given in terms of the Wiener 

process    , or equivalently Gaussian noise          . 
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where    represents Gaussian white noise. 

 

As used here, this Langevin representation of a set of stochastic differential equations (SDE) 

is a convenient starting point to define the  -moments of the distribution.  

 

2.3.2. Partial differential equation (PDE) 

 

The Fokker-Planck or Chapman-Kolmogorov partial differential equation is: 
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                (27) 

 

   replaces    in the SDE if the Ito (prepoint discretized) calculus is used.  

 

2.4. PATHINT Applications 

 

Path integrals and PATHINT have been applied across several disciplines, including combat 

simulations (Ingber et al., 1991), neuroscience (Ingber, 1994; Ingber, 2017b; Ingber & Nunez, 

1995; Ingber & Nunez, 2010), finance (Ingber, 2000; Ingber, 2016; Ingber, 2017a; Ingber, 

2017b; Ingber, 2017c; Ingber et al., 2001; Ingber & Wilson, 2000), and other nonlinear 

systems (Ingber, 1995; Ingber, 1998b; Ingber et al., 1996).  

 

2.5. PATHINT/qPATHINT Code 

 

qPATHINT is an N-dimensional code developed to calculate the propagation of quantum 

variables in the presence of shocks. Many systems propagate in the presence of sudden 

changes of state dependent on time. qPATHINT is based on the classical-physics code, 

PATHINT. Applications have been made to SMNI and Statistical Mechanics of Financial 

Markets (SMFM) (Ingber, 2017a; Ingber, 2017b; Ingber, 2017c). 

 

The PATHINT C code of about 7500 lines of code using the GCC C-compiler was rewritten to 

use double complex variables instead of double variables, and further developed for 

arbitrary N dimensions, creating qPATHINT. The outline of the code is described here for 

classical or quantum systems, using generic coordinates   (Ingber, 2016; Ingber, 2017a;  

Ingber, 2017c). 

 

The distribution (probabilities for classical systems, wave-functions for quantum systems) is 

numerically approximated to a high degree of accuracy using a histogram procedure, 

developing sums of rectangles of height    and width     at points   .  

 

2.5.1. PATHINT/qPATHINT Histograms 

 

A one-dimensional path-integral in variable   in the prepoint Ito discretization is developed 

in terms of the kernel/propagator  , for each of its intermediate integrals, as 
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This yields 
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    is a banded matrix representing the Gaussian nature of the short-time probability 

centered around the drift.  

 

2.5.2. Meshes for [q]PATHINT 

 

Explicit dependence of   on time   can be included. The mesh     is strongly dependent on 

diagonal elements of the diffusion matrix, e.g., 

 

                  (33) 

 

By considering the contributions to the first and second moments, conditions on the time 

and variable meshes can be derived.    can be measured by the diffusion divided by the 

square of the drift. 

 

These mesh considerations constrain the forecast time    if consistency with the Action   is 

required, where 

        (34) 
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3. Adaptive Simulated Annealing (ASA) Algorithm 

  

3.1. Importance Sampling 

 

Nonlinear and/or stochastic systems often require importance-sampling algorithms to scan 

or to fit parameters. Methods of simulated annealing (SA) are often used. 

 

The ASA code is open-source software, and can be downloaded free and used without any 

registration at https://www.ingber.com/#ASA (Ingber, 1993b; Ingber, 2012c). 

 

This algorithm fits empirical data to a cost function over a  -dimensional parameter space, 

adapting for varying sensitivities of parameters during the fit (Ingber, 1989).  

 

3.2. Outline of ASA Algorithm 

 

For parameters 
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     (39) 

 

This ASA algorithm is faster than fast Cauchy annealing, which has schedule        , and 

much faster than Boltzmann annealing, which has schedule          .  

 

3.3. ASA Applications 

 

 The ASA code (Ingber, 1993b) and the original Very Fast Simulated Reannealing (VFSR) code 

(Ingber, 1989) have been used by many researchers, including the author, in a range of 

disciplines, as referenced in the ASA-README.pdf that comes with the code, or in other 

papers in the ingber.com archive. 

 

4. Forecast Code 

 

Tick data was cleaned on-the-fly in C code, since this is a practical real-time consideration. 

The data was volume-weighted, and level-weighted by 0.9, using 20 levels each of bid and 

ask; the last level was weighted by            . 

 

It is clear that in many HFT markets such as the one used for this study, competitive traders’ 

tactics that “game” the book of bids and asks cause the volume at different levels to be 

much more volatile than the prices per se. 

 

At first, both prices   and returns   of bids and asks were fit. The returns are simple. 

 

                   (40) 

 

Since the trends are for the first entitites to be swallowed by such markets, making them 

useless for trading, the ASA fits had to work longer for fits with prices than with returns, so 

returns were used for most of the runs. 

