
A simple options training model

LESTER INGBER

DRW Inv estments LLC, Chicago Mercantile Exchange Center

30 S Wacker Dr, Ste 1516, Chicago, IL 60606

and

Lester Ingber Research

PO Box 06440, Wacker Dr PO - Sears Tower, Chicago, IL 60606-0440

ingber@ingber.com ingber@alumni.caltech.edu

ABSTRACT

Options pricing can be based on sophisticated stochastic differential equation models.

However, many traders, expert in their art of trading, develop their skills and intuitions based

on loose analogies to such models and on games designed to tune their trading skills, not

unlike the state of affairs in many disciplines. An analysis of one such game reveals some

simple but relevant probabilistic insights into the nature of options trading often not discussed

in most texts.

Ke ywords: options; volatility; optimization

1. INTRODUCTION

The pricing of financial options, even at the most rudimentary technical level [1], is relatively

mathematically sophisticated for many practicing traders. While many options traders use numerical

results output by computer-coded options models, their analytic and intuitive skills generally are honed by

their active participation in trading.

This should come as no surprise, as similar circumstances/gaps exist between analysts and

practitioners in many disciplines, e.g., as evidenced by relatively sophisticated studies in finance [2],

neuroscience [3,4], combat analysis [5], etc., which are not studied by many practitioners in these fields.

This does not imply that many practitioners have no interest or use for such analyses, quite the contrary,

A simple options training model - 2 - Lester Ingber

but they recognize that the sophistication of their discipline often relies heavily on teamwork among

several to many kinds of experts.

At the Chicago Mercantile Exchange (CME), groups of traders, new as well as experienced, tune

their floor trading skills, e.g., requiring aggressive rapid decision-making on bids and asks, hand signals,

etc., by practicing trading games when they are off the floor. I was approached by such a group of traders,

who wondered if there was any way I could determine whether their rather consistent results of a trading

game could be determined as “fair” pricing by any analysis.

In the process of a quick examination of their trading game, I realized that my analysis could serve

to introduce the technical layperson to some sense of how the activity of trading determines a fair price

for options.

Section 2 is an outline of one variation of the trading game. Section 3 giv es the analysis, stressing

simple probability concepts. Appendices A and B give the C-code used to calculate the fair price of this

options game. Section 4 is the conclusion.

2. THE GAME

A numberN of cardboard cards are prepared, numbered from 1 toN on one side. Each ofM participants

draw one card. Typically,N is about 20−40 andM is 5−7. Some variations include placing a few cards

either face up on down on the table.

Each trader must estimate the sum of the numbers on all cards held by the other traders (plus the

numbers of face up cards on the table, etc.) Based on the sum of all possible numbers on all held cards,

Cs, a set of trading positions is assumed. For example, in the spread game analyzed here, the maximum

and minimum sum of card valuesC is given by

Cmin =
M

m=1
Σ m

Cmax =
N

m=N−M+1
Σ m (1)

with a center valueC0 given by their average. (IfCmax + Cmim is odd, 2 points spanC0.) The value of the

option spread, a “straddle,” is determined by the sum of the cards,

A simple options training model - 3 - Lester Ingber

Vs = |Cs − C0| . (2)

Clearly, all position values are simply linearly increasing functions from the center zero position (or pair

of positions ofN is even, etc.).

After some time of declaring bids and asks, e.g., 15 minutes, a full accounting of positions is

rendered.

Since the deal of cards introduces a statistical element into the game, some natural questions arise.

For example, what is the average expected value of the spread position? Or, for a range ofN and M ,

what is the largest value ofV to be expected?

3. THE ANALYSIS

3.1. Expected Values

At the outset, I was able to show the traders that the expectation of the fair price of the spread,V ,

could be broken up into two parts, where the expectation is developed as the sum of products of

probabilities,ps, a giv en spread position, s, exists in the cards, times the valuesVs of these positions,

V =
s
Σ psVs . (3)

As mentioned previously, in this particular game, the positionsVs are simple linear functions. The

problem then reduces to enumeration of the probabilitiesps of occurrences of states of the “underlying

market” defined by the cards.

At first glance, it would seem wise to simply write down some combinatoric expressions to define

this game. However, being armed with the knowledge of the precocious nature of traders, who will

quickly evolve new games and new questions, and given the potentially large combinatoric expressions

that could develop, I decided that a simulation, capable of inserting new constraints, etc., would be a

better approach.

