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Abstract—A paradigm of statistical mechanics of financial markets (SMFM) using nonlinear

nonequilibrium algorithms, first published in L. Ingber,Mathematical Modelling, 5, 343-361 (1984), is fit

to multivariate financial markets using Adaptive Simulated Annealing (ASA), a global optimization

algorithm, to perform maximum likelihood fits of Lagrangians defined by path integrals of multivariate

conditional probabilities. Canonical momenta are thereby derived and used as technical indicators in a

recursive ASA optimization process to tune trading rules. These trading rules are then used on out-of-

sample data, to demonstrate that they can profit from the SMFM model, to illustrate that these markets are

likely not efficient.
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1. INTRODUCTION

Over a decade ago, the author published a paper suggesting the use of newly developed methods of

multivariate nonlinear nonequilibrium calculus to approach a statistical mechanics of financial markets

(SMFM) [1]. That paper also gav e a brief summary of the state of affairs of the equilibrium paradigm of

financial markets. These methods were recently applied to interest-rate term-structure systems [2]. Still,

for some time, the standard accepted paradigm of financial markets has been rooted in equilibrium

processes [3]. There is a current effort by many to examine nonlinear and nonequilibrium processes in

these markets, and this paper reinforces this point of view.

There are several issues that are clarified here, by presenting calculations of a specific trading

model: (A) It is demonstrated how multivariate markets might be formulated in a nonequilibrium

paradigm. (B) It is demonstrated that, despite possessing an algebra that was shunned a decade ago as

being too complex, since then numerical methods of global optimization can be used to fit such SMFM

models to data. (C) A variational principle possessed by SMFM permits derivation of technical

indicators, such as canonical momenta, that can be used to describe deviations from most likely evolving

states of the multivariate system. (D) These technical indicators can be embedded in realistic trading

scenarios, to test whether they can profit from nonequilibrium in markets.

Section 2 outlines the formalism used to develop the nonlinear nonequilibrium SMFM model.

Section 3 describes application of SMFM to SP500 cash and future data, using Adaptive Simulated

Annealing (ASA) [4] to fit the short-time conditional probabilities developed in Section 2, and to establish

trading rules by recursively optimizing with ASA, using optimized technical indicators developed from

SMFM. These calculations were briefly mentioned in another ASA paper [5]. Section 4 is a brief

conclusion.

2. SMFM MODEL

2.1. Random Walk Model

The following is a brief review of the rationale leading to SMFM close to its original presentation

in 1984 [1]. Several studies imply that changing prices of many markets do not follow a random walk,

that they may have long-term dependences in price correlations, and that they may not be efficient in
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quickly arbitraging new information [6-10].

(A) A random walk for returns, rate of change of prices over prices, is described by a Langevin

equation with simple additive noiseη, typically representing the continual random influx of information

into the market.

Γ̇ =  −γ1 + γ2η , (1)

Γ̇ = dΓ/dt ,

< η(t) >η= 0 ,

< η(t),η(t′) >η= δ (t − t′) ,

whereγ1 andγ2 are constants, andΓ is the logarithm of (scaled) price. From this equation, other models

may be derived, such as the times-series model and the Kalman filter method of control theory [11], when

care is taken to project physical states on observable space before eliminating irrelevant variables [12].

However, in the process of this transformation, the Markovian description typically is lost by projection

onto a smaller state space [12,13]. In this context, price, although the most dramatic observable, may not

be the only appropriate dependent variable or order parameter for the system of markets [14]. This

possibility has also been called the “semistrong form of the efficient market hypothesis” [8].

This paper only considers nonlinear Gaussian noise, e.g.,γ2 not constant, also called

“multiplicative” noise. These methods are not conveniently used for other sources of noise also

considered by economists, e.g., Poisson processes [15] or Bernoulli processes [16,17]. For example,

within limited ranges, log-normal distributions can approximate 1/f distributions, and Pareto-L´ evy tails

may be modelled as subordinated log-normal distributions with amplification mechanisms [18].

(B) It is also necessary to explore the possibilities that a given market evolves in nonequilibrium,

e.g., evolving irreversibly, as well as nonlinearly, e.g.,γ1,2 may be functions ofΓ. Irreversibility, e.g.,

causality [19] and nonlinearity [20], have been suggested as processes necessary to take into account in

order to understand markets, but modern methods of statistical mechanics now provide a more explicit

paradigm to consistently include these processes inbona fide probability distributions. Reservations have

been expressed about these earlier models at the time of their presentation [21].
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(C) Besides assuming a rather specialized form for a Markovian process, Eq. (1) also assumes that

real time is the proper independent variable. This is true for physical and most biophysical processes that

have relatively continuous interactions [22-25], but for social and economic systems, some other density

of relevant events might better describe the temporal evolution of the system.

For example, typically,t is measured by a small time unitt̂ that averages over a chosen number of

ticks/trades andt is a macroscopic epoch. Reasonable values oft̂ and t are on the order of minutes and

days, respectively. A mesoscopic time scaleτ , t > τ > t̂ , and a “smoothness” parameterΓγ , a fraction of

Γ(t), are chosen to search and fitΓ(t) to local minima and maxima. Thus a sequence of trades is taken to

measure the independent temporal parameter of marketT , and is mapped onto the variableΘ, defined by

integersρ: Θρ = ρτ + Θ0.

Another reasonable scaling oft onto a mesoscopicΘ′ would be to scalet inversely to volumeV

being traded, and to perform trades over a uniform mesh ofΘ′. This would be one way of simulating an

“average” trader.

(D) Developments in nonlinear nonequilibrium statistical mechanics in the late 1970’s and their

application to a variety of testable physical phenomena illustrate the importance of properly treating

nonlinearities and nonequilibrium in systems where simpler analyses prototypical of linear equilibrium

Brownian motion do not suffice [22-25].

2.2. Statistical Mechanics of Large Systems

Aggregation problems in nonlinear nonequilibrium systems typically are “solved” (accommodated)

by having new entities/languages developed at these disparate scales in order to efficiently pass

information back and forth [26,27]. This is quite different from the nature of quasi-equilibrium quasi-

linear systems, where thermodynamic or cybernetic approaches are possible. These approaches typically

fail for nonequilibrium nonlinear systems.

