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Statistical mechanical aids to calculating term structure models

Lester Ingber
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and
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Recent work in statistical mechanics has developed new analytical and numerical techniques to
solve coupled stochastic equations. This paper describes application of the very fast simulated re-
annealing and path-integral methodologies to the estimation of the Brennan and Schwartz two-factor
term-structure (time-dependent) model of bond prices. It is shown that these methodologies can be
utilized to estimate more complicatedn-factor nonlinear models. Applications to other systems are
stressed.
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1. INTRODUCTION
In this paper we present an alternative methodology of very fast simulated re-annealing (VFSR) [1]

to compute the parameters of term-structure models, here applied to the evolution of interest rates. The
term “term-structure” here is equivalent to “time-dependent,” wherein stochastic differential rate-
equations are used to model these financial systems. It is also shown that the VFSR methodology is
capable of handling complicatedn-factor non-linear models. The advantages of using the simulated
annealing methodology are: (1) Global minima in parameter space are relatively more certain than with
regression fitting. (2) All parameters, including parameters in the noise, are simultaneously and equally
treated in the fits, i.e., different statistical methods are not being used to estimate the deterministic
parameters, then to go on to estimate noise parameters. (3) Boundary conditions on the variables can be
explicitly included in the fitting process, a process not included in standard regression fits. (4) We can
efficiently extend our methodology to developn-state models, including higher order nonlinearities.

We also present an alternative method of calculating the evolution of Fokker-Planck-type equations,
here in the context of describing the evolution of bond prices. Our particular non-Monte Carlo path-
integral technique has proven to be extremely accurate and efficient for a variety of nonlinear
systems [2,3]. To mention a few advantages: (1) A variable mesh is calculated in terms of the underlying
nonlinearities. (2) Initial conditions (i.c) and boundary conditions (b.c.) typically are more easily
implemented with integral, rather than with differential, equations, e.g., by using the method of images.
(3) Integration is inherently a ‘‘smoothing’’ process, whereas differentiation is a ‘‘sharpening’’ process.
This means that we can handle ‘‘stiff’’ and nonlinear problems with more ease.

2. CURRENT MODELS OF TERM STRUCTURE
There are several term-structure models of bond pricing which use interest rates as proxy

variables [4-12]. For specificity, here we consider the Brennan-Schwartz (BS) model, which is developed
in the variables of short- and long-term interest rates. These interest rates are assumed to follow a joint
Wiener stochastic process,

dr = β1(r, l, t)dt + η 1(r, l, t)dz1 ,

dl = β2(r, l, t)dt + η 2(r, l, t)dz2 , (1)

wherer and l are the short- and long-term rates, respectively.β1 and β2 are the expected instantaneous
rates of change in the short-term and long-term rates respectively.η 1 and η 2 are the instantaneous
standard deviations of the processes.dz1 anddz2 are Wiener processes, with expected values of zero and
variance ofdt with correlation coefficientρ. That is,

E[dz1] = E[dz2] = 0 ,

E[dz2
1] = E[dz2

2] = dt , E[dz1dz2] = ρdt , (2)

whereE[. ] ≡ < . > is the expectation with respect to the joint Wiener process.

BS simplified and reduced this system to

dr = ((a1 + b1(l − r)))dt + rσ1dz1 ,

dl = l(a2 + b2r + c2l)dt + lσ2dz2 , (3)

where{a1, b1, a2, b2, c2} are parameters to be estimated.

Using methods of stochastic calculus [8], BS further derived a partial differential equation for bond
prices as the maturity date is approached.

∂
∂τ

B = ((−r + f r ∂
∂r

+ f l ∂
∂l

+ grr ∂
∂r2

+ grl ∂
∂r∂l

+ gll ∂
∂l2

))B

= AB , (4)

where the coefficients{ f , g} depend onr andl, τ = T − t for t calendar time andT the time of maturity,
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andA can be considered as a differential operator onB.

