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Abstract-we present empirical evidence for considering volatility of Eurodollar futures as a 
stochastic process, requiring a generalization of the standard Black-Scholes (BS) model which treats 
volatility as a constant. We use a previous development of a statistical mechanics of financial markets 
(SMFM) to model these issues. @ 1999 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

There always is much interest in developing more sophisticated pricing models for financial in- 
struments. In particular, there currently is much interest in improving options pricing models, 
particularly with respect to stochastic variables [l-3]. 

In Section 2, we outline the nature of options pricing on a particular set of futures contracts, 
Eurodollars. In Section 3, as an introduction to the mathematics of options pricing, we outline 
the Black-Scholes (BS) model of options. In Section 4, we describe some generalizations to the 
BS model, including time-dependent volatility, and we introduce the path-integral representation 
of BS-type equations, useful for our present development. 

In Section 5, we give graphical results of a series of straightforward statistical analyses of 
Eurodollar contracts, leading to the conclusion that indeed volatility is quite likely a stochastic 
process. In Section 6, we describe how stochastic volatility, e.g., “volatility of volatility”, can be 
modelled within our framework of statistical mechanics of financial markets (SMFM) [4-81. In 
Section 7, we present our conclusion. 

We thank Donald R. Wilson for his support and discussions on trading Eurodollar options. 
We thank Man Wei Tam at DFlW Investments for his work in preparing the data and for discussions throughout 
the course of this project.. Yield data was extracted from the MIM database of Logical Information Machines 
(LIM). Implied volatility data was extracted from the database of Bridge/Knight-Ridder. 
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In the course of this work, we were surprised to learn that many people involved in trading 
as well as in data preparation did not understand the use of the “n/(n - 1)” in calculating 
the “unbiased standard deviation”, though this algorithm is used in practically every finance 
textbook. Since this journal reaches an interdisciplinary audience, in the Appendix a short 
derivation is given for this unbiased estimator. 

2. OUTLINE OF OPTIONS 

2.1. Eurodollars 

Eurodollars are fixed-rate time deposits held primarily by overseas banks, but denominated 
in U.S. dollars. They are not subject to U.S. banking regulations and therefore tend to have a 
tighter bid-ask spread than deposits held in the United States [9]. 

2.2. Futures 

The three-month Eurodollar futures contract is one of the most actively traded futures markets 
in the world. The contract is quoted as an index where the yield is equal to the Eurodollar 
price subtracted from 100. This yield is equal to the fixed rate of interest paid by Eurodollar 
time deposits upon maturity and is expressed as an annualized interest rate based on a 360-day 
year. The Eurodollar futures are cash settled based on the go-day London Interbank Offer Rate 
(LIBOR). A “notional” principal amount of $1 million, is used to determine the change in the 
total interest payable on a hypothetical underlying time deposit, but is never actually paid or 
received [9]. 

Currently a total of 40 quarterly Eurodollar futures contracts (or ten years worth) are listed, 
with expirations quarterly in March, June, September, and December. 

2.3. Options on Futures 

The options traded on the Eurodollar futures include not only 18 months of contracts expiring 
at the same time as the underlying future, but also various short dated options which themselves 
expire up to one year prior to the expiration of the underlying futures contract. 

2.4. Front/Back Month Contracts 

For purposes of risk minimization, as discussed below, traders put on spreads across a variety 
of options contracts. One common example is to trade the spread on contracts expiring one 
year apart, where the future closer to expiration is referred to as the front month contract, and 
the future expiring one year later is called the back month. The availability of short dated or 
“midcurve” options which are based on an underlying back month futures contract, but expire 
at the same time as the front month, allow one to trade the volatility ratios of the front and back 
month futures contracts without having to take the time differences in options expiration into 
consideration. It is the volatilities of these types of front and back month contracts which are 
used for the study in this paper. 

3. STANDARD BLACK-SCHOLES (BS) MODEL 

The standard partial-differential equation used to formulate most variants of Black-Scholes 
(BS) models describing the market value of an option, V, is 

dV 1 2 2a2v 
dt+y s ~+Ts~-Tv=o, 

where 5’ is the asset price, and u is the standard deviation, or volatility of S, and r is the 
short-term interest rate. The solution depends on boundary conditions, subject to a number of 
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interpretations, some requiring minor transformations of the basic BS equation or its solution. For 
example, the basic equation can apply to a number of one-dimensional models of interpretations 
of prices given to V, e.g., puts or calls, and to S, e.g., stocks or futures, dividends, etc. 