In the late 1970’s, mathematical physicists discovered that they could develop statistical mechanical

theories from algebraic functional forms

dr/dt = fr (r, l) +
i
Σ ĝi

r (r, l)η i ,

dl/dt = fl(r, l) +
i
Σ ĝi

l(r, l)η i , (2)
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where the ˆg’s and f ’s are general nonlinear algebraic functions of the variablesr andl. These equations

represent differential limits of discretized stochastic difference equations, e.g., Wiener noise

dW → ηdt [28]. The resulting stochastic differential equations (s.d.e.’s) are referred to as Langevin

equations [28-33]. Thef ’s are referred to as the (deterministic) drifts, and the square of the ˆg’s are

related to the diffusions (fluctuations or volatilities). In fact, the statistical mechanics can be developed

for any number of variables, not just two. Theη ’s are sources of Gaussian-Markovian noise, often

referred to as “white noise.” The inclusion of the ˆg’s, called “multiplicative” noise, recently has been

shown to very well mathematically and physically model other forms of noise, e.g., shot noise, colored

noise, dichotomic noise [34-37]. Finite-jumps diffusions also can be included [38].

These new methods of nonlinear statistical mechanics only recently have been applied to complex

large-scale physical problems, demonstrating that observed data can be described by the use of these

algebraic functional forms. Success was gained for large-scale systems in neuroscience, in a series of

papers on statistical mechanics of neocortical interactions [24,25,39-46], and in nuclear physics [47,48].

This methodology has been used for problems in combat analyses [27,49-52]. These methods have been

suggested for financial markets [1], and applied to a term structure model of interest rates [2,53].

Thus, now we can investigate various choices off ’s and ĝ’s to test algebraic functional forms. In

science, this is a standard phenomenological approach to discovering and encoding knowledge and

observed data, i.e., fitting algebraic functional forms which lend themselves to empirical interpretation.

This gives more confidence when extrapolating to new scenarios, exactly the issue in building confidence

in financial models.

The utility of these algebraic functional forms goes further beyond their being able to fit sets of

data. There is an equivalent representation to the Langevin equations, called a “path-integral”

representation for the long-time probability distribution of the variables. This short-time probability

distribution is driven by a “Lagrangian,” which can be thought of as a dynamic algebraic “cost” function.

The path-integral representation for the long-time distribution possesses a variational principle, which

means that simple graphs of the algebraic cost-function give a correct intuitive view of the most likely

states of the variables, and of their statistical moments, e.g., heights being first moments (likely states) and

widths being second moments (uncertainties). Like a ball bouncing about a terrain of hills and valleys,

one can quickly visualize the nature of dynamically unfoldingr andl states.
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Especially because we are trying to mathematically model sparse and poor data, different drift and

diffusion algebraic functions can give approximately the same algebraic cost-function when fitting short-

time probability distributions to data. The calculation of long-time distributions permits a clear choice of

the best algebraic functions, i.e., those which best follow the data through a predetermined long epoch of

trading. Afterwards, if there are closely competitive algebraic functions, they can be more precisely

assessed by calculating higher algebraic correlation functions from the probability distribution.

2.3. Statistical Development

When other order parameters in addition to price are included to study markets, Eq. (1) is

accordingly generalized to a set of Langevin equations.

ṀG = f G + ĝG
j η j , (3)

(G = 1,. . . , Λ) ,

( j = 1,. . . , N ) ,

ṀG = dMG /dΘ ,

< η j(Θ) >η= 0 ,

< η j(Θ),η j′(Θ′) >η= δ jj′δ (Θ − Θ′) ,

where f G and ĝG
j are generally nonlinear functions of mesoscopic order parametersMG , j is a

microscopic index indicating the source of fluctuations, andN ≥ Λ. The Einstein convention of summing

over repeated indices is used. Vertical bars on an index, e.g., |j|, imply no sum is to be taken on repeated

indices.

Via a somewhat lengthy, albeit instructive calculation, outlined in several other papers [1,2,42],

involving an intermediate derivation of a corresponding Fokker-Planck or Schr¨odinger-type equation for

the conditional probability distributionP[M(Θ)|M(Θ0)], the Langevin rate Eq. (3) is developed into the

more useful probability distribution forMG at long-time macroscopic time eventΘ = (u + 1)θ + Θ0, in

terms of a Stratonovich path-integral over mesoscopic Gaussian conditional probabilities [29,54-57].

Here, macroscopic variables are defined as the long-time limit of the evolving mesoscopic system.
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The corresponding Schr¨odinger-type equation is [55,56]

∂P/∂Θ =
1

2
(gGG′P),GG′ − (gG P),G + V , (4)

gGG′ = kT δ jk ĝG
j ĝG′

k ,

gG = f G +
1

2
δ jk ĝG′

j ĝG
k,G′ ,

[. . .],G = ∂[. . .]/∂MG .

This is properly referred to as a Fokker-Planck equation whenV ≡ 0. Note that although the partial

differential Eq. (4) contains equivalent information regardingMG as in the stochastic differential Eq. (3),

all references toj have been properly averaged over. I.e., ˆgG
j in Eq. (3) is an entity with parameters in

both microscopic and mesoscopic spaces, butM is a purely mesoscopic variable, and this is more clearly

reflected in Eq. (4).

The path integral representation is given in terms of the LagrangianL.

P[MΘ|MΘ0
]dM(Θ) = ∫ . . . ∫ DM exp(−S)δ [M(Θ0) = M0]δ [M(Θ) = MΘ] ,  (5)

S = k−1
T min

Θ

Θ0

∫ dΘ′L ,

DM =
u→∞
lim

u+1

ρ=1
Π g1/2

G
Π (2πθ )−1/2dMG

ρ ,

L(ṀG , MG , Θ) =
1

2
(ṀG − hG)gGG′(ṀG′ − hG′) +

1

2
hG

;G + R/6 − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

g = det(gGG′) ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,
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ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) .

