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Nonadiabatic Corrections to the Method of Perturbed Stationary States*®
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Using the method of perturbed stationary states, nonadiabatic corrections to the cross section for sym-
metric resonant charge exchange between a proton and a hydrogen atom in its ground state are induced by
considering the role played by the 2P° state. These corrections lead to a polarization of the electron cloud
induced by the relative motion of the hydrogen-proton systems. Such effects are found to be important for
the calculation of the differential cross section, but are found to play a minor role in determining the value of

the total cross section.

I. INTRODUCTION

HE problem of the charge exchange of an electron

from a state 7 in a system A to a state j in system

B has been treated, to say the least, rather extensively

in the literature.! The simplest case of this is electron
transfer between a proton and a hydrogen atom:

H++H(1S) — H4+H+.

When the velocity of relative motion of the protons
greatly exceeds that of the electron in the 1S state, high-
velocity approximations such as the first Born ap-
proximation and the impact-parameter formulation be-
come complicated and also questionable (because they
neglect back-coupling to the initial state,! for example).
However, at relative velocities much less than that of
the electron, it seems quite reasonable to treat the
calculation of the total cross section in an adiabatic
approximation; i.e., to treat the entire system as a
quasihydrogen-molecular ion.

II. ADIABATIC TREATMENT

In the incident energy range of about a keV, the
protons may be treated as classical particles, as #/m v
<K ao, the Bohr radius, and it is assumed that the
screening is sufficient so that the incident proton moves
in a straight line in the laboratory system. This is well
substantiated by experiment, as the differential cross
section is strongly peaked about the forward scattering
angles.?

The Hamiltonian for the system at a given instant is
taken to be

H=—1v4¢[1/R—1/n—1/r], @)

* Work supported by the Institute for Radiation Physics and
Aerodynamics.

1 See, for example, D. R. Bates and R. McCarrol, Advan. Phys.
2, 39 (1962) for a rather comprehensive summary and an ex-
haustive list of references.

2 G. J. Lockwood and E. Everhart, Phys. Rev. 125, 567 (1962)
did experiments measuring the differential cross section for large-
angle scattering in this energy range.

See, also, William Lichten, Phys. Rev. 131, 229 (1963) who
examined this data. The breakdown of the adiabatic approxima-
tion at these small impact parameters is shown to take place owing
to the interference of other atomic and molecular states for most
processes. For the one being considered here, however, he finds the
approximation to be quite good (which gives Fig. 2 a firmer
foundation).

where z=m,=1, and the relative position vectors R, ry,
and r, are shown in Fig. 1.

The “molecular”’-state wave functions are taken to be
symmetric and antisymmetric eigenfunctions of the
static system, but include effects of the translational
motion of the protons; after Bates!:

est=3[ (Xst+X ) exp(—3iv-1)

+ (X F—X;) exp(+3iv-r)] exp(—3iv%), (2)

Xt and X, being the exact eigenfunctions of the
Hamiltonian, Eq. (1). The complete wave function is
expanded in terms of the ¢,’s:

0> {cs(t)«m(t) exp[—i /_ Es+(R)dt:|

+Co (D)o (@) expl:——i/;; E;(R)dt]} )]

Applying (H—1%d/3t)=0, orthogonality, and the sym-
metry of the ¢,*’s, Bates obtains sets of coupled differ-
ential equations. For example, if the sum is just taken
over s=0, 1 (15 and 2P states), one would obtain:

—iCtSoot+CotTot+CrtTort=0,
- i01+S11++C1+T11++ C0+T10+= 0 )

4)
©)

(and a similar set of equations from the antisymmetric
part of ¥);

1
Smmi=1:l:5/{Xm+*Xm+-—Xm‘*Xm—} cos(v-r)d’r;

Trnt= {i (E,~—E,") / Xnt* X, Fsin2(3ver)d®r  (6)

t
:l:vmn-{—itmni} exp[i / (Emi——Eni)dt];