It may help to appreciate the importance of the BS methodology by discretizing the above partial
differential equation forB, in a ‘‘mean-value’’ limit. That is, at a given calendar timet indexed bys,
noting that∂/∂τ = −∂/∂t, take

0 = f r ∂Bs

∂r
= f l ∂Bs

∂l
,

0 = grr ∂Bs

∂r2
= grl ∂Bs

∂r∂l
= gll ∂Bs

∂l2
,

Bs − Bs+1 = −rs Bs . (5)

This yields the popular expectations-hypothesis spot-interest estimate of bond prices, working backwards
from maturity,

Bs = (1 + rs)
−1Bs+1 . (6)

The important generalization afforded by BS is to include information aboutr andl and treat them
as stochastic variables with drifts and diffusions. Then, this discretized treatment yields

Bs rl = (1 − As rlr ′l′)
−1Bs+1 r ′l′ , (7)

where the operator inverse of the differential operatorA has been formally written, and its dependence on
intermediate values ofr ′ andl′ has been explicitly portrayed. Their discretized calculation of their partial
differential equation, and our discretized calculation of the path-integral representation of this model,
essentially are mathematical and numerical methods of calculating this evolution ofBs.

3. DEVELOPMENT OF MATHEMATICAL METHODOLOGY

3.1. Background
The BS equations are of the more general form

dr/dt = fr (r, l) +
i
Σ ĝi

r (r, l)η i ,

dl/dt = fl(r, l) +
i
Σ ĝi

l(r, l)η i , (8)

where the ˆg’s and f ’s are general nonlinear algebraic functions of the variablesr andl. These equations
represent differential limits of discretized stochastic difference equations, e.g., Wiener noise
dW → η dt [13]. The resulting stochastic differential equations (s.d.e.’s) are referred to as Langevin
equations [13-18]. Thef ’s are referred to as the (deterministic) drifts, and the square of the ˆg’s are
related to the diffusions (fluctuations or volatilities). In fact, the statistical mechanics can be developed
for any number of variables, not just two. Theη ’s are sources of Gaussian-Markovian noise, often
referred to as ‘‘white noise.’’ The inclusion of the ˆg’s, called ‘‘multiplicative’’ noise, recently has been
shown to very well mathematically and physically model other forms of noise, e.g., shot noise, colored
noise, dichotomic noise [19-22]. Finite-jumps diffusions also can be included [23].

These new methods of nonlinear statistical mechanics only recently have been applied to complex
large-scale physical problems, demonstrating that observed data can be described by the use of these
algebraic functional forms. Success was gained for large-scale systems in neuroscience, in a series of
papers on statistical mechanics of neocortical interactions [24-29], and in nuclear physics [30,31]. This
methodology has been used for problems in combat analyses [3,32-35]. These methods are also
suggested for financial markets [36,37].

The utility of these algebraic functional forms goes further beyond their being able to fit sets of
data. There is an equivalent representation to the Langevin equations, called a ‘‘path-integral’’
representation for the long-time probability distribution of the variables. This short-time probability
distribution is driven by a ‘‘Lagrangian,’’ which can be thought of as a dynamic algebraic ‘‘cost’’
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function. The path-integral representation for the long-time distribution possesses a variational principle,
which means that simple graphs of the algebraic cost-function give a correct intuitive view of the most
likely states of the variables, and of their statistical moments, e.g., heights being first moments (likely
states) and widths being second moments (uncertainties). Like a ball bouncing about a terrain of hills and
valleys, one can quickly visualize the nature of dynamically unfoldingr andl states.

Especially because we are trying to mathematically model sparse and poor data, different drift and
diffusion algebraic functions can give approximately the same algebraic cost-function when fitting short-
time probability distributions to data. The calculation of long-time distributions permits a clear choice of
the best algebraic functions, i.e., those which best follow the data through a predetermined long epoch of
trading. Afterwards, if there are closely competitive algebraic functions, they can be more precisely
assessed by calculating higher algebraic correlation functions from the probability distribution.

The mathematical representation most familiar to other modelers is the system of stochastic rate
equations, often referred to as Langevin equations. From the Langevin equations, other models may be
derived, such as the times-series model and the Kalman filter method of control theory, quite popular in
economics. However, in the process of this transformation, the Markovian description typically is lost by
projection onto a smaller state space [38,39].