For instance, if V is set to C, a call on an European option with exercise price E with maturity 
at T, the solution is 

C(S, t) = SN(dl) - Ee-‘(T-t)N(dz), 

d 
1 

= ln(S/E) + (r + (1/2)g2) (T - t> 
a(T - t)l/2 

1 
(2) 

d 
2 

= W/E) + (r - (V&72) (T - t) 

a(T - t)l/2 

In practice, the volatility c is the least kngwn parameter in this equation. Estimation of 0 
is most often the most important part of pricing options. Usually the volatility is given in a 
yearly basis, baselined to some standard such as 252 (or 250 or 260, etc.) trading days per year. 
Therefore, all values of volatility given in the graphs in this paper, based on daily data, would 
be annualized by multiplying the standard deviations of the yields by m = 15.87. We have 
used this factor to present our implied volatilities as daily movements. 

3.1. Some Key Issues in Derivation of BS 

The basic BS model considers a portfolio in terms of delta (A), 

II==-AS 

in a market with Gaussian-Markovian (“white”) noise X and drift CL, 

dS 
-=odX+pddt, 
S 

where V(s,T) inherits a random process from S, 

dV = ,Sg dX + 

This yields 

(3) 

(4 

(5) 

(6) 

The expected risk-neutral return of lYI is 

dII = ~l-Idt = r(V - AS) dt. (7) 

Options V on futures F can be derived, e.g., using simple transformations such as 

J’ = Ser(T-t), (8) 

and setting 
dII = rVdt. 

The corresponding BS equation for futures F is 

@V g + ig2F2-_ _ 
dS2 

TV = 0. 
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At least two advantages are present if A is chosen such that 

(11) 

Then, the portfolio can be instantaneously “risk-neutral,” in terms of zeroing the coefficient of X, 
as well as independent of the direction of market, in terms of zeroing the coefficient of I_L. For the 
above example of V = C, 

A = IV(&). (12) 

Other trading strategies based on this simple model are based on hedging with other similar 
constructs, e.g., using gamma (I’), theta (O), Vega, rho (p) [lo], 

a2rI 
r=as2’ 

Q_drr 
at ’ 
an 

vega = -, a0 
an 

l-J'%. 

The BS equation, equation (l), may be written as 

0 + rSA + i(~S)~r = rf. 

4. GENERALIZATION OF BLACK-SCHOLES MODEL 

(13) 

(14) 

4.1. Time Dependent r~(t) and r(t) 

The volatility c may depend on other variables, and the BS model may be generalized to 
multivariable models. However, within the framework of the basic BS model, if o and T are time- 
dependent, then it turns out that the above solutions of the basic BS, and the use of the above 
set of {A, r, 8, Vega, p}, etc., can be used without change, provided an “effective” volatility, 6, is 
defined in terms of a(t), and an “effective” interest rate, i, is defined in terms of r(t), are defined. 

This can be developed by considering a slight generalization of the above BS equation for the 
variable $“, using methods given in a standard text [ll]. A transformation of variables is used to 
transform away any time-dependent coefficients, 

(15) 

This leads to 

r(t) + $$$-(r(t)+q)bO. (16) 

Taking 

a(t) = J ~(7) dT, t 
p(t) = 4’rb-1 dTl (17) 

s T 

y(t) = a2 (T) dT, 
t 
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leads to 

with coefficients independent of time t (the motivation for this transformation). In terms of V, 

V(S, t) = e- 8(t)C (Seact), y(t)) . (19) 

To get the explicit form of the solution, consider the original BS model with constant coefficients 
and solution VBS: 

VBs = e-(T-t)rQBg 
( 
Se- (T-t)r, (T - t)a2) , (20) 

for some solution CBS. Therefore, the standard BS solutions for various products can be used if 
o and/or r are timedependent, by replacing CJ in the original equation by 8, and by replacing r 
in the original equation by ?, 

r(T) dr. 
(21) 

4.1.1. Example of use 

This can be very useful in conjunction with models of time-dependent volatilities and interest 
rates. For example, if volatilities are fit to data, and a moving-average optimization gives a form 
like 

o(t) = A(T - t)“, (22) 

then the effective 8 to use for the day’s trading would be the scaled a(t), 

A(T - t)” a(t) 
&-= &G-i =y.EzT 

4.2. Some Discretization Issues 

Since tree approximations and/or discretization of variables are often applied to calculat- 
ing the above entities, it is useful to apply limits to some of these discretizations wherever 
possible [12-141. 