Mesoscopic variables have been defined asMG in the Langevin and Fokker-Planck representations, in

terms of their development from the microscopic system labeled byj. The Riemannian curvature termR

arises from nonlineargGG′, which is a bona fide metric of this parameter space [55]. Even if a stationary

solution, i.e.,ṀG = 0, is ultimately sought, a necessarily prior stochastic treatment ofṀG terms gives rise

to these Riemannian “corrections.” Even for a constant metric, the termhG
;G contributes toL for a

nonlinear meanhG . V may include terms such as
T ′
Σ JT ′G MG , where the Lagrange multipliersJT ′G are

constraints onMG , e.g., from other marketsT ′, which are advantageously modelled as extrinsic sources

in this representation; they too may be time-dependent. Using the variational principle below,JTG may

also be used to constrainMG to regions where they are empirically bound. More complicated constraints

may be affixed toL using methods of optimal control theory [58]. With respect to a steady stateP, when

it exists, the information gain in stateP is defined by

ϒ[P] = ∫ . . . ∫ DM ′ P ln (P/P) ,  (6)

DM ′ = DM /dMu+1 .

In the economics literature, there appears to be sentiment to define Eq. (3) by the Ito, rather than the

Stratonovich prescription. It should be noted that virtually all investigations of other physical systems,

which are also continuous time models of discrete processes, conclude that the Stratonovich interpretation

coincides with reality, when multiplicative noise with zero correlation time, modelled in terms of white

noiseη j , is properly considered as the limit of real noise with finite correlation time [38]. The path

integral succinctly demonstrates the difference between the two: The Ito prescription corresponds to the

prepoint discretization ofL, wherein θ Ṁ(Θ) → Mρ+1 − Mρ and M(Θ) → Mρ . The Stratonovich

prescription corresponds to the midpoint discretization ofL, wherein θ Ṁ(Θ) → Mρ+1 − Mρ and

M(Θ) →
1

2
(Mρ+1 + Mρ ). In terms of the functions appearing in the Fokker-Planck Eq. (4), the Ito

prescription of the prepoint discretized Lagrangian,LI , is relatively simple, albeit deceptively so because
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of its nonstandard calculus.

LI (ṀG , MG , Θ) =
1

2
(ṀG − gG)gGG′(ṀG′ − gG′) − V . (7)

In the absence of a nonphenomenological microscopic theory, if the Ito prescription is proposed rather

than the Stratonovich prescription, then this choice must be justified by numerical fits to data for each

case considered.

There are several other advantages to Eq. (5) over Eq. (3). Extrema and most probable states of

MG , << MG >>, are simply derived by a variational principle, similar to conditions sought in previous

studies [59]. In the Stratonovich prescription, necessary, albeit not sufficient, conditions are given by

δG L = L,G − L,Ġ:Θ = 0 ,  (8)

L,Ġ:Θ = L,ĠG′ Ṁ
G′ + L,ĠĠ′ M̈

G′ .

For stationary states,̇MG = 0, and∂L/∂MG = 0 defines << MG >>, where the bars identify stationary

variables; in this case, the macroscopic variables are equal to their mesoscopic counterparts.[Note thatL

is not the stationary solution of the system, e.g., to Eq. (4) with∂P/∂Θ = 0. However, in some cases [40],

L is a definite aid to finding such stationary states.] Typically, in other financial studies, only properties

of stationary states are examined, but here a temporal dependence is included. E.g., theṀG terms inL

permit steady states and their fluctuations to be investigated in a nonequilibrium context. Note that Eq.

(8) must be derived from the path integral, Eq. (5), which is at least one reason to justify its development.

In the language of nonlinear nonequilibrium thermodynamics [30], the thermodynamic forces are

χG = S,G , whereS is the entropy, and the thermodynamic fluxes areṀG = gGG′ χG′. Although the fluxes

are defined to be linearly related to the forces,gGG′ may be highly nonlinear in the state-variablesMG .

The short-time Feynman LagrangianL can be expressed as the sum of the dissipation function

φ (MG , ṀG) =
1

2
gGG′ Ṁ

G ṀG′, the force functionΨ(MG , χG) =
1

2
gGG′ χG χG′, the potential term−V , and

the (negative) rate of change of entropy−Ṡ(MG) = −χG ṀG : Then L = φ + Ψ − Ṡ − V is the nonlinear

nonequilibrium generalization of the Onsager-Machlup Lagrangian [60]. The variational equations insure

that the equilibrium entropy is maximal, not necessarily a static equilibrium. Fluctuations over short time

periods are introduced via variables ηG = ∂L/∂ṀG canonical to MG ,

ηG = gGG′(ṀG′ − gG′) ≡ gGG′ Ṁ
G′ − χG , interpreted as resulting from the nonequilibrium competition
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between the thermodynamic forces and fluxes. In the context of multiplicative Gaussian noise, the

conditional probability of making the state-transition fromMG
Θ = MG(Θ) to MG

Θ+θ = MG(Θ + θ ) is then

hypothesized to beP[MG
Θ+θ |MG

Θ ] ∝ exp(−
1

2kT
∫

Θ+θ

Θ
dΘ′L)dη. This machinery suffices to determine the

macroscopic probability distribution [30]. For nonconstantgGG′ when R ≠ 0, it should be noted that the

Lagrangian corresponding to the most-probable path is not derived from the variational principle, but is

directly related toL [28].

To begin introducing economic theory, variables such as (logarithm) price can be postulated to be

the basic state-variables. However, it is not clear how to precisely relateL to classical economic

equilibrium utility functions. It seems more reasonable to take economic microscopic models, usually

formulated by differential equations of the state-variables, find regions ofMG wherein multiplicative

Gaussian noise modelling is appropriate, directly calculateL, and then to make the identification with

thermodynamic forces, fluxes and entropy, if this is desired. It is argued here that, although the

thermodynamic interpretation perhaps has aesthetic value, the prime utility of the statistical mechanical

formulation of probability densities in terms of generalized Lagrangians is that detailed calculations can

be performed of macroscopic evolutions of microscopic and mesoscopic mechanisms, even in highly

nonlinear and nonequilibrium contexts.

2.4. Algebraic Complexity Yields Simple Intuitive Results

It must be emphasized that the output need not be confined to complex algebraic forms or tables of

numbers. BecauseL possesses a variational principle, sets of contour graphs, at different long-time

epochs of the path-integral ofP over its variables at all intermediate times, give a visually intuitive and

accurate decision-aid to view the dynamic evolution of the scenario. For example, this Lagrangian

approach permits a quantitative assessment of concepts usually only loosely defined.