3.2. Path-Integral Lagrangian Representation
Consider a multivariate system with variance a general nonlinear function of the variables. The

Einstein summation convention helps to compact the equations, whereby repeated indices in factors are to
be summed over. The Itoˆ (prepoint) discretization for a system of stochastic differential equations is
defined by

ts ∈ [ts, ts + ∆t] ≡ [ts, ts+1] ,

M(ts) = M(ts) ,

dM(ts)/dt = M(ts+1) − M(ts) .  (9)

The stochastic equations are then written as

dMG /dt = f G + ĝG
i η i ,

i = 1,. . . , Ξ ,

G = 1,. . . , Θ . (10)

The operator ordering (of the∂/∂MG operators) in the Fokker-Planck equation corresponding to this
discretization is

∂P

∂t
= VP +

∂(−gG P)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ ,

gG = f G +
1

2
ĝG′

i
∂ĝG

i

∂MG′ ,

gGG′ = ĝG
i ĝG′

i . (11)

where a ‘‘potential’’V is present in some systems.

The Lagrangian corresponding to this Fokker-Planck and set of Langevin equations may be written
in a Stratonovich (midpoint) representation, corresponding to

M(ts) =
1

2
[M(ts+1) + M(ts)] . (12)

This discretization can be used to define a covariant Feynman LagrangianLF which possesses a
variational principle, and which explicitly portrays the underlying Riemannian geometry induced by the
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metric tensorgGG′ , calculated to be the inverse of the covariance matrix [36].

P = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLFs) ,

DM = g1/2
0+

(2π∆t)−Θ/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

ι =1
Σ ∆MG

ι s , MG
0 = MG

t0 , MG
u+1 = MG

t ,

LF =
1

2
(dMG /dt − hG)gGG′(dMG′ /dt − hG′) +

1

2
hG

;G + R/6 − V ,

[. . .],G =
∂[. . .]

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(ts), ts] = det(gGG′)s , gs+ = gs[MG
s+1, ts] ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) ,  (13)

whereR is the Riemannian curvature, and we also have explicitly noted the discretization in the mesh of
MG

ι s by ι .
Because of the presence of multiplicative noise, the Langevin system differs in its Itoˆ (prepoint) and

Stratonovich (midpoint) discretizations. The midpoint-discretized covariant description, in terms of the
Feynman LagrangianLF , is defined such that (arbitrary) fluctuations occur about solutions to the Euler-
Lagrange variational equations. In contrast, the usual Itoˆ and corresponding Stratonovich discretizations
are defined such that the path integral reduces to the Fokker-Planck equation in the weak-noise limit. The
term R/6 in LF includes a contribution ofR/12 from the WKB approximation to the same order of
(∆t)3/2 [13].

A prepoint discretization for the same probability distributionP, giv es a much simpler algebraic
form,

M(ts) = M(ts) ,

L =
1

2
(dMG /dt − gG)gGG′(dMG′ /dt − gG′) − V , (14)

but the the variational principle associated with the LagrangianL is not useful for moderate to large noise.
Still, this prepoint-discretized form has been quite useful in all systems examined thus far, simply
requiring a somewhat finer numerical mesh.
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3.3. Interest Rates
To illustrate this methodology, the BS model is summarized by:

dr = [a1 + b1(l − r)]dt + rσ1dz1 ,

dl = [l(a2 + b2r + c2l)]dt + lσ2dz2 ,

< dzi >= 0 , i = {1, 2} ,

< dzi(t)dz j(t ′) >= dtδ (t − t ′) , i = j ,

< dzi(t)dz j(t ′) >= ρdtδ (t − t ′) , i ≠ j ,

δ (t − t ′) =




0 , ,

1 ,

t ≠ t ′ ,

t = t ′ ,
(15)

where < . >  denotes expectations.

These can be rewritten as Langevin equations (in the Itoˆ prepoint discretization)

dr/dt = a1 + b1(l − r) + σ1r(γ +n1 + sgnρ γ −n2) ,

dl/dt = l(a2 + b2r + c2l) + σ2l(sgnρ γ −n1 + γ +n2) ,

γ ± =
1

√ 2
[1 ± (1 − ρ2)1/2]1/2 ,

ni = (dt)1/2pi , (16)

wherep1 and p2 are independent [0,1] Gaussian distributions.

The cost functionC is defined from the equivalent short-time probability distribution,P, for the
above set of equations.