3.2. The Simulation

The simulation consists of many iterations of shuffling and dealing cards to the traders, adding up

probabilities of various states, etc. Appendix A gives the C code for this simulation.

A simple options training model - 4 - Lester Ingber

The code also permits the user to specify a number of cards up or down. In this particular code,

cards up are included in the summation of cards, e.g., as if they are extra players. Cards down are not

included in the sum. In either case, cards taken from the deck are not shuffled in the many iterations. To

keep the code self-contained, values of the cards placed up or down can be directly coded into search.c.

As expected, forN large, e.g., even greater than 10, combinatorics quickly become very well

approximated by a Gaussian distribution [6]. For example, forN = 30, M = 7, and 1,000,000 iterations,

the actual computed moments about the mean of the distribution of the numbers held by the traders are

given by

< 1 >= 1

< C >= 108. 51

< (C− < C >)2 >= 415. 20

< (C− < C >)3 >= −1. 62

< (C− < C >)4 >= 486038

skew=
< (C− < C >)3 >

< (C− < C >)2 >3/2
= −0. 00019

kurtosis=
< (C− < C >)4 >

< (C− < C >)2 >2
= 2. 82 (4)

The relatively small value of the skew and the relatively small deviation of the kurtosis from 3 shows that

indeed a Gaussian distribution is a rather good approximation.

3.3. Some Results

For N = 30, M = 7, and 1,000,000 iterations, the most likely value of the spread given by the

simulation is 16.39. Fig. 1 illustrates the distribution and the spread versus the card values. The traders

have played this game for some years, and they hav e noted that their games regularly results in a best

value of about 19. To get some perspective on the influence of the number of iterations, Fig. 2 gives the

same game but with only 10,000 iterations.

A simple options training model - 5 - Lester Ingber

Figure 1

Figure 2

While in accord with their experience, a bit surprising to the traders were the results for placing

some cards up. There was not much difference noted. Since cards up are counted, the best comparison to

the above example is for a case such asN = 30, M = 4, cards up = 3, and 1,000,000 iterations. Here the

av erage value of 16.99 is close to the above example of 16.39. The additional information from the cards

up reduces the volatility,

volatility =√ < (C− < C >)2 >
(max−min+1)

(max−min)
(5)

from 20.44 to 16.23.

For a cards down case,N = 30, M = 7, cards down = 3, and 1,000,000 iterations, an expected value

of 16.37 and volatility of 20.01 was obtained.

The value of the option is about the same in all 3 cases (and not much different than runs using

10,000 iterations or less). There are several aspects and trade-offs to consider, e.g., relative peaking of the

volatilities, different values of the sums, shifts of the peaks of the distributions, etc. For instance, the

mean shifts for both cards up and down, but the sharper peak for cards up likely is more sensitive to

picking up larger values of the spread as it moves off center from the case of no cards up or down.

3.4. Optimization Study

To answer some questions on maximum values of positions, etc., the spread.c code given in

Appendix A was used as a (negative) cost function to be processed by Adaptive Simulated Annealing

(ASA). ASA is a powerful global optimizer which can be obtained at no charge from

http://www.ingber.com/ or http://www.alumni.caltech.edu/˜ingber/ under WWW. ASA can optimize

mixed integer and continuous variables under complex constraints.

A simple options training model - 6 - Lester Ingber

The differences (“diffs”) between the code available from the above InterNet archive and that used

for this project is given in Appendix B. The diffs may be used conveniently as a patch file to easily

generate the full optimization code for this project.

Since the statistics of this game are discrete, which becomes more pronounced at smaller values of

all variables considered, it should not be surprising that a full global optimization is required to find the

value ofM , for a given value ofN , that maximizes the value of the option.

For example,N was permitted to range from 2 to 100, andM from 2 to 100 subject toM less than

N . There were no cards up or down, and each cost function used 10,000 iterations. (The traders wanted

to see if indeed the largest value was forN = 100.) The valueN = 100 gives the largest value since the

positions range to higher values for higherN . Even optimizing the value of the option scaled by 1/N

givesN = 100 as the largest value of the option.

A bit surprising to the traders was that the maximum value of the option forN = 100 was notM =

50 (based on binomial distribution combinatorics), but rather 38, yielding a value of 111.44 with volatility

139.51. This is a reflection of the importance of the discrete statistics at lower values ofM when there are

insufficient iterations.

