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ABSTRACT OF THE DISSERTATION

One~Meson-Exchange Potentials and Properties
of Nucleon-Nucleon Scattering
and of MNuclear Maiter

by

Liester Ingber

Doctor of Philosophy in Physics
University of California, San Diego, 1967

Professor Keith A. Bruéckner, Chairman

The problem this thesis undertakes is to define an interaction,
between nucleons to be used to consistently calculate:

1. Nucleon-nucleon elastic scattering processes reproducing
experimental scattering data (phase shift analyses).

2. The binding energy and equilibrium density of a Targe!

systemn of nucleons {(nuclear matter).
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The nature of these two problems reguire that this interaction:

1. Be applicable throuughout a laboratory incident encrgy range
of about 0 - 400 MeV [ below inelastic thresholds],

2. be defined with minimun phenomonology - i.e., touse as
much theoretic guidance as possible to define a unique interaction.

This last requirement actually prompted this work as phase-
shift analyses of nucleon-nucleon scattering seem to be relatively
insensitive to various functional forras of potentials, compared to the
more sensitive nuclear matter calculations using the same potentials.
Since the last major hurdle to understanding of nuclear matter
appeared to be the inability to define such a potential, this work was
undertaken after the author had listened to an enlightening seminar
given by David Wong on the use of a one-meson exchange model to
rather successfully calculate nucleon-nucleon écattering processes
using dispersion-relation theory. David Wong also suggested a method
for deriving a potential to be used in Schroedinger's theory, which is
necessary to solve the nuclear matter problem.

The total Langrangian describing nucleons and their interaction
via one-meson exchanges was non-relativistically reduced, corre-
sponding to a Schroedinger equation with a velocity-dependent (not
energy-dependent) potential of the form described by Scotti-Wong
(modified fo interpret cutofis am;l momentum dependence). To pre-

serve the correct eigenvalue properties of the integral-equation

ix



formulation of the two-body Schroedinger’'s equation, it was found
necessary to keep the potential of operator form (i. e., containing
differcntial operators), and not merely a function of the radial
parameter. However, integration by parts allecws one to operate on
the Green's fL;,nction instead of on the wave-function. As the Green's
function is expressed in simple analytic {(differentiable) functions, the
resulting integral-equation is really no harder to solve than one
involving a simple potential function. Keeping the potential in this
operator form also allows one to correctly project the potential from
a set of five invariant helicity amplitudes onto the more common,
though phenomonological, set of five invariant Wigner forms which
are eigen-operators of the partial-wave reduced wave-funciions, in
turn expressed as eigenfunctions of the total angular momentum.

Then this potential, so 'uniquely' defined, and giving analytic
functions throughout coordinate space, is similarly defined to perform
a modified nuclear matter calculation similar to that done by
Brueckner and Masterson,

When compared with other current potentials, this potential,
with only 8 parameters {themselves reasonable physical quantities},
proves itself to be the best overall description of the nucleon-nucleon
interaction, after doing detailed calculations of nucleon-nucleon

scattering, the deuteron state, and nuclear matter.



I. OUTLINE OF FORMAIISEM

All previcus theoretic and experimental studies certainly make
it more plauvsible to state that a force between two nucleons arises
from their mutual interaction via mesons rather than from their
mutual interaction with any arbitrary function with parameters fitted

.
to experimental data. That nucleons and mesons themselves may be
various eigenstates as something more basic, as "encrgy' itself, is a
deeper guestion and as yet not subject to such refined calculatlions as
will be performed here. The preblem to date has been to make the
transition from words about meson exchange to an 'exact' formalism
to deal with nﬁclear forces.

In the truly nonrelativistic energy region {where the kinetic
energy of the colliding nucleons is less than the rest mass of a nucleon),
remarkable progress has been made by Scotti and V\Tong.1 They postu-
lated forces due to meson exchange via a Lagrangian interaction, and
(essentially) unitarized this interaction Lagrangian via method of dis-
persion relations. Despite some uncertaintics associated with descrip-
tions of the mesons {Regge cutoffs, etc.) and with dispersion theory
itself (subtraction, unitarization, etc.), a good fit to the experimental
data Wés achieved within the elastic scattering region {0 - 400 MeV
incident lab energy).