Equation (1) has another mathematically equivalent path-integral representation [15], which 
often offers some advantages in formulation, calculation, and inclusion of boundary conditions. 
Here, attention is drawn to the derivation of limits on the meshes of 6t and 6~ such that there 
can be maintained numerical equivalence between these equivalent algebraic representations. 

4.3. Path-Integral Representation 

The short-time conditional representation of V in an epoch 6t is given in terms of the “La- 
grangian” L in the It6 prepoint discretization, 

V[S, t + St 1 S, t] = (2a(uS)26t)-1’2 exp(-L6t) 

L= (s+rs)2 +r 
2(C7S)2 ’ 

3 = 2 = set + 6t) - s(t) 
St 6i! . 

(24) 
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For equation (l), the condition on the mesh of St is that it be no coarser than 

& < 2(W2 = g 
- (TLY)~ r2 

(25) 

throughout the ranges of 5’ giving the most important contributions to V, e.g., where S is small. 
The mesh of S is optimally chosen such that 65’ is measured by the variance (cS)~, 

6s x aS(6t)1’2. (26) 

For equation (lo), similarly, the mesh of F is measured by the variance, 

6F M oF(6t)“2. (27) 

However, here there is no interest rate drift term, the above criteria for 6t is not applicable, and 
so 

for some “typical” P. 
Note that if G and r are time-dependent, then, as discussed above, 6 and f are the appropriate 

variables to use in these constraints on the meshes. Also, in the region of boundary and final 
conditions, often tighter meshes are required. 

4.4. It6 Representation Transformations 

Some care must be taken with nonconstant drifts and diffusions. For example, for purposes of 
calculating volatilities, it is often convenient to transform to a variable 2 

2 = In S. (29) 

The above distribution can be transformed into V[Z, t + 6t 1 2, t], 

d&V[S, t + 6t 1 s, t] = d&V[.Z, t + St 1 2, t] 

= d& (2na26t) -1’2 exp (-L’St) , 

Ltbt = (kw (Ztf6t - Zt) - 11 + rSt)2 + r 6 t  

2avt 

This can be expanded into 

L’& x 
(Zf+6t - Zt + (l/2) (Zt+st - Zt)’ + r6t)2 + rst 

2cl%t 

x (Zt+st - Zt + (r + (1/2)02) St)2 + rSt 
2&t 7 

(Zt+& - zt)2 x L&t, 

(30) 

(31) 

where only terms of order 6t have been kept, yielding 

L’ = 
(i + (r + (1/2)0~))~ 

2us + r. (32) 

This defines the distribution V[Z, t + bt 1 Z, t] in terms of the distribution V[S, t + St 1 S, t], 
where the volatilities differ by a factor of S-l and the drifts differ by the term (1/2)cr2. The 
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Figure 1. Front and back month 1995 yields, marked to the number of days to 
expiration of the front contract. 
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Figure 2. Front and back month 1996 yields, marked to the number of days to 
expiration of the front contract. 

above procedure is valid in the multivariate case for more general nonlinear drifts and diffusions 
to order St3j2 [15]. 
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Figure 3. Front and back month 1997 yields, marked to the number of days to 
expiration of the front contract. 

5. STATISTICS OF EURODOLLAR CONTRACT DATA 

In the following analyses, it should be clear that the correlations we observe are specific to 
the time scales and the windows used for averaging out data. These scales and windows have 
been selected because of their widespread use in actual trading. However, this may not imply 
correlations at other times scales or windows [16]. 

5.1. Yields 

Figures l-3 show the front and back month yields, marked to the number of days to expiration 
of the front contract, for years 1995, 1996, and 1997, respectively. 