3.5. Application to Real Trading

Real-world options trading, at least to a first order approximation is based on taking options

positions on an underlying market. where the market is described by a lognormal distribution. The

standard partial-differential equation used to formulate most variants of Black-Scholes (BS) models

describing the market value of an option,V , is

∂V

∂t
+

1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 , (6)

where S is the asset price, andσ is the standard deviation, or volatility ofS, and r is the short-term

interest rate. The solution depends on boundary conditions, subject to a number of interpretations, some

requiring minor transformations of the basic BS equation or its solution. The basic equation can apply to

a number of one-dimensional models of interpretations of prices given toV , e.g., puts or calls, and toS,

e.g., stocks or futures, dividends, etc. For instance, ifV is set toc, a call on an European option with

exercise priceE with maturity atT , the solution is

A simple options training model - 7 - Lester Ingber

c(S, t) = SN (d1) − Ee−r(T−t) N (d2) ,

d1 =
ln(S/E) + (r +

1

2
σ 2)(T − t)

σ (T − t)1/2
,

d2 =
ln(S/E) + (r −

1

2
σ 2)(T − t)

σ (T − t)1/2
. (7)

Improvements to this approximation are the meat of many papers and investigations [2,7-9].

If a lognormal transformation is made to the market S described just above, with respect to some

reference stateS0

Z = ln(C/C0) (8)

then the transformed partial differential equation is Gaussian with respect toZ . This suggests how the

above game/model, with an underlying marketC described by values of held cards, might be recast into a

more realistic market.

For example, consider the Eurodollar market. Eurodollars are fixed-rate time deposits held

primarily by overseas banks, but denominated in US dollars. They are not subject to US banking

regulations and therefore tend to have a tighter bid-ask spread than deposits held in the United States [10].

The three-month Eurodollar futures contract is one of the most actively traded futures markets in the

world. The contract is quoted as an index where the yieldy is equal to the Eurodollar priceE subtracted

from 100,

yt = 100− Et . (9)

This yield is equal to the fixed rate of interest paid by Eurodollar time deposits upon maturity and is

expressed as an annualized interest rate based on a 360-day year. The Eurodollar futures are cash settled

based on the 90-day London Interbank Offer Rate (LIBOR). A “notional” principal amount of $1 million,

is used to determine the change in the total interest payable on a hypothetical underlying time deposit, but

is never actually paid or received [10].

If we consider

Zt = ln
yt

yt−1
≈

yt − yt−1

yt−1
, (10)

A simple options training model - 8 - Lester Ingber

and consider the values of the sums of cards in the above game as representing percentage deviations of

Eurodollar yields, then there is a somewhat realistic mapping of this game onto a model of a real market.

(The spread values must be similarly transformed.)

4. CONCLUSION

Options pricing is regularly based on relatively sophisticated stochastic differential equations. However,

most textbooks to not develop the basic intuitions behind these equations as arising from rather simple

probabilistic concepts, e.g., expected value as a sum over probabilities of states of the underlying market

times the values of the options positions at these states. This paper presents an options model with such

an interpretation, based on an options training game.

With the inevitable rapid decline of open-outcry floor trading. as electronic trading is rapidly

gaining popularity among investors, all traders must become more cognizant of the value of sophisticated

analyses to their bottom line net income. Such analyses and training games as presented here can help to

develop an awareness of such analyses.

It is my contention that similar circumstances exist in many disciplines, ranging from finance, to

neuroscience, to combat analyses, etc., disciplines which are blends of Art and Science. Many people in

these disciplines are in danger of extinction if they do not increase their training in modern analyses and

technologies.

A simple options training model - 9 - Lester Ingber

APPENDIX A: SPREAD C-CODE

The spread code has two parts, spread.c, the main code, and spread.h, an “include” file. The

“SPREAD_ASA” statements are used to permit the spread code to be run as is, or included in the

optimizing code Adaptive Simulated Annealing (ASA) [11].