However, in this energy region, Schroedinger's theory is

surely as exact as the experimental data for the free nucleons, and it

et



would be most reassuring if an interacting system of nucleons could ke
described with a formalism consistent with Schroedinger's equation.
The method is straightforward: A non-rvelativistic reduction of a
Liagrangian Field Theory describing frec nucleons yields the
Schroedinge;equation upon minimization of the Action., It is now pro-
posed to make a similar non-relativistic reduction of the total
Lagrangian (including interactions via meson exchange) to the same
'order! [~ kz/rﬂnz (momentum/mass)2] and attempt to 'correctly’
solve the resulting equations. It is indeed '"fundamental', that within
the bounding assumptions of (one) meson-exchanges being responsibie
for nuclear forces, the potential derived here is as meaningful as
Schroedinger’s equation which in turn can be thought of (and possibly
someday may be proved) as being derived from a Field Theory,
amiable to the calculation of a scattering matrix from the assumption
of existence of a Lagrangian. This is one theory which acknowledges
the simultaneous achievement of, and challenge to, modern physics in
apparently coming within the grasp of a mathematically sound and use-
ful description of our human perceptions of nature via experiment.
However, besides lacking absolute mathematical vigor, this is not the
only 'acceptable' physical theory [ i.e., there exists Hamiltonian
formalisms ], but for the lack of such a unique theory it seems most

feasible to try to approach the problem as consistently as possible.



Also ignored are olher deficiencies of the theory, such as those
associated with divergences of the p vector meson,

Therefore a few words about Lagrangians and fields seems in
order. The following brief outline will also serve to illustrate some
highlights in the development of scattering ard many-body theories.
The referenccs given will yield much detail presently knm%rn in
published form.

If one defines,

Oy arbitrary complex number
oy = 0‘1(5) - arbitrary square integrable function in the
3 kx
3-dimensional space, R, of vectors k = kY
ky
CTj = o‘j(}\{—l, TN, Ej), symmetric or antisymmetric,
depending on statistics, in _151, f e 5 }gj square
. 3]
integrable in R7*, {I-1)
then Hilbert space, X, consists of elements:
|O>:|O,G,.”,0.,...,O> = (I-2)
o 1 ]

where all but a finite number of entries are zero, (plus its completion),
ive., X :}C()@ }Cl @ @ 3\”3 @ cee o A vacuum state' is

defined as

0> = b, &, ..., 0>, (X-3)



Addition and scalar multiplication is to be taken component-

wise and an inner product is defined:

(ploy = (py Ppe von IGO, Gyr e )

’ N 3 3
3 +Z 1k f k K., ...k, s s k),
g% e dk, d«»j pj(hl’ kJ)o:(kl o

with a 'bar' marking complex conjugation.

Field Operators

cg(ﬂ
O

(15), and its adjoint QApO(L_)(k) {a denotes the various particles,
adjoints, and components of the Field and will be dropped for this out-
line {for example: electrons and positrons, spin up and spin down)),
are operator valued distributions on ¥, meaning that for a test function
L= pi{k) (which might be taken as infinitely differentiable with compact

support, as is p{x) = e * for -L =x < L),
Py = [Pk ug P (1-5)

are operators in ¥ such that

Sym.
Sy ey = o, o, ulk)), A‘j;i_ o (k) uk), ..o ) (1-6)
Sym.
and
T oy = |t ! =
@ a M Ul! U Oz’ e 4 '



where

- 3
Todk,, o.. .k, ) =0 d ki, gk, ..., K.} . 1-8)

Commutation relations such as
eSS ~{ ) 3
o1 [E 6, # ] 10y = [ o et (1-9)

are then derived.