P = g1/2(2πdt)−1/2 exp(−Ldt)

= exp(−C) ,

C = Ldt +
1

2
ln(2πdt) − ln(g) ,

L =
1

2
F†gF ,

F = 


dr/dt − ((a1 + b1(l − r)))

dl/dt − l(a2 + b2r + c2l)



,

g = det(g) ,

k = 1 − ρ2 . (17)

g, the metric in{r, l}-space, is the inverse of the covariance matrix,

g−1 =




(rσ1)2

ρrlσ1σ2

ρrlσ1σ2

(lσ2)2





. (18)

As discussed below, the correct mesh for time,dt, in order thatP represent the Langevin equations (to
orderdt3/2) is
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dt ≤ 1/L , (19)

whereL is L evaluated withds/dt = dl/dt = 0. If dt is greater than 1/L, then it is inappropriate to useP,
and instead the path integral over intermediate states of folded short-time distributions must be calculated.
It should be noted that the correct time mesh for the corresponding differential equations must be at least
as small, since typically differentiation is a ‘‘sharpening’’ process. This will be noted in any discipline
requiring numerical calculation, when comparing differential and integral representations of the same
system.

3.4. Security Prices
BS [8] present arguments recognizing that the stochastic price of a discount bond for a given

maturity dateT can utilize straightforward stochastic calculus to derive a form in terms of coefficients
appearing in theirr − l coupled stochastic equations. They use arbitrage arguments on portfolios of bonds
with different maturity dates to derive zero risk conditions for the market prices of risks,λ 1 and λ 2, for
short-term and long-term interest rates, respectively. By consideringl as related to a bond’s price, they
straightforwardly derive an arbitrage expression forλ 2. Their resulting p.d.e. is an equilibrium (mean
value) equation for a pure discount-bond priceB, at a giv en time until maturityτ = T − t and
‘‘continuous’’ coupon payment ofc.

The above formulation of interest rates is used by BS to determine the parameters needed to
calculate their derived partial differential equation (p.d.e.) for securities, i.e., bond pricesB. Using some
notation developed above, with{MG ; G = r, l}, they obtain

∂B

∂τ
= VB +

∂(−gG B)

∂MG
+

1

2

∂2(gGG′ B)

∂MG∂MG′ ,

gr = −(β1 − λ 1η 1)

= −a1 − b1(l − r) + λ 1rσ1 ,

gl = −(β2 − λ 2η 2)

= −l(σ 2
2 + l − r) ,

(gGG′) = (g)−1 ,

V =
c

B
− r , (20)

wherec is the continuous coupon rate for bondB, andλ 1 is an additional parameter to be fit by the data.

The above equation can be rewritten as a Fokker-Planck-type equation with an inhomogeneous term
c. Howev er, for our numerical procedures, it is more convenient to write this equation as a ‘‘truly
nonlinear’’ Fokker-Planck equation withB present inV . If c/B is a smooth function, such that

V (MG ; τ ′) − V (MG ; τ )

ε
= ∆τ

∂V

∂τ
+ ∆τ ∫

δV

δ B

∂B(M ′G′)

δ τ
dM ′G′

= O(∆τ ν ) ,  (21)

for ν > 1, whereτ ′ = τ + ε ∆τ , then our numerical path-integral codes may be used here as well [2].

In practice we do not have to use this truly nonlinear Fokker-Planck equation to price bonds with
coupons. Assume we already have fit our parameters for the entire epoch of interest. Actual bond prices
with coupons may then be evaluated straightforwardly by considering a portfolio ofn pure discount bonds
with a series of maturity datesTn equivalent to the dates of payment of coupons and the face value of the
actual coupon bond to be modeled. This prescription requires that we integrate back such a portfolio ofn
pure discount bonds with maturityTn, to various timesti < T (including only those bonds in the portfolio
with maturityTn ≥ ti). At each of these times, we use the observed values ofr(ti) and l(ti) to calculate
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the bond pricesBn(ti). This portfolio of{Bn(ti)} is then compared to the observed coupon bondB(ti),
i.e., for many such times{ti}. For each zero-coupon bond in this portfolio, we start at its time of maturity
Tn, enforcing the i.c.Bn(r, l; Tn) = 1, and integrate back to a given timet < Tn. We then weight each
zero coupon bond by the actual coupon or face value paid on the coupon bond.

4. NUMERICAL CALCULATIONS

4.1. Methodology
Recently, two major computer codes have been developed, which are key tools for the use of this

approach to estimate model parameters and price bonds.