A.1 spread.c
/* SPREAD_ASA is set to TRUE=1 in ASA when patch.GAMES is applied */
#ifndef SPREAD_ASA
#define SPREAD_ASA 0
#endif

#if SPREAD_ASA
#else /* SPREAD_ASA */
/* spread cards peop up_cards dn_cards iter */

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main (int argc, char **argv);

#include "spread.h"

int
main (int argc, char **argv)
{
#endif /* SPREAD_ASA */
int m, n, i, nn, n_up, n_dn;
int cards, peop;
int up_cards, dn_cards;
int min, max;
int *deck, *up_deck, *dn_deck, *tmp_deck;
long int r, iter;
long int norm, sum;
double av, vol, *prob, payoff, value, mid_value, valpercard;
double xx, y, m0, m1, m2, m3, m4, skew, kurtosis;
char spread_out[80];
FILE *ptr_out;

#if SPREAD_ASA
cards = x[0];
peop = x[1];
iter = 10000;
up_cards = 0;
dn_cards = 0;

#else /* SPREAD_ASA */
cards = atoi (argv[1]);

A simple options training model - 10 - Lester Ingber

peop = atoi (argv[2]);
up_cards = atoi (argv[3]);
dn_cards = atoi (argv[4]);
iter = atol (argv[5]);

#endif /* SPREAD_ASA */

if (peop > cards - up_cards - dn_cards)
{

#if SPREAD_ASA /* SPREAD_ASA */
*cost_flag = FALSE;
return (0);

#else /* SPREAD_ASA */
exit (-6);

#endif /* SPREAD_ASA */
}

if ((deck = (int *) calloc (cards, sizeof (int))) == NULL)
exit (9);

if ((up_deck = (int *) calloc (cards, sizeof (int))) == NULL)
exit (9);

if ((dn_deck = (int *) calloc (cards, sizeof (int))) == NULL)
exit (9);

if ((tmp_deck = (int *) calloc (cards, sizeof (int))) == NULL)
exit (9);

av = 0; /* use when cards = peop */
for (n = 0; n < cards; ++n)

{
deck[n] = n + 1;
tmp_deck[n] = deck[n];
up_deck[n] = dn_deck[n] = 0;
av += (double) deck[n];

}
av /= (double) cards;
vol = 0;

/* calc midpoint of spread */
min = 0;
for (m = 0; m < peop + up_cards; ++m)

{
min += deck[m];

}
max = 0;
for (m = cards; m > cards - peop - up_cards; --m)

{
max += deck[m - 1];

}
mid_value = (double) (max + min) / 2.0;

if ((prob = (double *) calloc (max + 1, sizeof (double))) == NULL)
exit (9);

for (n = 0; n < max + 1; ++n)
{

A simple options training model - 11 - Lester Ingber

prob[n] = 0;
}

/* select possible up and dn cards */
up_deck[0] = 9;
up_deck[1] = 20;
up_deck[2] = 2;

dn_deck[0] = 9;
dn_deck[1] = 20;
dn_deck[2] = 2;

if (up_cards == 0)
{
;

}
else

{
for (n_up = 0; n_up < up_cards; ++n_up)

{
nn = 0;
for (n = 0; n < cards; ++n)

{
if (deck[n] == up_deck[n_up])

{
;

}
else

{
tmp_deck[nn] = deck[n];
++nn;

}
}

for (n = 0; n < cards; ++n)
{
deck[n] = tmp_deck[n];

}
--cards;

}
}

if (dn_cards == 0)
{
;

}
else

{
for (n_dn = 0; n_dn < dn_cards; ++n_dn)

{
nn = 0;
for (n = 0; n < cards; ++n)

{
if (deck[n] == dn_deck[n_dn])

{

A simple options training model - 12 - Lester Ingber

;
}
else

{
tmp_deck[nn] = deck[n];
++nn;

}
}

--cards;
for (n = 0; n < cards; ++n)

{
deck[n] = tmp_deck[n];

}
}
}

m0 = m1 = m2 = m3 = m4 = skew = kurtosis = 0;

if (max > min)
{
/* warm up random() */
for (i = 0; i < 100; ++i)

{
shuffle (deck, cards);

}

norm = 0;
for (r = 0; r < iter; ++r)

{
shuffle (deck, cards);
sum = 0;
for (m = 0; m < peop; ++m)

{
sum += (long int) deck[m];

}
/* dn_cards not included in sum */
if (up_cards > 0)

{
for (n = 0; n < up_cards; ++n)

{
sum += (long int) up_deck[n];

}
}

prob[sum] += 1.0;
++norm;