1 a
Vman=— / [ (Xm+*+Xm—*)—(Xn+'— Xn_)
4 at

— (Xm'*'*—Xm_*)ai(Xﬁ—{—Xn—)} sin(v-r)d’. (7a)
¢

A 35



A 36 LESTER

F1c. 1. Geometry

Electron of resonant charge-
I R b exchange process.
v
Proton 2 3

The term v, in curly brackets entering the expression
Tnn* subtracts out to zero when added to its negative
contribution in the adiabatic treatment. The anti-
symmetric functions of R are 4., and also cancel out
in the adiabatic treatment. It is easily shown that 4fo;t
and ;0" are the predominant terms which give the
contribution for the nonadiabatic corrections included
in this paper. They arise from those #,,* which have

the form
d Ver
- / XpE—X, * cosz(———>d3r.
at 2

The adiabatic treatment essentially consists in con-
sidering m=nr=0, and dropping terms of order (v/e?)?
and higher:

(7b)

H++H(IS) — H(ZS)+H*.

This implies, using Eqs. (4) and (5), that Cot(— )
=C0~(—' °°)=C0+(°° )=Co—(°°)= 1/\/2—.

The probability for finding the electron on proton 2
at R= o, it being initially on proton 1, is

1 0
P="4“ /d3f{ (p0+*—' ga()_*} {(p0+ exp(—i/ E0+dt>
o0 2
+ oo exp( —1 /- Eo—dt)}

=sin% ’ (8)
§=] (Egt—Eq)dt.

where

9)

Until now, previous work on this problem have been
concerned with finding suitable analytic expressions for
Egt—E;~ which would produce as nearly as possible
energies calculated in the static limit using exact wave
functions of the hydrogen molecular ion® for the 1S,
and the 2P¢, states corresponding to E¢t and E¢,
respectively. Static polarization effects have been con-
sidered taking into account the distortion of the electron
cloud about proton 1 due to the presence of proton 2. In
what follows, interest will be focused on velocity-
dependent polarization corrections from the coupling of
higher angular-momentum states (such as the 2S¢, and
the 3 Po,, states) due to virtual excitations caused by the
relative motion of the two protons. To measure the size
of these correction terms, it is most convenient to
calculate the S,.* and the T,* terms of Egs. (6) and
(7) using asymptotic Icao (linear combination of atomic

¢ D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy.
Soc. (London) A216, 437 (1953).
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orbitals) wave functions to represent the correct X,*’s
of Eq. (2). To be consistent, we must of course calculate
E¢qt—Eq by the same procedure. Using asymptotic
wave functions for the Hamiltonian given in Eq. (1),
Eq¢t—Eg~ can be calculated:

L exp(—r1)+exp(—rs) .
(2m)V2 (14T )12

(10)
100=/6Xp{—(71+72)}d37’.

In units of the rydberg (—e?/2a0),
Egt—Eq= (4/R){32R*—1} exp(—R)

to a very good approximation.
Looking at Fig. 1,

d/dt=R(d/dR)+ (b/R2)iL., (11)

where ¢L, is the rotation operator corresponding to an
apparent rotation of the protons about the intersection
of r and R. For velocities of the incident proton much
less than that of the electron in its orbit (3K (e%a0)/c),
the term 4L, can be neglected. Also, it is seen to couple
only states of the same angular momentum and different
magnetic quantum numbers, and in this theory will not
couple the 1S state to any others. Therefore, we have

d/dt=(dR/dt)(d/dR), (12)
and
dR {R*—p*}121
——— (13)
dt R 9

With R in units of @o; v in units of v/¢2, Eq. (9) becomes

1 4( 2R R
g=—/ dR—{l————} exp(—R)————. (14)
vJ, R 3 (R—p2)re

This integral is sharply peaked about R=5, and gives
E=(—4/v) 2n/b)'" exp(—b){30>+30—1}. (15)
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Fic. 2. Probability of charge transfer P as calculated in
the adiabatic approximation, as a function of impact parame-
ter b.