 

4.1. Analytic Returns 

 

The path integral formalism permits an analytic calculation of the most probable state 

(Dekker, 1980), 

                          
     (41) 
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 4.2. MAXIMA to C Code 

 

The 2-factor functional forms used, with ask as    and bid as   , are indexed here by  , 

without the Einstein convention, 

 

            
  (42) 
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   ̂ 
      ̂ 

     (44) 

 

Where the parameters                  are fit to the data. Note that these simple functional 

forms, especially after inverses of the covariance matrix are taken, form Padè approximates, 

ratios of polynomials, known to be quite robust functional forms to fit data. 

 

The cost function used is the effective Action, 

 

                                 (45) 

 

     the analytic expression above for returns can be calculated using the algebraic language 

Maxima. Since such expressions can be about 1000 characters (without spaces), this is 

advisable. 

 

It is straightforward to convert Maxima output to Fortran code, but not so easy to covert to 

C. Previous projects have used f2c from netlib.org to compile mixed C and Fortran code, but 

here the main issue is that C requires powers to use the prefix operator-function pow(), 

whereas Maxima uses postfix operators. This was circumvented simply by writing all powers 

as multiple factors with different names, converting to Fortran, then renaming these the 

same after the calculations.  

 

4.3. Dynamic Memory 

 

Arrays for books of data over a day or more require 10’s of megabytes of memory. Static 

arrays that size crashes C code, so dynamic memory using calloc() was used.  
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4.4. Sampling Code 

 

It is not necessary to use all tick data to get very good fits. Instead, a modification of ASA 

subroutines that calculate random states was used to randomly sample the data that is 

already volume-weighted and level-weighted. It was found that a sample size of 100K gave 

as good results as a sample size of several million for a day of BitMEX data. This random 

sample then was used for the ASA cost function calculations that ran over the sample for 

each generated state.  

 

4.5. Windows of Data 

 

The calculated distribution at any point is dependent on at least 2 points of weighted bid-ask 

data, and the calculation takes into account correlations and dynamics inherent in the 

functional form of the drifts and diffusions. 

 

Therefore, the best use of this approach is to use narrow and wide windows for forecasting 

[Ingber & Mondescu (2001)]. Although similar to a standard practice of using windows of raw 

data, the result is a different than would be calculated just using of raw incoming data (also 

volume-weighted and level-weighted), since results include most probable correlated future 

behavior of the market. 

 

If      is fit directly, then the derived return equations were only accurate to a give   , e.g., 

about 0.1 sec, in agreement with the expected mesh used in PATHINT as described above, so 

instead, returns were directly fit to future return data, typically requiring a few million ASA 

generated states, by “looking ahead” to the next    point, Of course, PATHINT could be used 

to fold over the short-time distribution for many secs (as has been done in other systems), 

but most likely this would be too slow in the context of HFT. 

 

If the returns are fit directly to the data, then just about any   , ranging from 0.1 sec to 5 sec 

give the same forecast value for given current data (returns are transformed back into prices 

— 6 significant figures), since a realistic set of fitted drifts and diffusion matrices can have 

parameters slip some from their ideal-   range to still get good fits at another   , and then 

the probability calculation at any given point just reflects essentially the same distribution. 

 

4.6.    Library 

 

A    library is easily created, within a desired range of   ’s that are “reasonably” close to the 

ideal-  , by doing multiple ASA fits to return data. This defines a library of probabilities that 
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can be used as described here, yielding a range of choices to be made during HFT, e.g., as 

required to take into account latencies of trades actually being posted.  

 

4.7. Updating Parameters 

 

Fitted parameters can be updated overnight with new ASA runs. Alternatively, e.g., if there is 

a sudden change in context of the market and if sufficient recent data of the new context is 

available, the fast modified Nelder-Mead simplex code that comes with the ASA code 

typically used to efficiently gain some precision in fits, can be used to quickly update the 

parameters. 

 

4.8. CMI 

 

The forecast also includes the CMI. However, similar to limitations in fitting     , which 

cannot be fit directly to the returns data for any   , here too the forecast CMI at a different 

   than ideal-   need to have more ASA generated states for additional precision to get 

stable CMI (which often are useful guides on upcoming directions and strengths of bids, ask, 

midprices, etc.).  

 

4.9. Volatility Risk 

 

The risk associated with the probability distributions were straightforwardly calculated from 

the covariance matrix     
. A quick measure is its determinant  .  

 

4.10. Additional Functional Complexity 

 

Additional functional complexity, i.e., more terms added to the drifts and covariance matrix 

were added, but not much seemed to have been gained. 

 

4.11. 3-factor Model 

 

A 3-factor code of bid-ask-trades could have been processed the same way as the 2-factor 

bid-ask code, but it seemed dynamics were captured quite well by the 2-factor code, so only 

2-factor runs were further developed. 
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4.12. Data 

 

The actual format of the BitMEX data used may be considered proprietary, so no description 

is given in this paper. 

 

5. Conclusion 

 

A 2-factor probability distribution of bid-ask tick data was developed using Maxima to 

further develop C code. After parameters of the 2-factor drifts and diffusion matrix were fit, 

very fast calculations of narrow and wide windows of data are processed, which are useful 

for high-frequency trading. 

 

This paper thereby shows how complex algorithms may be used in HFT, using open-source 

tools like Maxima and ASA.  
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