}

av = 0;
vol = 0;
for (m = min; m <= max; ++m)

{
prob[m] /= (double) norm;
av += ((double) m) * (prob[m]);
vol += ((double) m) * ((double) m) * (prob[m]);

A simple options training model - 13 - Lester Ingber

}

vol -= av * av;
vol = sqrt (((double) (max - min + 1) / (double) (max - min)) * vol);

for (m = min; m <= max; ++m)
{
xx = prob[m];
y = (double) m - av;
m0 += xx;
m1 += xx * y;
m2 += xx * y * y;
m3 += xx * y * y * y;
m4 += xx * y * y * y * y;

}
skew = m3 / pow (m2, 1.5);
kurtosis = m4 / (m2 * m2);

}

sprintf (spread_out, "%s_%d_%d_%d_%d_%ld", "spread",
cards + up_cards + dn_cards, peop, up_cards, dn_cards, iter);

if ((ptr_out = fopen (spread_out, "w")) == NULL)
exit (-6);

fprintf (ptr_out,
"cards = %d\tpeop = %d\tup_cards = %d\tdn_cards= %d\titer = %ld\n",

cards + up_cards + dn_cards, peop, up_cards, dn_cards, iter);

for (n = 0; n < up_cards; ++n)
{
fprintf (ptr_out, "up_deck[%d] = %d\n", n, up_deck[n]);

}
for (n = 0; n < dn_cards; ++n)

{
fprintf (ptr_out, "dn_deck[%d] = %d\n", n, dn_deck[n]);

}

fprintf (ptr_out, "cards\tprob\tpayoff\tprod\n");
value = 0;
for (m = min; m <= max; ++m)

{
payoff = fabs ((double) m - mid_value);
value += prob[m] * payoff;
fprintf (ptr_out, "%d\t%g\t%g\t%g\n",

m, prob[m], payoff, prob[m] * payoff);
}

valpercard = value / (double) cards;

fprintf (ptr_out, "m0 = %g\tm1 = %g\tm2 = %g\tm3 = %g\tm4 = %g\n",
m0, m1, m2, m3, m4);

fprintf (ptr_out, "skew = %g\tkurtosis = %g\n",
skew, kurtosis);

A simple options training model - 14 - Lester Ingber

fprintf (ptr_out, "Average Sum Cards = %g\tVol = %g\n", av, vol);

fprintf (ptr_out, "Value = %g\tValue/Card = %g\n",
value, valpercard);

fclose (ptr_out);

free (prob);
free (up_deck);
free (dn_deck);
free (deck);

#if SPREAD_ASA
#if 0
return (-valpercard);

#else
return (-value);

#endif
#else /* SPREAD_ASA */
exit (0);
/* NOTREACHED */

}
#endif /* SPREAD_ASA */

A.2 spread.h
void shuffle (int *deck, int cards);
void swap (int *p, int *q);

void
shuffle (int *deck, int cards)
{
int n, p;

for (n = 0; n < cards; ++n)
{
p = (int) (random () % (long int) cards);
swap (&(deck[n]), &(deck[p]));

}
}

void
swap (int *p, int *q)
{

int t;

t = *p;
*p = *q;
*q = t;

}

A simple options training model - 15 - Lester Ingber

APPENDIX B: PATCH TO OPTIMIZE SPREAD C-CODE

The differences (“diffs”) between the code available from http://www.ingber.com/ and that used for this

project may be used conveniently as a patch file to easily generate the full optimization code for this

project. The code below was prepared from ASA version 17.8.

B.1 patch
diff -rc ASA/Makefile GAMES/Makefile
*** ASA/Makefile Sun Jul 12 09:49:45 1998
--- GAMES/Makefile Mon Aug 24 09:34:29 1998

*** 49,55 ****
lines; if the latter, be sure each line to be continued ends in a "\"
(backslash).

! DEFINE_OPTIONS = -DASA_TEST=TRUE # -DMY_TEMPLATE=TRUE

This will run the ASA problem.
#DEFINE_OPTIONS = -DASA_TEST=TRUE

--- 49,55 ----
lines; if the latter, be sure each line to be continued ends in a "\"
(backslash).