The first code, very fast simulated re-annealing (VFSR) [1], fits short-time probability distributions
to observed data, using a maximum likelihood technique on the Lagrangian. An algorithm of very fast
simulated re-annealing has been developed to fit observed data to a theoretical cost function over aD-
dimensional parameter space [1], adapting for varying sensitivities of parameters during the fit. The
annealing schedule for the ‘‘temperatures’’ (artificial fluctuation parameters)Ti decrease exponentially in
‘‘time’’ (cycle-number of iterative process)k, i.e.,Ti = Ti0 exp(−ci k

1/D).

Heuristic arguments have been developed to demonstrate that this algorithm is faster than the fast
Cauchy annealing [40],Ti = T0/k, and much faster than Boltzmann annealing [41],Ti = T0/ ln k. To be
more specific, thekth estimate of parameterα i,

α i
k ∈ [ Ai, Bi] ,  (22)

is used with the random variablexi to get thek + 1th estimate,

α i
k+1 = α i

k + xi(Bi − Ai) ,

xi ∈ [−1, 1] . (23)

The generating function is defined as

gT (x) =
D

i=1
Π 1

2 ln(1+ 1/Ti)(|xi| + Ti)
≡

D

i=1
Π gi

T (xi) ,

Ti = Ti0 exp(−ci k
1/D) .  (24)

Note that the use ofC, the cost function given above, isnot equivalent to doing a simple least squares fit
on M(t + ∆t).

The second code develops the long-time probability distribution from the Lagrangian fit by the first
code. A robust and accurate histogram-based (non-Monte Carlo) path-integral algorithm to calculate the
long-time probability distribution has been developed to handle nonlinear Lagrangians [2,3,42,43],
including a two-variable code for additive and multiplicative cases.

The histogram procedure recognizes that the distribution can be numerically approximated to a high
degree of accuracy as sum of rectangles at pointsMi of heightPi and width∆Mi. For convenience, just
consider a one-dimensional system. The above path-integral representation can be rewritten, for each of
its intermediate integrals, as

P(M ; t + ∆t) = ∫ dM ′[g1/2
s (2π∆t)−1/2 exp(−Ls∆t)]P(M ′; t)

= ∫ dM ′G(M , M ′; ∆t)P(M ′; t) ,

P(M ; t) =
N

i=1
Σ π(M − Mi)Pi(t)
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π(M − Mi) =







1 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

0 ,  otherwise ,
(25)

which yields

Pi(t + ∆t) = Tij(∆t)P j(t) ,

Tij(∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ M j+∆M j /2

M j−∆M j−1/2
dM ′G(M , M ′; ∆t) .  (26)

Tij is a banded matrix representing the Gaussian nature of the short-time probability centered about the
(varying) drift.

This histogram procedure has been extended to two dimensions, i.e., using a matrixTijkl [3], e.g.,
essentially similar to the use of theA matrix in the previous section. Explicit dependence ofL on timet
also can be included without complications. We see no problems in extending it to other dimensions,
other than care must be used in developing the mesh in∆M , which is dependent on the diffusion matrix.

Fitting data with the short-time probability distribution, effectively using an integral over this
epoch, permits the use of coarser meshes than the corresponding stochastic differential equation. The
coarser resolution is appropriate, typically required, for numerical solution of the time-dependent path-
integral: By considering the contributions to the first and second moments of∆MG for small time slicesθ ,
conditions on the time and variable meshes can be derived [42]. The time slice essentially is determined
by θ ≤ L−1, whereL is the ‘‘static’’ Lagrangian withdMG /dt = 0, throughout the ranges ofMG giving the
most important contributions to the probability distributionP. The variable mesh, a function ofMG , is
optimally chosen such that∆MG is measured by the covariancegGG′ , or ∆MG ∼ (gGGθ )1/2.

The BS use of ‘‘natural’’ b.c., actually more general unrestricted or singular b.c. [44], is in part
based on their own admittedlyad hoc choice of functional forms forr andl diffusions, in both their s.d.e.
and p.d.e., and in ther drift in their s.d.e. Since we are using these equations in our calculations, we
properly use unrestricted b.c., relying on the algebraic forms of the drifts and diffusions to enforce them.
This is in contrast to BS who, when solving their pde numerically, resort to redundantly using these b.c. to
define their basic transition matrix [8].