“Momentum” = ΠG =
∂L

∂(∂MG /∂Θ)
,

“Mass”gGG′ =
∂2L

∂(∂MG /∂Θ)∂(∂MG′/∂Θ)
,

“Force” =
∂L

∂MG
,
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“F = ma ”: δ L = 0 =
∂L

∂MG
−

∂
∂Θ

∂L

∂(∂MG /∂Θ)
, (9)

where MG are the variables andL is the Lagrangian. These physical entities provide another form of

intuitive, but quantitatively precise, presentation of these analyses. For example, daily newspapers use

this terminology to discuss the movement of security prices. Here, we will use the canonical momenta as

indicators to develop trading rules.

2.5. Fitting Parameters

The short-time path-integral Lagrangian of aΛ-dimensional system can be developed into a scalar

“dynamic cost function,”C, in terms of parameters, e.g., generically represented asC(α̃ ),

C(α̃ ) = L∆Θ +
Λ

2
ln(2π ∆Θ) −

1

2
ln g , (10)

which can be used with the ASA algorithm, originally called Very Fast Simulated Reannealing

(VFSR) [61] discussed below [4], to find the (statistically) best fit of parameters. The cost function for a

given system is obtained by the product ofP’s over all data epochs, i.e., a sum ofC ’s is obtained. Then,

since we essentially are performing a maximum likelihood fit, the cost functions obtained from somewhat

different theories or data can provide a relative statistical measure of their likelihood, e.g.,

P12∼ exp(C2 − C1).

If there are competing mathematical forms, then it is advantageous to utilize the path-integral to

calculate the long-time evolution ofP [27,50]. Experience has demonstrated that the long-time

correlations derived from theory, measured against the observed data, is a viable and expedient way of

rejecting models not in accord with observed evidence. Note that the use of the path integral isa

posteriori to and independent of the short-time fitting process, and is a subsidiary physical constraint on

the mathematical models to judge their internal soundness and suitability for attempts to extrapolate to

other trading scenarios.

2.6. Numerical Methodology

Tw o major computer codes have been developed to calculate these algebraic models, which are key

tools for the use of this approach to estimate model parameters and price bonds.
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The first code, ASA [61], fits short-time probability distributions to observed data, using a

maximum likelihood technique on the Lagrangian. This algorithm has been developed to fit observed

data to a theoretical cost function over aD-dimensional parameter space [61], adapting for varying

sensitivities of parameters during the fit. The annealing schedule for the “temperatures” (artificial

fluctuation parameters)Ti decrease exponentially in “time” (cycle-number of iterative process)k, i.e.,

Ti = Ti0 exp(−ci k
1/D).

Heuristic arguments have been developed to demonstrate that this algorithm is faster than the fast

Cauchy annealing [62],Ti = T0/k, and much faster than Boltzmann annealing [63],Ti = T0/ ln k. To be

more specific, thekth estimate of parameterα i,

α i
k ∈[ Ai, Bi] ,  (11)

is used with the random variablexi to get thek + 1th estimate,

α i
k+1 = α i

k + xi(Bi − Ai) ,

xi ∈[−1, 1] . (12)

The generating function is defined as

gT (x) =
D

i=1
Π 1

2 ln(1+ 1/Ti)(|xi| + Ti)
≡

D

i=1
Π gi

T (xi) ,

Ti = Ti0 exp(−ci k
1/D) .  (13)

Note that the use ofC, the cost function given above, isnot equivalent to doing a simple least squares fit

on M(Θ + ∆Θ).

ASA has been applied to many problems by many people in many disciplines [5,64,65]. It is

available via anonymous ftp from ftp.alumni.caltech.edu in directory /pub/ingber, which also can be

accessed via the world-wide web (WWW) as http://www.alumni.caltech.edu/˜ingber/.

The second code, PATHINT, dev elops the long-time probability distribution from the Lagrangian fit

by the first code. A robust and accurate histogram-based (non-Monte Carlo) path-integral algorithm to

calculate the long-time probability distribution has been developed to handle nonlinear

Lagrangians [44,50,66-70],
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The histogram procedure recognizes that the distribution can be numerically approximated to a high

degree of accuracy as sum of rectangles at pointsMi of heightPi and width∆Mi. For convenience, just

consider a one-dimensional system. The above path-integral representation can be rewritten, for each of

its intermediate integrals, as

P(M ; Θ + ∆Θ) = ∫ dM ′[g1/2
s (2π ∆Θ)−1/2 exp(−Ls∆Θ)]P(M ′; Θ)

= ∫ dM ′G(M , M ′; ∆Θ)P(M ′; Θ) ,

P(M ; Θ) =
N

i=1
Σ π (M − Mi)Pi(Θ)

π (M − Mi) =







0 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

1 ,  otherwise ,
(14)

which yields

Pi(Θ + ∆Θ) = Tij(∆Θ)P j(Θ) ,

Tij(∆Θ) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ M j+∆M j /2

M j−∆M j−1/2
dM ′G(M , M ′; ∆Θ) .  (15)

Tij is a banded matrix representing the Gaussian nature of the short-time probability centered about the

(varying) drift.

Fitting data with the short-time probability distribution, effectively using an integral over this

epoch, permits the use of coarser meshes than the corresponding stochastic differential equation. The

coarser resolution is appropriate, typically required, for numerical solution of the time-dependent path-

integral: By considering the contributions to the first and second moments of∆MG for small time slicesθ ,

conditions on the time and variable meshes can be derived [66]. The time slice essentially is determined

by θ ≤ L−1, whereL is the “static” Lagrangian withdMG /dΘ = 0, throughout the ranges ofMG giving

the most important contributions to the probability distributionP. The variable mesh, a function ofMG ,

is optimally chosen such that∆MG is measured by the covariancegGG′, or ∆MG∼(gGGθ )1/2.
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2.7. Application to Term-Structure Models

An example of application of this formalism was to a term structure model developed for interest

rates [2,53]. This model was developed with some sound economic theory, but the methodology

presented here of using the methods of modern calculus, e.g., using the path-integral representation to

define a maximum likelihood cost function has not yet been recognized by this community [71].

The pioneering Brennan-Schwartz (BS) model [72,73] was used to illustrate how to numerically

implement this methodology [2,53]. Since “real time” is used in this model, the variablet will be used

instead ofΘ.