! DEFINE_OPTIONS = # -DMY_TEMPLATE=TRUE

This will run the ASA problem.
#DEFINE_OPTIONS = -DASA_TEST=TRUE

*** 411,417 ****
The gnu C compiler is the default.
#CC = g++
CC = gcc

! CDEBUGFLAGS = -g -O -Wall # MY_TEMPLATE_flags
If you wish to include some profile statistics
#CDEBUGFLAGS = -g -O -pg -Wall
##

--- 411,417 ----
The gnu C compiler is the default.
#CC = g++
CC = gcc

! CDEBUGFLAGS = -g -O2 -Wall # MY_TEMPLATE_flags
If you wish to include some profile statistics
#CDEBUGFLAGS = -g -O -pg -Wall
##

*** 473,478 ****
--- 473,481 ----
#compile: $(USEROBJS) $(ASAOBJS)
@$(CC) $(LDFLAGS) -o asa_run $(USEROBJS) $(ASAOBJS) /usr/local/lib/leak.o -lm

A simple options training model - 16 - Lester Ingber

+ spread:
+ gcc -g -O2 -Wall -o spread spread.c -lm
+
If COST_FILE is set to FALSE, user_cst.h may be deleted. If the
name user_cst.h is changed, then this might be changed here as well.
$(USEROBJS): user.h user_cst.h # MY_TEMPLATE_user_incl

*** 491,501 ****
profile

clean:
! rm -f *\.o asa_run # MY_TEMPLATE_clean core gmon.out

realclean:
rm -f *\.o asa_run user_out* asa_out* core asa_save* asa_rcur asa_sfop \

! asa_[A-D]_[a-d] # MY_TEMPLATE_realclean gmon.out

docclean:
rm -f ASA-README ASA-README.ps

--- 494,504 ----
profile

clean:
! rm -f *\.o asa_run spread spread_* # MY_TEMPLATE_clean core gmon.out

realclean:
rm -f *\.o asa_run user_out* asa_out* core asa_save* asa_rcur asa_sfop \

! asa_[A-D]_[a-d] spread spread_* # MY_TEMPLATE_realclean gmon.out

docclean:
rm -f ASA-README ASA-README.ps

diff -rc ASA/asa_opt GAMES/asa_opt
*** ASA/asa_opt Sun Jul 12 09:49:47 1998
--- GAMES/asa_opt Mon Aug 24 09:23:49 1998

*** 1,5 ****
! Limit_Acceptances[10000][ASA_TEST:1000] 1000
! Limit_Generated[99999] 99999
Limit_Invalid_Generated_States[1000] 1000
Accepted_To_Generated_Ratio[1.0E-6][ASA_TEST:1.0E-4] 1.0E-4

--- 1,5 ----
! Limit_Acceptances[10000][ASA_TEST:1000] 30
! Limit_Generated[99999] 50
Limit_Invalid_Generated_States[1000] 1000
Accepted_To_Generated_Ratio[1.0E-6][ASA_TEST:1.0E-4] 1.0E-4

*** 15,24 ****
Sequential_Parameters[-1] -1
Initial_Parameter_Temperature[1.0] 1.0

! Acceptance_Frequency_Modulus[100] 100
! Generated_Frequency_Modulus[10000] 10000

A simple options training model - 17 - Lester Ingber

! Reanneal_Cost[1] 1
! Reanneal_Parameters[TRUE=1] 1

Delta_X[0.001] 0.001
User_Tangents[FALSE=0] 0

--- 15,24 ----
Sequential_Parameters[-1] -1
Initial_Parameter_Temperature[1.0] 1.0

! Acceptance_Frequency_Modulus[100] 10
! Generated_Frequency_Modulus[10000] 100
! Reanneal_Cost[1] 0
! Reanneal_Parameters[TRUE=1] 0

Delta_X[0.001] 0.001
User_Tangents[FALSE=0] 0

*** 26,38 ****

___Define_below_if_OPTIONS_FILE_DATA=TRUE

! number_parameters=*parameter_dimension 4

Param#:Minimum:Maximum:InitialValue:Integer[1or2]orReal[-1or-2]
! 0 -10000 10000 999.0 -1
! 1 -10000 10000 -1007.0 -1
! 2 -10000 10000 1001.0 -1
! 3 -10000 10000 -903.0 -1

___Define_below_if_QUENCH_COST_and_OPTIONS_FILE_DATA=TRUE

--- 26,36 ----

___Define_below_if_OPTIONS_FILE_DATA=TRUE

! number_parameters=*parameter_dimension 2

Param#:Minimum:Maximum:InitialValue:Integer[1or2]orReal[-1or-2]
! 0 2 30 5 2
! 1 2 30 10 2