In future work, where it likely will be desirable to test other algebraic models of these drifts and
diffusions, other b.c. will be appropriate, e.g., absorbing or reflecting b.c., both of which we have used in
previous work in other systems [3]. We believe that the appropriate b.c. must be determined by finance
considerations, permitting application of more general b.c. The path-integral methodology readily
permits such inclusion in its numerical implementation. We believe it is extremely important to gain this
freedom over the functional forms of the drifts and diffusions [37]. For example, our calculations with
this model clearly demonstrate that the rather mild nonlinearities of the BS model only permit inflationary
ev olution, since those were the periods were fit to data and since the functional forms likely cannot
accommodate many swings and dips, on time scales of months or years, much longer that of the
fluctuations, yet shorter than the period of long-term bonds. This appears to require a higher degree of
nonlinearity and/or an increase in the number of independent interest-rate variables.

We find it quite straightforward to adjustλ 2 to fit a set of bond prices. Our path-integral
calculations are currently being performed on a large aggregate of bond data. This is necessary before
meaningful comparisons can be made with other methodologies, in accord with other investigators who
use such portfolios to average over systematic particulars of individual bonds. This data will be published
in a future paper.

4.2. Fits to Interest Rates
Interest rates were developed from Treasury bill and bond yields during the period October 1974

through December 1979, the same period as one of the sets used by BS [10]. Short-term rates were
determined from Treasury bills with a maturity of three months (BS used 30-day maturities), and long-
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term rates were determined from Treasury bonds with a maturity of twenty years (BS used at least 15-year
maturities). For monthly runs, we used 63 points of data between 74-10-31 and 79-12-28. For daily runs,
we used 1283 points of data between 74-10-31 and 79-12-31. We used yearly rates divided by 12 to fit
the parameters.

For daily data, the actual number of days between successive trades was used; i.e., during this time
period we had 1282 pieces of daily data and 62 pieces of end-of-month data. Although a rescaling in time
only simply scales the deterministic parameters linearly, since that is how they appear in this model, this
is not true forρ. Then we did all subsequent runs using the scale of one day. We used yearly rates
divided by 365 to fit the parameters.

The BS parameters also were run through the data, calculating the cost function they giv e. The
single cost function bears the weight of determining all parameters. Typically, three or four significant-
figure stability is required to get even one or two significant-figure stability in the parameters. (All runs
were performed using double precision for all floating-point variables.) The ‘‘cost function’’ calculated is
the sum over all Lagrangians at each short-time epoch (divided by the number of epochs, which doesn’t
affect its minimum, but helps to compare cost functions over different sets of data). I.e., a maximum
probability fit is done by minimizing the cost functions (each the argument of the exponential
representing the probability distribution of the variables) over all time epochs. The BS versus our fitted
parameters are given in Table 1. Note that we have used data not quite the same as they used; we used the
same time period, but a different set of bonds to determine interest rates. This likely can account for some
of the apparent drastic improvements of our fits over theirs. Also note that the negativeC we calculate is
obtained from the negative ln term which has a very small argument. E.g., in the final column,
C = −23. 83 is obtained by adding an average (over all data points) ln contribution of−24. 80 to a positive
av erageL. “Competition” between the diminishing positive numerators inL and the diminishing
diffusions in the ln term and in the denominators ofL accounts for the final value ofC.

Table 1

It should be noted that for all periods before October 1974, back through December 1958, using
monthly data, BS founda1 < 0, and for the period April 1964 through June 1969 they foundc2 > 0.

Fits were performed on a Hewlett Packard 9000-835SE, a ‘‘12-MIPS’’ computer. The VFSR code
was tested by generating data from the BS Langevin differential equations, then using the VFSR code
using the Lagrangian cost function to refit their parameters after they had been displaced from their values
in the differential equations. A typical fit took approximately 100 CPU minutes for 1500 acceptance
points, representing about 2000 generated points per 100 acceptance points at each re-annealing cycle, in
this six-dimensional parameter space. It was found that once the VFSR code repeated the lowest cost
function within two cycles of 100 acceptance points, e.g., typically achieving 3 or 4 significant-figure
accuracy in the global minimum of the cost function, by shunting to a local fitting procedure, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [45], only several hundred acceptance points were
required to achieve 7 or 8 significant-figure accuracy in the cost function. This also provided yet another
test of the VFSR methodology.