The BS model is summarized by:

dr = [a1 + b1(l − r)]dt + rσ1dz1 ,

dl = [l(a2 + b2r + c2l)]dt + lσ2dz2 ,

< dzi >= 0 , i = {1, 2} ,

< dzi(t)dz j(t′) >= dtδ (t − t′) , i = j ,

< dzi(t)dz j(t′) >= ρdtδ (t − t′) , i ≠ j ,

δ (t − t′) =




0 , ,

1 ,

t ≠ t′ ,

t = t′ ,
(16)

where < . >  denotes expectations.

These can be rewritten as Langevin equations (in the Itoˆ prepoint discretization)

dr/dt = a1 + b1(l − r) + σ1r(γ +n1 + sgnρ γ −n2) ,

dl/dt = l(a2 + b2r + c2l) + σ2l(sgnρ γ −n1 + γ +n2) ,

γ ± = [1 ± (1 − ρ2)1/2]1/2 ,

ni = (dt)1/2pi , (17)

wherep1 and p2 are independent [0,1] Gaussian distributions.
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The cost functionC is defined from the equivalent short-time probability distribution,P, for the

above set of equations.

P = g1/2(2π dt)−1/2 exp(−Ldt)

= exp(−C) ,

C = Ldt + ln(2π dt) −
1

2
ln(g) ,

L =
1

2
F†gF ,

F = 


dr/dt − ((a1 + b1(l − r)))

dl/dt − l(a2 + b2r + c2l)



,

g =
1

k





(rσ1)−2

−ρ(rlσ1σ2)−1
−ρ(rlσ1σ2)−1

(lσ2)−2





,

g = det(g) ,

k = 1 − ρ2 . (18)

g, the metric in{r, l}-space, is the inverse of the covariance matrix,

g−1 =




(rσ1)2

ρrlσ1σ2

ρrlσ1σ2

(lσ2)2





. (19)

As discussed above, the correct mesh for time,dt, in order thatP represent the Langevin equations (to

orderdt3/2) is

dt ≤ 1/L , (20)

whereL is L evaluated withds/dt = dl/dt = 0. If dt is greater than 1/L, then it is inappropriate to useP,

and instead the path integral over intermediate states of folded short-time distributions must be calculated.

In this context, it should be noted that the correct time mesh for the corresponding differential equations

must be at least as small, since typically differentiation is a “sharpening” process. This will be noted in

any discipline requiring numerical calculation, when comparing differential and integral representations

of the same system.
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As reported [2,53], this methodology achieved a cost function a factor of 10 smaller than that

calculated using the parameters given in the previous literature.

Since the author was given the data with the understanding that it would not be widely

disseminated, they are not explicitly presented with this paper.

3. FITTING SMFM TO SP500

3.1. Data Processing

For the purposes of this paper, it suffices to consider a two-variable problem, SP500 prices of

futures, p1, and cash,p2. Data included 251 points of 1989 and 252 points of 1990 daily closing data.

(See Fig 1.) Time between data was taken as real timet, e.g., a weekend added two days to the time

between data of a Monday and a previous Friday.

It was decided that relative data should be more important to the dynamics of the SMFM model

than absolute data, and an arbitrary form was developed to preprocess data used in the fits,

Mi(t) = pi(t + ∆t)/pi(t) ,  (21)

wherei = {1, 2} = {futures, cash}, and∆t was the time between neighboring data points, andt + ∆t is the

current trading time. The ratio served to served to suppress strong drifts in the absolute data. (See Figs. 2

and 3.)

The Lagrangians fit to data below barely support the time scale of one day as being appropriate for

for fitting and trading in this system. Certainly, weekly or monthly data would be too coarse.

3.2. ASA Fits of SMFM to Data

Tw o source of noise were assumed, so that the equations of this SMFM model are

dMG

dt
=

2

G′=1
Σ f G

G′ M
G′ +

2

i=1
Σ ĝG

i η i , G = {1, 2} . (22)

The 8 parameters,{ f G
G′, ĝG

i } were all taken to be constants.

As discussed previously, the path-integral representation was used to define an effective cost

function. Minimization of the cost function was performed using ASA. Some experimentation with the
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fitting process led to a scheme whereby after 1000 accepted states, the optimization was shunted over to a

quasi-local code, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [74], to add another decimal

of precision. If ASA was shunted over too quickly to BFGS, then poor fits were obtained, i.e., the fit

stopped in a higher local minimum. Experience with ASA since 1993, and with its predecessor VFSR

when these calculations were first performed in 1991, suggests that ASA might be as efficient as BFGS in

the end stages of search for this particular problem, but this was not pursued here.

The values of the parameters obtained by this fitting process were:f 1
1 = 0.135712,f 2

1 = −0.135701,

f 1
2 = 0.000190291, f 2

2 = 0.00047205, ˆg1
1 = −0.463577, ˆg2

1 = 0.463687, ˆg1
2 = 0.00156451, ˆg2

2 =

0.000767597.

3.3. ASA Fits of Trading Rules

A simple model of trading was developed. The author is not a trader, and thus the model is

obviously naive. (Yet, it worked well!) Tw o time-weighted moving averages, of long and short lengths

aL and aS were defined. During each new epoch ofaL , always using the fits of the SMFM model

described in the previous section as a zeroth order estimate, the parameters{ f G
G′, ĝG

i } were refit using data

within each epoch. Av eraged canonical momenta, i.e., using Eq. (9), were calculated for each new set of

aL and aS epochs. Fluctuation parameters∆qG were defined, such that any change in trading position

required that there was some reasonable information outside of these fluctuations that could be used as

criteria for trading decisions. No trading was performed for the first few days of the year until the

momenta could be calculated. Stop parameters also were placed to limit losses due to long or short

positions in the futures market,p_l and p_s, resp. Commissions of $70 were paid every time a new trade

of 100 units was taken. Thus, there were 6 trading parameters used in this example,

{aL , aS , ∆qG , p_l , p_s}.