___Define_below_if_QUENCH_COST_and_OPTIONS_FILE_DATA=TRUE

diff -rc ASA/asa_user.h GAMES/asa_user.h
*** ASA/asa_user.h Sun Jul 12 09:49:47 1998
--- GAMES/asa_user.h Mon Aug 24 09:33:18 1998

*** 35,40 ****
--- 35,44 ----
#endif
#if MY_TEMPLATE /* MY_TEMPLATE_asa_user */
/* you can add your own set of #define here */

+ #ifndef SPREAD_ASA
+ #define SPREAD_ASA TRUE

A simple options training model - 18 - Lester Ingber

+ #endif
+
#endif

#ifndef ASA_TEMPLATE_LIB
diff -rc ASA/user_cst.h GAMES/user_cst.h
*** ASA/user_cst.h Sun Jul 12 09:49:46 1998
--- GAMES/user_cst.h Mon Aug 24 09:33:19 1998

*** 26,31 ****
--- 26,33 ----

x[0], ..., x[*parameter_dimension-1]
for your parameters and to return the value of your cost function. */

+ #include "spread.h"
+
#if HAVE_ANSI
double
cost_function (double *x,

*** 64,69 ****
--- 66,72 ----

{

/* *** Insert the body of your cost function here. *** */
+ #include "spread.c"

#if ASA_TEST
double q_n, d_i, s_i, t_i, z_i, c_r;

A simple options training model - 19 - Lester Ingber

REFERENCES

1. J.C. Hull,Options, Futures, and Other Derivatives, Third Edition, Prentice Hall, Upper Saddle

River, NJ, (1997).

2. L. Ingber and J.K. Wilson, Volatility of volatility of financial markets,Mathl. Computer Modelling

29 (5), 39-57 (1999).

3. L. Ingber, Statistical mechanics of neocortical interactions: Applications of canonical momenta

indicators to electroencephalography,Phys. Rev. E 55 (4), 4578-4593 (1997).

4. L. Ingber, Statistical mechanics of neocortical interactions: Training and testing canonical momenta

indicators of EEG,Mathl. Computer Modelling 27 (3), 33-64 (1998).

5. M. Bowman and L. Ingber, Canonical momenta of nonlinear combat, inProceedings of the 1997

Simulation Multi-Conference, 6-10 April 1997, Atlanta, GA, Society for Computer Simulation,

San Diego, CA, (1997).

6. J. Mathews and R.L. Walker,Mathematical Methods of Physics, 2nd ed., Benjamin, New York,

NY, (1970).

7. L. Ederington and W. Guan, Is implied volatility an informationally efficient and effective predictor

of future volatility?, Report, U Oklahoma, Norman, OK, (1998).

8. G. Bakshi, C. Cao, and Z. Chen, Pricing and hedging long-term options, Report, Pennsylvania State

U, University Park, PA, (1998).

9. L. Ingber, Some Applications of Statistical Mechanics of Financial Markets, LIR-98-1-SASMFM,

Lester Ingber Research, Chicago, IL, (1998).

10. Federal Reserve Bank,Instruments of the Money Markets, Seventh Edition, Federal Reserve

Bank of Richmond, Richmond, VA, (1993).

11. L. Ingber, Adaptive Simulated Annealing (ASA), Global optimization C-code, Caltech Alumni

Association, Pasadena, CA, (1993).

A simple options training model - 20 - Lester Ingber

FIGURE CAPTIONS

FIG. 1. The distribution of card values and their spread versus are given. There are 30 cards and 7

players. The number of iterations is 1,000,000.

FIG. 2. The distribution of card values and their spread versus are given. There are 30 cards and 7

players. The number of iterations is 10,000.

A simple options training model - Figure 1 - Lester Ingber

0

0.005

0.01

0.015

0.02

0.025

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

D
is

tr
ib

ut
io

n

S
pr

ea
d

Sum of Cards

Card Game 1M Iterations

distribution
spread

A simple options training model - Figure 2 - Lester Ingber

0

0.005

0.01

0.015

0.02

0.025

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

D
is

tr
ib

ut
io

n

S
pr

ea
d

Sum of Cards

Card Game 10K Iterations

distribution
spread