5. CHAOS OR NOISE?
Given the context of current studies in complex nonlinear systems [46], the question can be asked:

What if markets have chaotic mechanisms that overshadow the above stochastic considerations? The real
issue is whether the scatter in data can be distinguished between being due to noise or chaos. In this
regard, we note that several studies have been proposed with regard to comparing chaos to simple filtered
(colored) noise [46,47] Since we have previously derived the existence of multiplicative noise in
neocortical interactions, then the previous references must be generalized, such that we must investigate
whether markets scatter can be distinguished from multiplicative noise. A previously described
application of this methodology follows:

In our analysis of military exercise data [3,35], we were able to fit short-time attrition epochs
(determined to be about 5 minutes from mesh considerations determined by the nature of the Lagrangian)
with short-time nonlinear Gaussian-Markovian probability distributions with a resolution comparable to
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the spread in data. When we did the long-time path-integral from some point (spread) at the beginning of
the battle, we found that we could readily find a form of the Lagrangian that made physical sense and that
also fit the multivariate variances as well as the means at each point in time of the rest of the exercise
interval. I.e., there was not any degree of hyper-sensitivity to initial conditions that prevented us from
‘‘predicting’’ the long time means and variances of the system. Of course, since the system is dissipative,
there is a strong tendency for all moments to diminish in time, but in fact this exercise was of sufficiently
modest duration (typically 1 to 2 hours) that variances do increase somewhat during the middle of the
battle. In summary, this battalion-regiment scale of battle does not seem to possess chaos.

Similar to serious work undertaken in several fields [47-49], here too, the impulse to cry ‘‘chaos!’’
has been premature. It is not supported by the facts, tentative as they are because of sparse data.

A more purposeful project is to compare stochastic with deterministic models of data. Today much
attention is turning to the use of deterministic chaotic models for short time predictions of systems. For
example, if only short time predictions are required, and if a deterministic chaotic model could well
describe stochastic data within these epochs, then this model might be more computationally efficient
instead of a more ‘‘correct’’ stochastic model which would be necessary for long time predictions. The
scales of time involved are of course system dependent, and the deterministic chaotic modeling of data is
still in its infancy [50].

For example, it has been widely noted that the correlation dimension of data is difficult to calculate;
perhaps it is often not even a well founded concept [49]. It’s calculation, e.g., using the popular
Grassberger-Procaccia algorithm [51], even when supplemented with finer statistical tests [52] and noise
reduction techniques [53], may prove fruitful, but likely only as a sensitivity index relative to shifting
contexts in some systems.

6. CONCLUSION
We hav e described how mathematical methodologies and numerical algorithms recently developed

in the field of statistical mechanics can be brought to bear on term structure models. Specifically,
methods of very fast simulated re-annealing can be used to statistically find best global fits of multivariate
nonlinear stochastic term structure models, without requiring approximation of the basic models.

This new formalism also permits a fresh look at some of these models and affords comparison with
other nonlinear stochastic systems. Elsewhere [37], we are publishing some numerical results on fits to
daily Treasury bill and bond yields during the period October 1974 through December 1979. Another
paper in progress will report on more extensive comparisons with observed bond prices. Similar studies,
e.g., using these mathematical physics and computational techniques, are underway to determine
behavioral correlates of electroencephalographic (EEG) data [29].
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TABLE
Table 1. BS parameters were fit to data using our Lagrangian representation for their coupledr − l

equations, for both end-of-month and daily data between 74-10-31 and 79-12-31. The second column,
designated BS Monthly, giv es their published 1982 results, using somewhat different data during this
period. The third column gives our monthly fits on somewhat different data during this same time period.
The fourth column gives daily fits scaled to daily time. The last line gives the cost functionC av eraged
over the number of data points. Note that the data used here is not quite the same data used by BS.

Parameter BS Monthly L Monthly L Daily

a1 0.0361 3.02 10−5 −6.33 10−9

b1 0.0118 3.89 10−4 0.0902
σ1 0.0777 0.0700 0.0132
ρ 0.442 0.534 0.136
a2 0.169 9.73 10−3 2.43 10−4

b2 0.0089 0.0262 0.0320
c2 −0.271 −0.707 −0.492
σ2 0.0243 0.0278 4.01 10−3

C 23.69 −13.87 −23.83