As listed in Table 1, the order of choices made for daily trading are as follows. A 0 represents no

trading is performed until enough data is gathered, e.g., to calculate momenta. A 1 represents that all

positions are closed out, e.g., at the end of the year. A 2 represents getting out of a long position. This

was performed if the difference of the present price and the short-term averaged (withinaS) futures price,

divided by the present price, was less thanp_l. A 3 represents getting out of a short position. This was

performed if the negative of the difference of the present price and the short-term averaged futures price,
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divided by the present price, was less thanp_l. A 10 represents entering a long position, whether in a

waiting or a short position; a current position was maintained. This was performed if the short-term

av eraged momenta of both cash and futures prices were both greater than 0, and their long-term averaged

momenta exceeded the∆qG fluctuation parameters. A -10 represents entering a short position, whether in

a waiting or a long position; a current short position was maintained. This was performed if the short-

term averaged momenta of both cash and futures prices were both less than 0, and their long-term

av eraged momenta were less than the∆qG fluctuation parameters. A 4 represents any remaining

circumstance, getting out of any positions if they exist, and going into or maintaining a waiting position.

3.3.1. In-sample ASA fits of trading rules

For the data of 1989, recursive optimization was performed. The trading parameters were

optimized in an outer shell, using the negative of the net yearly profit/loss as a cost function. This could

have been weighted by something like the absolute value of maximum loss to help minimize risk, but this

was not done here. The inner shell of optimization fine-tuning of the SMFM model was performed daily

over the currentaL epoch.

At first, ASA and shunting over to BFGS was used for each shell, but it was realized that good

results could be obtained suing ASA and BFGS on the outer shell, and just BFGS on the inner shell

(always using the ASA and BFGS derived zeroth order SMFM parameters as described above).

The trading parameters fit by this procedure were:aL = 19, aS = 5, ∆q1 = 7.57644,∆q2 = 53.549,

p_l = 0.515714,p_s = 0.333581.

3.3.2. Out-of-sample SMFM trading

The trading process described above was applied to the 1990 out-of-sample SP500 data. (See Fig.

1.) Note that 1990 was a “bear” market, while 1989 was a “bull” market. Thus, these two years had quite

different overall contexts, and this was believed to provide a stronger test of this methodology than

picking two years with similar contexts.

The inner shell of optimization was performed as described above for 1990 as well. Table 1 gives

the daily results of trading. The summary of results is: cumulative profit = $24090, number of profitable

long positions = 8, number of profitable short positions = 9, number of losing long positions = 7, number
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of losing short positions = 6, maximum profit of any giv en trade = $8180, maximum loss of any trade =

−$2145, maximum accumulated profit during year = $26555, maximum loss sustained during year =

−$5745.

Fig. 4 gives graphs of momenta during 1989 and 1990. Comparing these to Figs. 2 and 3, note that

there are more discernable cycles than are present in the ratio-variables. This suggests that the momenta

more directly convey important information about the dynamics of the market than does the price.

Although only one variable, the futures SP500, was actually traded (the code can accommodate

trading on multiple markets), note that the multivariable coupling to the cash market entered in three

important ways: (1) The SMFM fits were to the coupled system, requiring a global optimization of all

parameters in both markets to define the time evolution of the futures market. (2) The canonical momenta

for the futures market is in terms of the partial derivative of the full Lagrangian; the dependency on the

cash market enters both as a function of the relative value of the off-diagonal to diagonal terms in the

metric, as well as a contribution to the drifts and diffusions from this market. (3) The canonical momenta

of both markets were used as technical indicators for trading the futures market.

3.3.3. Reversing data sets

The same procedures described above were repeated, but using the 1990 SP500 data set for training

and the 1989 data set for testing.

The values of the parameters obtained by this fitting process were:f 1
1 = 0.138135,f 2

1 = −0.138146,

f 1
2 = 1.37507e-05,f 2

2 = 0.000576185, ˆg1
1 = −0.460157, ˆg2

1 = 0.460342, ˆg1
2 = 0.000876352, ˆg2

2 =

0.00168462.

The trading parameters fit by this procedure were:aL = 22, aS = 4, ∆q1 = 20.3058,∆q2 = 96.1126,

p_l = 0.15634,p_s = 0.15898.

The summary of results is: cumulative profit = $10265, number of profitable long positions = 14,

number of profitable short positions = 5, number of losing long positions = 11, number of losing short

positions = 11, maximum profit of any giv en trade = $9605, maximum loss of any trade = −$2170,

maximum accumulated profit during year = $14130, maximum loss sustained during year = −$1270.
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4. CONCLUSION

A complete sample scenario has been presented: (a) developing a multivariate nonlinear

nonequilibrium model of financial markets; (b) fitting the model to data using methods of ASA global

optimization; (c) deriving technical indicators to express dynamics about most likely states; (d)

optimizing trading rules using these technical indicators; (e) trading on out-of-sample data to determine if

steps (a)−(d) are at least sufficient to profit by the knowledge gained of these financial markets, i.e., these

markets are not efficient.

Just based the models and calculations presented here, no comparisons can yet be made of any

relative superiority of these techniques over other models of markets and other sets of trading rules.

Rather, this exercise should be viewed as an explicit demonstration (1) that financial markets can be

modeled as nonlinear nonequilibrium systems, and (2) that financial markets are not efficient and that they

can be properly fit and profitably traded on real data.
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FIGURE CAPTIONS

Figure 1. SP500 cash and futures prices used used in the SMFM study.

Figure 2. SP500 ratios of prices for 1989 SP500 cash and futures.

Figure 3. SP500 ratios of prices for 1990 SP500 cash and futures.

Figure 4. SP500 momenta of futures prices for 1989 and 1990 SP500. The 1989 momenta were

calculated after using 1990 data to fit the SMFM model. The 1990 momenta were calculated after using

1989 data to fit the SMFM model.
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TABLE CAPTIONS

Table 1. Results of SMFM Trading on 1990 SP500. The first column gives the date of the trade.