N-Particle States and Propagators

A one-particle state | p}) is defined as
|0, p (k) O, von ), (1-10)
iUl
and describes a universe of one particle with momentum probability

2
density | pl(kl)! 3 pl(kl) appears in Schroedinger's theory as a

wave funcition. Similarly, an N-particle state ] _pN> can be defined as

2
N particles having momentum probability density [ pN(k1 5 vEw § kN)] .
i
Generalized state vectors can be written formally as
T+ ”
|‘_li>=:cp{ )(&)]m: b o, 3k -k}, 0 ... ¥ . (I-11)

Lorentz invariant operators, defined by
~(1 /.0 A+ 0 Jo 2 2
tp(T)(k) = ¥ 2k (‘_Q( )(ﬁ), k =+ V¥Ym +k, and (I-12)

satisfying operator-valued distributions,



3
~(7) 3 1 d'k ike AT
w Ux) = 273 IZRO e i (k)

(2m)
Limit {(4) 1 Pt = 08
TRl e —e & ) 1 (k)
(217} 210

where 7 (k) is a sequence of smooth functions (i.e., e
5 o

approaching the constant 1, enable commutators to be evaluated:

(+)

. N
i {CPH(X), o )} = D (x-y) = f.@._i JH ) 1y

(ZTT)3 2k

The negative frequency commutator, D {x), exists as a generalized

function in the sense that, for f belonging to a space of test functions

i s
(say iiz) = e s L5l P{z), P{z} polynominal and ¢ > 0}:
b !
(D, f) = fd4x D (%) f(x) = I;llim; fd4x D_(x) £(x) ,
where
0
i d3k -ikx - ‘IL
D (x) = f = e B (I-15)
< (2m) 210

0 0 0 0
XZ(X>-—>2=(Z)=<X>+1<Y>:X+iy, {1-16)
= g z z



.. . ! * o
and by defining 4 dimensional surface contours (s ) { enters causality},

strips of analyticity of f{z) define 8{z) by

(o, ) = f d4z ${z) f{z) ; {1-17)

and 8{z) can be evalvatcd {by taking limits) to be:

8z} = — Hl(l) (1 V22 ) (1-18)
v 8‘” vV ZZ
i z-plane
A 2 v_.2 2
/\ % =g z =x -y +2i-x-y, where
— ) < ’ SR,
( / H(” is the first order Hankel function.
e, 1

s” (negetive frequency contour)

The equation

ihx
- 1 1 4 ih

D(x) = —— fd% S = —— fd b 8(p) e (1-19)

(2m) m -p (2)

defines

1 1

Mp) = 55 T 5 - rops ] (1-20}
m -p m +'E «(p)

as a ''particle propagator' (here as a scalar meson of mass m). Thus
we see how vacuum state expectation values of commutators lead to

toropagators' which 'mediate’ interactions between other particles.



Lagrangian

The 'Lagrange density’
£y = S0 (), 30 (=) (1-21)
03 oL
[ @ again denotes various parficles, adjoints and components, and o
refers to partial derivatives with respect to space and time] is an alge-
braic scalar combination of the various field operators, their adjoints,

and first derivatives of these guantitics.

The Action operator for a world region R is defined as

AfR) = f e £x) . (1—22)

The condition (analogous to the classical Hamiton principle) that
§A(R) = 0 (I-23)

for every region R, and every varialion %") -d;d + 61};& which vanishes

on the boundary of R, implies the Euler-Lagrange equations:

g\ _ 9% _
2, (é ) =0 . (1-24)

(3, V) ) 3,

Symmetries of a continuous group G (usually the Lorentz group) are

imposed upon the Lagrangian by insisting that the group of transforma -

tions g,

g such that s s



leaves the Action in the same region R unchanged.

The observables, or dynamic variables of the system, corre-

sponding 1o a group of continucus symmetry transformations with s

parameters:
8
s ’ &
x’l“;’—g* 2 :XH-P 2 A¥ 50?
i1
J{x) -% llJ’(X’) = § (x} + z 0 Gu)i . (1-25)
o o o 1 ol
are calculated to be:
g = A'u.Si-PZ \?JST—) @ - AY 3, ¥,
J J 5 © Out';o, J J
for i=l, ..., s (I-26)
For example, under the translation group, T
s
KH -t* x‘u = Xl—i+ c"mju
NS O B € (1-27)
a o a ’
and the energy-momentum stress tensor is obtained:
eV gHV o MV 2 2 sV (1-28)
a3 V) o
o a