METHOD OF PERTURBED STATIONARY

The cross section is obtained from

T
a=—b*2+27r/
2

b*

0

db b sin?£(b), (16)

where b* is taken to be the largest value of b for which
the probability has a maximum (see Fig. 2). In this
scheme it is evident that the asymptotic representation
Eq. (10) is well justified.

The scattering of protons on hydrogen atoms has
been done in the laboratory by Fite et al.* As the ex-
periment has an error of some 159, obviously more data
must be accumulated before judgment is finally passed
on the theory of perturbed stationary states in the
region of 1 keV. Figure 3 shows the results of previ-
ous calculations® using modified linear-combination-of-
atomic-orbitals wave functions described by Eq. (2) for
the 157, and 2Pg,, states to obtain values of Eqt— Eg~.
Calculations were performed® to include the velocity-
dependent terms multiplying Eo*— Eq~, entering via the
Too* terms. The results shown clearly do not bring ex-
periment and theory into closer agreement. It should be
remarked that the method of evaluating the cross
section Eq. (16) is open to interpretation and scrutiny,
especially as its value seems to be quite sensitive to b*.
But, of course, the physical principles involved do seem
quite sound in this energy region; it is this puzzle that
leads to a search for some corrections or at least to a
clue as to the range of applicability of the method.

III. NONADIABATIC CORRECTIONS

For these reasons, a more careful examination of Egs.
(4) and (S) seems in order. The 2P° state is included
because of its long range which mathematically may
extend the curve in Fig. 2 to larger values of b, and
physically may account for some velocity-induced
polarization of the electron cloud as the second proton
passes by. As will be included here, the (2P°) velocity-
dependent polarization effects tend to increase the cross
section (back towards the experimental values).

As v— 0, Soo* and S11* go to 1, to order K1? where K
is a constant of order 1. At 1 keV, v=0.2, and thus St
may be taken to be 1 to within a few percent for this
energy range.

Too* and T'1;* enter as phase factors to Co* and CF,
respectively. Too* would replace £ by £+6 in Eq. (9):

g-}-&:/ dt(Eo"‘—«Eg—)-}-/ dt(Tost—Too). (17)

Similarly, T1* alter the coefficients Cy%, which are
already assumed small, by an order of 2. From Eq. (7),
(Tost—Too~) is seen to be of order K2?(Est— Eq),
where K, is of order 1 and therefore this correction also
amounts to at most a few percent, and can be neglected.

4W. L. Fite, R. F. Stebbings, D. G. Hummer, and R. T.

Brackmann, Phys. Rev. 119, 663 (1960).
5 A. F. Ferguson, Proc. Roy. Soc. (London) A264, 540 (1961).

STATES

Fic. 3. QF is the
experimental curve;
Q1 is the calculated
cross section, and
Q.M is the calcula-
tion including the
Too™ terms. (Q:# and
Q.M have approxi-
mations to the exact
eigenfunctions of the
Hamiltonian, Eq.
(1), different from
the asymptotic wave 1 1 1 ! L
functions used here.) 2 5 10 20 40

ENERGY OF INCIDENT PROTON (KeV)

CROSS SECTION (10™®¢m?)

The effects of 7= and Tyt remain to be calculated.
The series of approximations which follow tend to some-
what overestimate this correction.

The equations to be solved are

—iCot-CitToi"=0,
—iCH+CitTit=0,
(with similar equations for the antisymmetric coeffi-

cients).
Full expressions for Tort and Tyt are

Tort= (¥ot,d¥ 1/ dt) exp (A1) s
T]_o+= (‘I/1+,d‘1’0+/dt) exp ( - 1A+) s

(18)

(19)
where t
A+=/ (Egt—Eqt).
Asymptotic wave functions are again employed using
Eq. (10) for the (ZS) state; and for the 2P state,
i ri-R exp(—71/2)—r2:R exp(—72/2)
R2(32)w V2 [1—I 2

—¥ot (Wt o) = ot =" (¥t or").