The second column gives the action taken: A 0 represents no trading is performed until enough data is

gathered, e.g., to calculate momenta. A 1 represents that all positions are closed out, e.g., at the end of the

year. A 2 represents getting out of a long position. A 3 represents getting out of a short position. A 10

represents entering a long position, whether in a waiting or a short position. A −10 represents entering a

short position, whether in a waiting or a long position. A 4 represents any remaining circumstance,

getting out of any positions if they exist, and going into or maintaining a waiting position. The third

column gives the current futures price. The fourth column gives the derived canonical momenta of the

futures price. The fifth column gives the day-to-day change in profit or loss. The sixth column gives the

accumulated profit or loss.
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Nonlinear Nonequilibrium Financial Markets Table 1-1 Lester Ingber

Date Action Price Momentum Prof/Loss Accum_P/L

900102 0 362.5 0 0 0
900103 0 361.7 0 0 0
900104 0 359.85 0 0 0
900105 0 354.6 0 0 0
900108 0 357.55 0 0 0
900109 0 352.2 0 0 0
900110 0 351.3 12888 0 0
900111 0 351.85 16243 0 0
900112 0 340.95 13635 0 0
900115 0 339.2 9790.6 0 0
900116 0 342.1 7712.6 0 0
900117 0 338.75 23132 0 0
900118 0 340.85 19694 0 0
900119 0 342.2 17783 0 0
900122 -10 331.4 -48359 -0 0
900123 -10 330.25 -35550 0 0
900124 4 333.1 11288 -920 -920
900125 4 326.75 16534 0 -920
900126 4 326.8 23973 0 -920
900129 4 326.7 19622 0 -920
900130 4 325.2 15954 0 -920
900131 4 330.5 46293 0 -920
900201 4 330.1 33920 0 -920
900202 4 332.5 41691 0 -920
900205 4 333.4 31801 0 -920
900206 4 330.25 25036 0 -920
900207 10 335.8 55905 -0 -920
900208 10 335.3 45384 0 -920
900209 10 334.4 47744 0 -920
900212 10 330.75 34837 0 -920
900213 10 332.65 32927 0 -920
900214 4 333.3 -10906 -1320 -2240
900215 10 336.15 142.86 -0 -2240
900216 4 333.2 -17619 -1545 -3785
900220 4 328.75 -17480 0 -3785
900221 4 329.3 -12886 0 -3785
900222 4 326.75 -27091 0 -3785
900223 4 325.5 -26829 0 -3785
900226 4 329.85 -11259 0 -3785
900227 4 331.35 -11244 0 -3785
900228 4 332.95 11798 0 -3785
900301 4 337.65 5833.8 0 -3785
900302 4 339.75 684.3 0 -3785
900305 -10 338.45 -5641.9 -0 -3785
900306 -10 343.2 -1652.8 0 -3785
900307 -10 340.9 -50367 0 -3785
900308 -10 344.5 -29035 0 -3785
900309 -10 342.05 -46972 0 -3785
900312 -10 342.65 -33355 0 -3785
900313 -10 339.55 -30543 0 -3785
900314 4 341.35 38315 -1520 -5305



Nonlinear Nonequilibrium Financial Markets Table 1-2 Lester Ingber

Date Action Price Momentum Prof/Loss Accum_P/L

900315 4 342.2 28928 0 -5305
900316 4 345.25 36703 0 -5305
900319 4 347.6 29455 0 -5305
900320 4 345.6 22806 0 -5305
900321 -10 342.2 -14140 -0 -5305
900322 -10 339.1 -11816 0 -5305
900323 4 340.8 2271.1 630 -4675
900326 4 341.75 449.86 0 -4675
900327 4 345.55 1952.8 0 -4675
900328 4 345.9 -22453 0 -4675
900329 4 343.9 -25895 0 -4675
900330 4 341.45 -28679 0 -4675
900402 4 341.9 -18134 0 -4675
900403 4 347.35 -13281 0 -4675
900404 -10 343.2 -52988 -0 -4675
900405 -10 344.25 -47766 0 -4675
900406 -10 343.7 -54351 0 -4675
900409 -10 344.4 -43528 0 -4675
900410 -10 344.3 -37378 0 -4675
900411 4 345.2 10026 -1070 -5745
900412 4 348.1 11141 0 -5745
900416 4 346.85 2522.2 0 -5745
900417 4 347.2 3021.1 0 -5745
900418 -10 342.9 -40435 -0 -5745
900419 -10 339.6 -39556 0 -5745
900420 -10 336.4 -33069 0 -5745
900423 -10 332.65 -29306 0 -5745
900424 -10 332.45 -23859 0 -5745
900425 4 334.25 14571 4255 -1490
900426 4 335.3 14083 0 -1490
900427 4 328.85 -5697.1 0 -1490
900430 4 332.1 15090 0 -1490
900501 4 333.65 11924 0 -1490
900502 4 336.95 34151 0 -1490
900503 4 337.15 2677.8 0 -1490
900504 4 339.9 11210 0 -1490
900507 4 342.5 8524.8 0 -1490
900508 4 345.1 7836.9 0 -1490
900509 4 344.95 -19098 0 -1490
900510 4 345.05 -18684 0 -1490
900511 10 354.25 2082.6 -0 -1490
900514 4 356.9 -10305 1255 -235
900515 4 356.5 -10375 0 -235
900516 4 355.35 -21582 0 -235
900517 4 355.95 -3070.7 0 -235
900518 4 355.6 -2827.6 0 -235
900521 10 359 4474.5 -0 -235
900522 4 360.8 3011.3 830 595
900523 4 360.75 -5706.7 0 595
900524 4 359.85 -15600 0 595
900525 4 355.35 -22373 0 595