The Lagrangian density is finally defined by using the Normal

Ordering symbol @ ... meaning ''situate all annihilation operators



'

(cp—) to the left of all creation operators (-:QT), " and by linearly decom-
. & + . . . -

posing @ = ¢ + u ({(negative and positive {requency components).,

For example:

]
I

. . O PR T + 4 - + 4+ -
sply: = ¢ox T o} o x o teo o x v Ty oxoo
ke o - Fo- - B

te T F e x X 9§ te ¥ x . (1-29)

For the free uncharged meson field, the Lagrangian

2 2

£{x) = = taucp{x) 3 wlx) - m oi{x)]: (I-30)

2" o
insures that the corresponding Buler-Lagrange equation is the Klein-
Gordon equation for o:

2
(o, -m) o{x} = 0 . {(1-31)

One can calculate the expectation value of the space-

displacement operator:

ol Lo = &2 [ @ 5yt 0,600 (0 el a6 g0

3

fdik K py () ° (I-32)

T2 o I
suggesting the interpretation of ]pl(_lf)] as the probability density for

a one-particle state to have momentum k.

Scattering Operator

The scattering operator f{kl, st g ,'kn, Pys wee p ) enables
n

2
one to construct in and out fields which describe 'eigen-fields' of a.



Lagrangian which includes inferaction terms of two or more different
fields. The fields considered in this work are those of massive,
strongly interacting particles. Mass zero fields reqguire special

- - . .
attention due to additional constraints (gauge groups, etc.).” Given a
Lagrange density £{x) = e A{x), imposing Lorentz invariance, causal-
ity, and unitarity (specification of a complete set of scattering states)

; . . . . >
just about cempletely determines S via recursion relations™ {on S,
n

to iollow} in a perturbation representation:

4 4
5= i Z b J’ cco f P -3
I+ e .d %) d X Sn(Xl’ i Xn) (I-33)

[ "just about' is inserted because of troubles related to renormaliza-
tion cifficulties at the point (Xl’ NPT Xn) ={0, ..., 0}, This prob-
lein, however, has recently been solved? without additional parameters
by defining a correct ''principle value' for integrals]. Itis therefore
expected that any reasonable scattering theory which satisfies causal-
ity and Lorentz invariance (if a relativistic theory) and further which
unitarizes $£{x) properly would uniquely define S.

It should, therefore, come as no surprise that Dispe_rsion
Theory which closely "approximates' these conditions {urnitarization
of an interaction amplitude) would agree with experimental data if the
correct Lagrangian is somehow inserted as input to describe the

1
dynamics. Scotti and Wong  appear to have accomplished this. They

therefore have included the correct Lagrangian interaction, and proper



insertion of this same physics into Schroedinger theory should give
excellent results, especially as unitarization in the latter theory is

absolutely correct.

The scattering operator is given by the well-known expression:

5(t}) * J exp[:lfd4 Xlﬁi(xl)]

|
o

it

Il

> o i
1-%112’ ———fd Xl.a,fd X J{S(Xl), cee 5 £lx )1,

(I-34)

. . . . o .
where J is the time-ordering operator acting onall x_, J % 1o %ess § 08
J

cp(xl) cp(xz) t, = t,

F{plx) sp(xz)} = : (1-35)
cp(xz) go(xl) t, > tl
[As written as fd x. If dx. fdy_f dz_f at’. (1-36}
A A A A

which is the form used by Dyson. Goldstone, however, defines

t.
4 @ o w0 ] .
fd . :f ds, f dy. f dz_[ dt’. , - {1-37)
J J J J J
0 0 0 -®
where £.,. >t, J=1, «co , m, and the -L factor is omitied. This
jt1l ] n!

form explicitly displays the time ordering which is essential to his

proof of the "linked-cluster' expansion. ]