(20)
By orthogonality, (¥ot,¥+)=0 leads to

~ (e, ;iqu1+>= (s, %wo+)= +); @
analogously, one defines
d —
(=)= (\Ifl", '(};‘I’o ) .

From Eq. (10)

—dly/dt
oF=——"—XTg"
2(1+1o0)
dR{R'l‘l ( ) R-r, ( )}
_— exp(—7ry)— exp(—r
dt \ Rry P ' Rrs P ?

— .o(22
2(2m)V2(14-Tg0) 42 @2
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F1c. 4. The argu-
ment of sin? the
probability distribu-
tion, as a function of
batv=0.5.

It remains to solve for Co* ()
Cot ()= —i/ dt(+) exp(iA™)
— t
X/ di(+) exp(—iAH)Cet.  (23)

For all finite ¢ in the integrand, (+) and Cyt+ are smooth
functions of R(#) compared to the rapidly oscillating
phase factors e=*, The major contribution to Cg+ (o)
occurs from regions where ¢" can cancel ¢~ i, There-
fore, an approximate expression can be found for Co* (o)

t =)
Cit(o)=——exp| —1 —— .
() \/je p( z,/_wdt(Eo —-Eﬁ)) (24)

One can similarly obtain for Ci+ (),

1 0
it () =—— / di(4)es*, (25)

—o0

Here, there is no cancellation of the rapidly oscillating
phase factor and the expression for Cy () is cancelled
out as K qv, where K 5 is of order 0. Its contribution to the
probability would, of course, come in as the second
power. This clearly illustrates that the reaction being
dealt with is a resonance charge transfer, and not an
ionization process due to the large energy gap between
the n=1 and n=2 states.?
£in Eq. (9) is now replaced by £;:

- (+)°
&= dt\Eit—Ey+———
— (E0+—E1+)
(=)
—— . (20)
(Ee—Er)
The energies are given in terms of —e?/2ao by
2 2(G00:|:]00)
Egt=1——+
R (1=%1y)
@7

o1 2 2 (G11:F]u)
- R (1)

3
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where Goo, Lo, Joo are evaluated in a paper by N. Rosen®
[see Egs. (A1) in Appendix .
The integrals Gu, I, Ju can be gotten from the
same paper by replacing p by p/2 [see Egs. (A2)].
Using Egs. (20), (21), and orthogonality [and
dropping (¥v*,dy1/dt) ]

d
—IOI_IOO
d
()=
2(I4TI0)
dR P rlR ) I‘2R )
dat r‘rlR exp(=n r exp(=7s }

1672 (1—T )12

1‘1R ) rzR )
{—R~ exp(—n/ )= exp(=ry/ >}

. (2
8 (14-Igo)2 )

Io1 can be calculated by setting e=1 in the integral Jo,
in a paper by B. N. Dickinson” [ See Eq. (A3)]. o1 was
found by evaluating /d% exp(—71) (r2R/R) exp(—37s),
in elliptic coordinates. The second term on the right-
hand side was also done in this manner, using prolate
spheroid transformations. The result may be found in
Eq. (A6). Factoring dR/dt out of (+) and (—),

» 1 R
£1=2 / dR<—~————-(E<,+—E0~)
b v (RZ— b2)1/2

W(R—B () (-
— ).
R (E0+— Eo+) (EO_'—EI_)

The quantities (¢§1—§&) and o [Eq. (16)] were ob-
tained by numerical integration.

IV. CONCLUSION

The long-range contributions to the probability from
the 2P0 state become increasingly important as the
velocity increases:

It appears that the adiabatic theory is no longer valid
as a perturbation treatment in powers of v, even for v as
small as 0.3, if information about the differential cross
section is desired. To emphasize the contribution of the
velocity-induced polarization effects, the corrected argu-
ment of the sin? function £; is contrasted to the adia-
batic-argument ¢ in Fig. 4 for v=0.5.