Nonlinear Nonequilibrium Financial Markets Table 1-3 Lester Ingber

Date Action Price Momentum Prof/Loss Accum_P/L

900529 4 362.6 3146.1 0 595
900530 4 363 140.75 0 595
900531 4 361.75 -18205 0 595
900601 10 368.5 3596.1 -0 595
900604 4 373.75 -1080.6 2555 3150
900605 4 372.85 -4107.9 0 3150
900606 4 371 -14972 0 3150
900607 4 368.95 -10720 0 3150
900608 4 364.45 -11414 0 3150
900611 4 367.8 4533.4 0 3150
900612 10 371.6 5086.7 -0 3150
900613 -10 370.4 -12051 -600 2550
900614 -10 368.5 -31489 0 2550
900615 -10 367.95 -28874 0 2550
900618 -10 361.9 -32799 0 2550
900619 -10 363.6 -24803 0 2550
900620 -10 364.4 -10826 0 2550
900621 4 366.9 3518.8 1680 4230
900622 -10 360.15 -21708 -0 4230
900625 -10 357.6 -10346 0 4230
900626 -10 355.95 -8346.4 0 4230
900627 4 359.45 44969 280 4510
900628 4 362.15 33693 0 4510
900629 4 362.35 27726 0 4510
900702 4 364.4 26410 0 4510
900703 4 364 21479 0 4510
900705 -10 359.8 -21078 -0 4510
900706 4 362.25 -17900 -1295 3215
900709 -10 363.1 -18866 -0 3215
900710 -10 360.5 -17949 0 3215
900711 10 365.4 32718 -1150 2065
900712 10 369.45 44143 0 2065
900713 10 370.9 40933 0 2065
900716 10 372.3 34111 0 2065
900717 10 370.4 27662 0 2065
900718 4 367.15 -10420 805 2870
900719 4 368.45 -797.44 0 2870
900720 4 364.8 -8972.7 0 2870
900723 -10 357.8 -13582 -0 2870
900724 4 357.65 -7943.9 5 2875
900725 10 359.65 12270 -0 2875
900726 10 358.25 12179 0 2875
900727 4 355.5 4115.4 -2145 730
900730 10 358.25 13536 -0 730
900731 10 358.6 10240 0 730
900801 4 357.45 743.17 -470 260
900802 -10 353.9 -16462 -0 260
900803 -10 346.65 -23005 0 260
900806 -10 334.4 -28930 0 260
900807 -10 337.2 -16040 0 260
900808 4 339.55 -4669 7105 7365



Nonlinear Nonequilibrium Financial Markets Table 1-4 Lester Ingber

Date Action Price Momentum Prof/Loss Accum_P/L

900809 4 341.4 6135.7 0 7365
900810 4 337.3 -19696 0 7365
900813 4 339.8 -3751.1 0 7365
900814 4 340.75 -3971.4 0 7365
900815 4 341.65 13427 0 7365
900816 -10 331.75 -26107 -0 7365
900817 -10 328.65 -8952.2 0 7365
900820 4 329.7 437.58 955 8320
900821 -10 323.5 -3608.2 -0 8320
900822 4 317.2 1404.6 3080 11400
900823 4 306.25 -19699 0 11400
900824 10 313 33077 -0 11400
900827 10 322.8 32852 0 11400
900828 10 322.65 22551 0 11400
900829 10 323.85 8138.7 0 11400
900830 4 318.55 -12864 2705 14105
900831 10 322.55 17746 -0 14105
900904 10 327.95 17376 0 14105
900905 10 328.55 13472 0 14105
900906 4 324.4 -46137 855 14960
900907 4 327.4 -24412 0 14960
900910 4 325.1 -30433 0 14960
900911 4 325.4 -24566 0 14960
900912 4 325.7 -9189.3 0 14960
900913 4 321.9 -6432.4 0 14960
900914 4 319.45 -5300.4 0 14960
900917 4 321.1 4231.9 0 14960
900918 4 321.6 3007 0 14960
900919 -10 318.7 -13251 -0 14960
900920 -10 314.4 -26753 0 14960
900921 -10 314.6 -16478 0 14960
900924 -10 307.3 -29161 0 14960
900925 -10 311.3 -17946 0 14960
900926 -10 308.3 -60283 0 14960
900927 -10 302.7 -48549 0 14960
900928 -10 306.75 -32780 0 14960
901001 -10 318.25 -11864 0 14960
901002 -10 318.35 -17181 0 14960
901003 -10 313.7 -25668 0 14960
901004 -10 315.3 -28345 0 14960
901005 -10 314.85 -23633 0 14960
901008 -10 317.4 -13765 0 14960
901009 -10 305.75 -19285 0 14960
901010 4 302.2 60834 8180 23140
901011 4 297.35 49809 0 23140
901012 4 301.7 85671 0 23140
901015 4 306 71221 0 23140
901016 4 301.25 55437 0 23140
901017 10 300.6 24137 -0 23140
901018 10 308.15 45642 0 23140
901019 10 313.05 46494 0 23140



Nonlinear Nonequilibrium Financial Markets Table 1-5 Lester Ingber

Date Action Price Momentum Prof/Loss Accum_P/L

901022 10 315.5 34382 0 23140
901023 10 313.8 27071 0 23140
901024 10 315.45 15547 0 23140
901025 10 311.4 6418.2 0 23140
901026 10 306.25 7496.3 0 23140
901029 10 304 12258 0 23140
901030 10 306.2 13245 0 23140
901031 4 306.8 -1336.8 3030 26170
901101 4 308.45 -6118.9 0 26170
901102 4 313.2 -1520.1 0 26170
901105 4 315.4 -6488.9 0 26170
901106 4 311.8 -8829.9 0 26170
901107 -10 307.25 -17689 -0 26170
901108 4 309.8 6536.9 -1345 24825
901109 10 315.55 18566 -0 24825
901112 10 320.5 13803 0 24825
901113 4 319.15 8276.7 1730 26555
901114 10 321.7 21227 -0 26555
901115 10 318.05 8577.3 0 26555
901116 10 319.3 25329 0 26555
901119 10 321.15 22045 0 26555
901120 10 316.8 15453 0 26555
901121 10 317.85 36481 0 26555
901123 10 315.5 27101 0 26555
901126 10 318.2 38527 0 26555
901127 10 319.65 25526 0 26555
901128 4 319.25 -16117 -1295 25260
901129 4 316.75 -17612 0 25260
901130 4 324.05 6258.7 0 25260
901203 4 327.15 -3343.4 0 25260
901204 4 330.95 -2952.3 0 25260
901205 4 334.5 -13847 0 25260
901206 4 333.25 -14307 0 25260
901207 4 330.9 -16895 0 25260
901210 4 332.25 -6567.9 0 25260
901211 4 331.15 -7029.4 0 25260
901212 10 334.1 34184 -0 25260
901213 10 332.5 15014 0 25260
901214 10 329.65 14254 0 25260
901217 10 329.15 16560 0 25260
901218 10 333.1 17281 0 25260
901219 4 331.9 -26320 -1170 24090
901220 4 332.85 -26496 0 24090
901221 4 334.75 -27842 0 24090
901224 4 331.2 -33629 0 24090
901226 4 333.75 -25192 0 24090
901227 4 330.8 -27657 0 24090
901228 1 331.65 -2317.3 0 24090