1z



Wick's Theorem considerably simplifies the algebra in manipu-

lating such expressions. It relies on the fact that the guantity defined

oM

as the contraction of A and B (the propagator),

A-B. =T[AB] - : AB: {(I-38)

is a "c-number®', and that the time ordered product can be reduced to
sums of products of contractions and normal products. Only one sur-
viving term consisting of contractions can give a finite number to the
expectation value of S in the vacuum state. Time ordering of fields
operators give rise to commutators which physically represent inter-
acltions via particle exchange, Fi.e., b(p)] At this stage a loose
link between the Lagrangian theory and the Hamiltonian theory can

be made {without much mention of deeper theorems concerned with

transforming from free to interacting fields}. Classically:

the Lagrangian I. = T {kinetic energy} - V {interaction
energy),
= 1, -
O ! LINT
and the Hamiltonian H=T+V= I—IO ks HIN (I-39)

e
In the Lagrangian theory, the only contribution to that part of
the scattering matrix causing transitions is the interaction part of the
Lagrangian., In the Hamiltonian formalism, a Helsenberg representa-
tion is chosen for the state vectors, so that only the interaction part

of the Hamiltonian affects the scattering {or equivalently, the develop-

ment) operator:

13



‘() = i H : I-40
S 3 exp (-i IEIN t) { )

T

It remaing to compare the Lagrangian density with HINT' For

two particies scatiering via some mutual interaction:

4 1 4 4
d¥x H{x) =-= [/dx d7x, T{&{x,) 8{x)}
f T 2 [ 1 j 2 1 2

i
INT{‘ 41)

[iee., 3 ()=fq )=y, o £ 0 &

it St - Prrd

For the Hamiltonian formalism, the adiabatic theorem of Gell-Mann
and I.ow establiskes a scattering matrix for an interaction which is
"glowly" turned on and off. There does not exist any such '"neat"
theorem for the lLagrangian formalism.

Appendix C contains an outline of the derivation of the many-

body problem to be used in the nuclear matter problem.

Crapins

Teo facilitate calculations and physical understanding of these
formalisms, various graphical procedures have been developed. The
physics selects graphs contributing to a calculation by the proper
choice of initial and final state vectors. XYor the Lagrangian formal-

ism which will be used here to calculate the potentials, (

HINT)’

Feynman rules will be used. For the Hamiltonian formalism, to be
extended to formulate many-body theory of nuclear matter, Brueckner

rules will be used, With the Brueckner rules, the Brueckner-



Goldstone "linked-cluster' expansion can clearly be scen to include

all those graphs which are not compeosed of 'digconnected' parts.

Feynman rules:

3 y 152
>~m—< i g(4m) / each vertex
i each particie {nucleon)
; : 1 .
each 'virtual' parficle (meson) has propagator ST X spin and
q +m

isospin factors (q is the 4-momentum transfer between the nucleons).

Brueckner rules:

th . g
For n  order graphs: draw n broken horizontal lines repre-
senting interactions and connect 21 end points with hole and particle
lines, such that at every point, one line comes in, and one goes out.

Particle T ; holel 3 hole@

Contributions to graph:

v for sach vertex

1
1‘ s
2 mnn, kg

2. each of {(n-1} intervals denotes a propagator, 1 8 ;

{}m gives (E +E -E -E)—l.

/ £ m. n

3. attach (- ) 1. = number of closed Fermi's lines
H = number of hole lines

4. number creation operator n, for each hole,
k

(1 - nm) each particle; [(nk)m T by idempotencyj

k’



1. POTENTIALS DERIVED FROM LAGRANGIAN

Using Feynman rules, the following Lagrangians will be
considered:
m meson (pseudoscalar in coordinate-space and

isovector in charge-space):

$ = {4) g v Yg T - cpﬂ I, (1E-1)

where gﬂ is the coupling strength of the meson field, P te the
nucleon fields | and ¥ .
n meson {(pseudoscalar in coordinate-space and isoscalar in

charge-space):
s =@ e e (15-2)
n m ¥ 5 Qﬂ R )

o meson (scalar in both coordinate and charge-spaces.} (The
o is not yet established to be a bona fide Jmeson,9 in which case it may

1
represent a strong T-T, S-wave resonance )

s = (am g T oo ¥ SR} ) B

o)

p meson (vector in both coordinate and charge-spaces):

)1/2

. - v
= Se ! # !
é.ip i {4nm (gp1 gpz) by, Tres ¥

4 {4ﬂ)1/2 (ng/Zmp) {p + p')\) b co\p) . (11-4)

16



The tensor coupling constant, {er anomalous magnetic-

current term), g is alsc included as suggested by the experiment-

p2’
ally determined magnetic moment form factors of the nucleon.

w and @ mesons {vectors in cocrdinate-space and scalars in

charge-space):

F2

£ = i(4Tr)l (I1-5)

g Ty w oy b
w {op) wiep) v Tw ()

[These five mesons {including the tensox coupling of the p also ex-
haust the five possible independent Dirac y-matrices that describe
1

the various meson exchanges.