The situation is more palatable if the cross section is
calculated: For this process, it therefore seems con-
sistent to calculate the cross section with the adiabatic
theory in an expansion of (v/¢?). (It should be noted
that the asymptotic approximation gives a cross section

6 N. Rosen, Phys. Rev. 38, 2099 (1931).
7 B. N. Dickinson, J. Chem. Phys. 1, 137 (1933).
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TasLE L. Effects of velocity-dependent polarization corrections
to the probability of resonant charge exchange for various values
of the impact parameters at different incident relative proton
velocities.

v Impact

— parameter

¢ (units of ay) sin2¢ sin¢; 9% correction
49 1.00 0.997 s

0.2 8.0 0.020 0.022 10.0
43 0.999 0.984 s

0.3 6.5 0.096 0.117 22.0
3.5 0.998 0.938 s

0.5 5.0 0.308 0.421 37.0

a Sin2¢; has not yet reached its maximum.

TasLE II. Effects of velocity-dependent polarization corrections
to the total cross section for resonant charge exchange at different
relative proton velocities.

Y o (with 2p
<~— o (Adiabatic) correction A
e (units of 10726 cm?)  included) correction
0.2 211 21.3 1.0
0.3 18.2 18.9 3.7
0.5 14.8 16.0 8.1

larger than that calculated with more realistic wave
functions.)

Tables I and II show that contributions from higher
states are important even in resonant charge transfer
processes, even for moderately small velocities. These
contributions suggest a strong distortion of the electron
cloud, very sensitive to the incident proton velocity
which prohibits the use of static wave functions for the
calculations of probabilities and differential cross
sections in low- and moderate-velocity regions, and of
total cross sections in moderate-velocity regions. This
latter restriction is, of course, expected as in this range
the incident proton velocity becomes comparable to that
of the velocity of the electron in its first Bohr orbit; and
the exact static electron wave functions, Vot (and ¥%,
of course) of the Hamiltonian, Eq. (1), can no longer be
considered as time-averaged functions of r; and r,, but
in general will be an explicit function of the time ¢ The
former restriction, however, forces one to consider in
greater detail the actual physical processes taking place
if one wants to obtain a decent theoretical interpretation
for resonant charge exchange at a fixed value of the
impact parameter.
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APPENDIX
From N. Rosen®
Go=1/R—exp(—2R)(1+1/R),
Too=exp(—R)(R*/3+R+1),
Joo=exp(—R)(R+1).
Putting p — p/2 for the 2P integrals in the same paper,
Gu=1/R+12/R*— (exp(— R)/R)
X [§R+2R*4-11R/4+74+12/R+12/R?],
In=exp(—3R)
X[R%/240+4-R?/60—R?/20—1R—1],
Tu=% exp(—R/D)[RY/24—4R—1].
Setting e=3 in 7o in the paper by B. N. Dickinson,’
Tor=($)V2[—exp(—7){6+12/R+12/R?%}
+exp(—R/2){9R/16—3+6/R+12/R2}].
The integral

r-R ro-R
Jod
1’1R 1’2R

(A1)

(A2)

(A3)

exp(—r)— exp(—rs) }

I'1'R I'z'R
X <|——§— exp(—-h/z)—T EXP(—”z/Z)] (A4)

was evaluated in prolate spheroid coordinates:
n=r—3R=3R(=+y),
ri=r+3R=}1R(z—3),
d&r= (2r/8) R¥(x*—y*)dxdy ,
ri-R=—3R(xy+1),
r2:R=—1R(xy—1).

(AS)

The answer is

512/81+[exp(—4R) (16R/9){216(4/3R)4-+144(4/3R)*
+156(4/3R)*—44(4/3R)+8)
—exp(—R) (64/27){216(4/3R)?

+288(4/3R)*+192(4/3R)+32}]. (A6)