5.2. Volatility 

The historical volatility is relatively insensitive to the window used for taking sample data. 
Figure 4 illustrates the window sensitivity in volatility calculations. 

5.2.1. Basis-Point Volatility (BPV) versus Black-Scholes Volatility (BSV) 

The basis-point volatility (BPV) is derived from the observed sample data of daily differenced 
yields (dt = l), e.g., 

BPV = 
( 

& (dY - W)2)1’2 (33) 

for a sample size of n points of data. In the context of equation (1) above, given that the BPV 
is calculated over a sample of daily data, e.g., 20 days, _ 

BPV M (y)o. (34) 

The BPV is a more natural measure of the movement of the yields and is used more by traders 
than by theorists. We regularly draw comparisons in our calculations between the BPV and 
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Figure 4. Illustration of window sensitivity in volatility calculations, marked to the 
number of days to expiration of the front contract. 
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Figure 5. Basis-Point Volatilities (BPV) and Black-Scholes Volatilities (BSV) with 
bands of the BSV standard deviations (SDBPV) across all contract months, marked 
to the number of days to expiration of the front contract. The BSV and the SDBPV 
have been scaled to the BPV and the SDBPV by multiplying them by the rounded 
average of the yields, i.e., 6.0. 



48 L. INGBER AND J. K. WILSON 

the BS volatility, i.e., u, to be sure that we are not inducing some effects by the choice of one 
volatility over the other. 

We first take standard deviations of the volatilities of each contract, then take the average over 
similar contracts, e.g., with the same number of days until expiration. This establishes that there 
is a distribution of volatilities over similar contracts, beyond the act of their aggregation. 

Figure 5 shows Basis-Point Volatilities (BPV) and Black-Scholes Volatilities (BSV) with bands 
of the BSV standard deviations (SDBSV) across all contract months. (The BSV bands are smaller 
than the BPV bands.) The BSV and the SDBSV have been scaled to the BPV and the SDBPV 
by multiplying them by the rounded average of the yields, i.e., 6.0. Note that after scaling, they 
consistently lie within their standard deviations. 

5.2.2. Volatility ratios 

Trading on the volatility ratios of front/back contracts often presents less risk than trading on 
the separate contracts. Let w(z, y) be a function of two random variables (say, w = x/y, like 
front and back contracts). Then, 

w = (w) + (x - (x)) g + (y - (y)) g + . . .) 

(4 =w((4,(Y))+..., 

Var (w2) = ((w - (w))“) 

( > 

dw 2 
2 2 Var (x2) + ay 

( > 

(35) 
= Var (y”) + 2g!$Var(Iy), 

2 

Var x K 0 Y 
= $v,, (x2) + $Var (y2) - $Var(xy). 

Thus, the standard deviation of the ratio is reduced by the correlation Var(xy) between the two 
contracts. 

Figure 6 shows ratios of Basis-Point Volatilities (BPV) of front/back contracts with bands of 
their standard deviations. 

5.3. Standard Deviation of Differenced Volatilities 

To determine whether there is reason to look further into the existence of a volatility of the 
volatility, we test to see if there is any support for writing the volatility ~7, the standard deviation 
of the differences of the volatilities (SDDBPV) as a simple stochastic process, 

d8 n 
dt = CL + E77, 

fi = (d3) = (6(t) - 3(t - dt)) , 

E= 5 ((d8) - (dc?))2) 1’2, 
(36) 

where n is the number of data points (here 20) and dt = 1. 
It is reasonable to examine 6 as the BPV, since we then are not assuming a specific BS model 

for a functional form of the noise, especially in a context where we are generalizing the BS model. 
However, it can be questioned, in the context of a BS model, where 8 = ay and y is the yield, 
whether the volatility in b arises primarily as an “artifact” from the volatility in the y factor. 
Therefore, we also show that the volatility of cr, SDDBSV is not negligible, and when it is scaled 
by an average value of the yield, (y), we find that the standard deviation of the differences of the 
BS volatilities (SDDBSV) is given by 

SDDBPV M (y)SDDBSV. (37) 
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of their standard deviations, marked to the number of days to expiration of the front 
contract. 
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Figure 7. Comparison of Basis-Point Volatility (BPV), standard deviation of BPV 
(SDBPV), and standard deviation of differenced BPV (SDDBPV), for front and back 
contracts. 
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Figure 7 gives a comparison of Basis-Point Volatility (BPV), standard deviation of BPV 
(SDBPV), and standard deviation of differenced BPV (SDDBPV), for front and back contracts. 
The SDBPV illustrate that there exists a distribution of volatilities about the mean volatility. The 
SDDBPV illustrate that this distribution likely is a stochastic process with a constant diffusion. 

Figure 8 gives a comparison of standard deviation of differenced Basis-Point Volatility (SD- 
DBPV) with and standard deviation of differenced Black-Scholes Volatility (SDDBSV), for front 
and back contracts. The SDDBSV have been scaled to the SDDBPV by multiplying them by the 
rounded average of the yields, i.e., 6.0. Note that after scaling, they consistently lie close to each 
other. Thus, both the BPV and BSV have volatilities that can be considered to be stochastic 
processes with constant diffusion. 

’ Front SD&P” 
Back SDDBPV -.-.-.- 

0.003 

0.0025 

0.002 

-160 -140 -120 -100 -60 -60 -40 -20 0 
Days to Expiration 

Figure 8. Comparison of standard deviation of differenced Basis-Point Volatility 
(SDDBPV) with and standard deviation of differenced Black&holes Volatility (SD- 
DBSV), for front and back contracts. The SDDBSV have been scaled to the SDDBPV 
by multiplying them by the rounded average of the yields, i.e., 6.0. 

5.4. Implied Volatility 

The standard implied BS volatility is calculated as an average over the two nearest puts and 
calls to the at-the-money strike, of the volatilities derived from an inverse BS solution using the 
actual trading prices of the option. The use of the implied versus the historical volatility in 
trading varies from trader to trader, but here we wish to simply demonstrate that the implied 
volatility itself, similar to the historical volatility, has a distribution and likely is itself a stochastic 
process. For the implied volatility, the relation between the basis-point implied volatility (BPIV) 
and the BS implied volatility (BSIV) is simply 

BPIV = yBSIV z yo. (33) 

The back month BSIV is taken from trading on the midcurve options, as discussed above. The 
data appears to be incomplete for various reasons, e.g., lack of trading, etc. 
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Figure 9. Basis-Point Implied Volatility (BPIV) of front and back contracts. 

Figure 9 shows the Basis-Point Implied Volatility (BPIV) of front and back contracts. We 
have multiplied the differenced Black-Scholes Implied Volatility (BSIV) by a factor of 6 (a rough 
average of the yields) to scale these to other basis-point volatilities in this paper. 

5.4.1. Standard deviation of differenced implied volatility 

Figure 10 shows the standard deviation of differenced Basis-Point Implied Volatility (SD- 
DBPIV) of front and back contracts. Note that, similar to the results above with respect to 
the historical volatilities, this illustrates that the volatility of the implied volatilities appears to 
be a stochastic process with constant diffusion. 

6. MULTIVARIATE NONLINEAR 
NONEQUILIBRIUM MARKETS 

It is clear that during very volatile markets, the BS formalism is both not as applicable nor 
is it as practically applicable (orders cannot get filled, markets close, etc.) as during relatively 
“normal” market conditions. 

In such highly nonlinear nonequilibrium contexts, it may be useful to look for other criteria that 
can maximize profits and reduce risk. A formal approach to a statistical mechanics of nonlinear 
financial markets (SMFM) [4] h as b een shown to be useful in other disciplines, e.g., analyses of 
electroencephalography and combat scenarios, as documented in several papers available from 
the http : //www . ingber . corn archive. The development of powerful generic numerical techniques, 
e.g., adaptive simulated annealing (ASA) optimization [17] and path-integral (PATHINT) calcu- 
lations have been demonstrated to be give numerical support to the sophisticated SMFM algebra, 
in general to the several disciplines just mentioned, and specifically to financial markets [s-8]. 
This formalism may be useful as well for nonlinear nonequilibrium derivatives, e.g., by develop- 
ing general “Euler-Lagrange” equations of motion and canonical momenta indicators (CMI) of 
multivariate markets. 
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Figure 10. Standard deviation of differenced Basis-Point Implied Volatility (SD- 
DBPIV) of front and back contracts. 

6.1. Generalized BS Mode 

In the context of the empirical evidence presented in the above section, a reasonable argument 
can be given for some degree of independent noise in an option addition to that derived from 
its underlying security. It is now widely accepted that volatility of traded securities is primarily 
incurred during actual trading days, e.g., 252 days/year, such that yearly rates of volatility are 
scaled accordingly [18,19]. Put another way, the activity of trading may induce volatility in any 
given security, based in large part on how traders perceive the market. It is not uncommon, for 
example, to find relatively high implied volatilities of options on relatively low volatilities of their 
underlying securities. 

Thus, we consider adding an independent source of noise to the option, in addition to consid- 
ering the primary source of noise from the underlying being a stochastic process. 

For example, consider a plausible generalization of the basic stochastic equations above defining 
a stock and its option, 

dS 
- = adX +pdt, 
S 

(39) 

da = rdZ+p,dt, 

where here X, Y and Z are independent random processes. 

6.2. Discretizations and Riemannian Geometry 

Coupling of variables in markets are included in a straight-forward manner in the above path- 
integral formalism, and their parameters are readily optimized using ASA. It is convenient to use 
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a more general compact notation for this purpose. For example, in terms of variables labeled 
by G, with drifts fG and metric gGG’ (the inverse of the covariance matrix gGG’), 

(40) 

In this notation, the It6 stochastic equations for S and V are 

h;rG = fG + &,j 
3 ’ (41) 

where the Einstein summation convention is used, wherein factors with repeated indices are 
summed over. The Lagrangian in the prepoint discretized representation is given as 

L = ; (tiG - gG) gGG’ (ti” - 9”‘) - a, 

SG = fG, 
(42) 

where @ is an additional “potential” term, here zero. 
Note that if the above stochastic differential equations were written in the Stratonovich mid- 

point discretization, then we would have calculated 

gG = fG + IgG’p 
23 3) 

G, 

PS 
= ( ) P 7 

[...],G = a;;1 -. 
(43) 

The one-dimensional BS equation (1) can be written similarly, where V is the short-time 
conditional “probability”, only MG = S exists in L, and Q = --T. 

There are of course other discretizations than the It6 prepoint discretization of stochastic dif- 
ferential equations such as equation (4), related to other differential-operator orderings of partial 
differential equations such as equation (l), also related to other transformations of variables in 
Lagrangians such as equation (24) [15]. Th is can be understood in the Stratonovich (midpoint 
discretized) representation for more than two variables for nonconstant diffusions, where it is 
seen that a Riemannian geometry is induced by the metric gGQ, exhibiting the invariance of the 
basic probability distribution under this geometry [4]. 

For example, the Lagrangian in in equation (24) is in the It6 prepoint representation. In 
the Stratonovich midpoint discretization, the path integral for the long-time evolution of the 
probability distribution in terms of multiple foldings of the short-time distributions is 

DMexp(-S)S [M (to) = A&] 6 [M(t) = Mt], 

s 

t 
S = min dt’L, 

to 

(44) 
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u+l 

EM = Jpm n g1j2 n(2n6t)-‘/2dMF, 
rho=1 G 

L tiG,MG,t tiG’ - h”‘) + ;hG;G + R/6 - @‘, 

hG = gG _ ;g-‘/2 (g’12gGG’) ,G, , 

9 = det (SGG)) , 

hG,G = hs + l-&hG = g-Ii2 (g’12hG) ,G 7 

r:, - gLF[JK L] = SLF (S.&K + gKL,J - gJK,L) , 

R = gJLRJL = gJLgJKRFJKL, 

(44) (cont.) 

R FJKL = FK,JL - gJK,FL - gFL,JK -k gJL,FK) + SMN (rgKryL - rgLrfYK> . 

(Some authors use g = det(gGG’ ), especially when it is convenient to identify g with a2 in the 
limit of one variable.) 

6.3. Euler-Lagrange (EL) Equations 

The above three-variable set of stochastic differential equations for S, V, and cr of course can be 
processed by the BS methodology, subject to linear algebraic constraints, essentially combining 
weighted sums of these equations to subtract out the noise terms in dX and dY dX to contribute 
to a “risk-neutral”-type portfolio [lo]. 

However, there exist other techniques to constrain such systems to paths that are not affected 
by “noise” to at least first- and second-order. For example, consider that the variational principle 
for L possessed by this probability distribution P, bL = 0, leads to Euler-Lagrange (EL) coupled 
second-order (in t) ordinary differential equations (given below for a more general multivariate 
system). These equations can possess “steady-state” solutions, which are “deterministic” in that 
they “ride” over the stochastic variables of the system. 

In other words, the EL equations can lead to values of (6, I, 0, Vega, p} useful for “risk-neutral” 
hedging that are different from those obtained by the BS model. (Some economists would argue 
that additionally ,LL be set to r to have these equations enforce risk-neutral hedging.) These new 
solutions do not have as restrictive underlying assumptions, and they may be useful especially in 
highly volatile markets. 

6.4. Most Probable Transitions 

Another set of coupled equations that can be useful if only most probable transition states are 
sought, are simple coupled first-order rate equations [20], 

h;rG = fG _ ig’/2 (g-1/2gGG') ,G, . (45) 

6.5. Canonical Momenta Indicators (CMI) 

The output of all this algebra need not be confined to complex algebraic forms or tables of 
numbers. Because L possesses a variational principle, sets of contour graphs, at different long- 
time epochs of the path-integral of P over its variables at all intermediate times, give a visually 
intuitive and accurate decision-aid to view the dynamic evolution of the scenario. 
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For example, this Lagrangian approach permits a quantitative assessment of concepts usually 
only loosely defined, 

“Momentum” = lIG = 

“h’h?iS”~~~’ = 

aL 
“Force” = m, 

(46) 

where the last “F = mu” equation is the set of EL equations discussed above. These physical 
entities provide another form of intuitive, but quantitatively precise, presentation of these anal- 
yses. For example, daily newspapers use this terminology to discuss the movement of security 
prices. 

The CM1 can be used to develop trading rules [8]. The extreme sensitivity of the CM1 gives 
rapid feedback on the changes in trends as well as the volatility of markets. A time-locked moving 
average, yielding averages over each time in moving windows during which the model is fit to 
data, provides manageable indicators for trading signals. 

7. CONCLUSION 

We have presented empirical evidence that volatility of Eurodollar options possesses its own 
volatility, and that this volatility of volatility appears to be a stochastic process itself. 

We have given a theoretical approach to incorporate this stochastic volatility process into a 
generalization of the standard Black&holes (BS) model of options. 

We intend to further examine these empirical and theoretical issues in Eurodollar markets as 
well as in other financial markets. 

APPENDIX 

UNBIASED ESTIMATOR FOR STANDARD DEVIATION 

Pick a sample of zi, with a sample mean 2, 

a:=-- iCxi 
i 

and sample variance s2, 
S2 = i C (Xi - 3Z)2. 

z 

(A-1) 

(A-2) 

The xi are assumed to be representative measures of a random variable x, with expected value, 
i.e., expectation, (x) taken with respect to an assumed probability distribution f(x), where f is 
defined by {mean, var} = {~,a~}. The expectation of the sample is 

(~) = ~ C(Xi) = n’ = c1. 
n (A-3) 
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The variance of f is given by 

= $ 
( 

cc (bi. - cl)) ((?i - PI) f n c ((5% - d2) 
i j#i i 1 = $72. 

As an intermediate helpful step, consider 

((Xi - z,‘) = (((Xi - PL) - (2 - P)j2) 
= ((Xi - p)2) + ((2 - Pj2) - 2 ((Xi - P> @ - El)) 

= C2 + +2 - 2 ((Xi - CL) (3 - P)) . 

tw 

(A-5) 

The last term is further developed using 

=- A ( 
(A-6) 

U2 + C ((Xi - p) (Zj - /ld)) 
j#i ) = iU2. 

Summing over the result of this intermediate step, 

(A-7) 

In summary, 

is an unbiased estimator for the standard deviation, since its expectation, (SD) = u, is indepen- 
dent of n. 

In this paper, the standard deviation is simply written as 

standard deviation(z) = & (z - (zq2. (A-9) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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