A spinor representation for | is then picked (consistent with

the matrix representations for Yg and y\)):
ip-x {1,2)
b = e u II-6
b(G,) 3 (P) ( )
where ) designates + or - helicity, and 1 or 2 designates positive
or negative energy.
1. €.
0
1 i
0 . 0
1 _ E+m g-D s E+m {-c-p .
u+(P) = S jor=ol BT —‘V 35 i H (-7}

E =V pz"i' 2, and m designates the rest mass of the nucleon,

taken to be the same for protons and nucleons.

i7



For example, according to the rules of Section 2, one obtains
a '"'potential [before a non-relativistic reductioni, for the scalar

mesoen {¢) to be:

1, k' 2, =38 7
H ? g k o % k
B 4+mi{E+m g
Mk, k) = - ( mi{E +m) ) l, 1
Z {(E'+m){E +m)
- 4m
m
g g, - kKo k
- 9 5 |1- 2 £ . (1r-8)
1,k 2, -k A +m (E'+ m}(E +m)
=

(plus exchange)

2 2 . ;
where A = (k-k")7 is the square of the momentumn transferred via
the o meson. {p = hk, but as h will be set = 1, the two will be used

interchangeably.} (For inelastic scattering, the 'propagator’ is:

1

2 2
A —(EI»Ei)Z%up

For nuclear matter, where inclastic scattering can take place, one
2
can only hope that | E, - E. | << u. Also, see the comment about

RE

.p Xp'
LBE_B made at the end of the section on Nuclear Matier).
I

There are five independent such amplitudes for each meson,
depending on the final and initial z-components of the total spin of

the nucleons.

15



Partial-wave Amplitude Corresponding IHelicity Armplitude
In Out
. 1 1 ]

singlet J = 1, s = 0k = W —=0L = 4
Jz Jz

triplet J = L B —}f(Tl +4h —i-('i\L +ih
- /2 Jz
coupled J = 1. % 1 3 \.H/ ll
{triplet) 4. TT TT

5. 4 11
(6. 17 S §

{equal to the amplitude for elastic

scatiering 5 due to invariance

under time-reversal)

For elastic scattering, there are also five independent
VAT 3 : o0 213
Wigner-amplitudes that can be constructed out of bilinear com-

binations of the spin and momenta {to order p ). Itis 'wise’ to pick:

: - : X . 7 . . - g = ) o:
l,gl q i (r xp) S,(BQ"I ra, r -0, 2}( S

i * pgz' P/mn (11_9)

The spin {or helicity) amplitudes can easily be projected from

the Wigner set by the use of bessel transforms with respect to

11

momentum-fransfer (A):

19



p " 0p30y POy P)

a2 2
0 T
Y,Qk (QI') Y,@k(“[},) T dr er s

and because fer = 6,?,0 :

M _ . 2
(1,01-02,01-})02-}3) = —m]u( )JO(AI)I dr

is projected from a linear combination of

[ M

(o, Lo, L)

2
fu e ] and fu ) I3
(01 LOZ 1y-0 (OI'LGZ L)yv2
uniquely transformable. ]
= fa _I_Il . -1 . 7
My =2 fug (108),(x) exp (-iar x) dr

12 12

1/2 n=+2

It

) Z}%Idr " ‘1512 f(%ﬂ)

n=-2

b [cjl X 02](2) exp ( -ihA-7T) dﬂr

= _4_? _}r dr r2 Ug {-4m) jZ(Ar) (——) X
12

20

cexp{-i4- 1)

(11-10)

(I1-11)

and is therefore not

D ", @)

(Equation (I11-12) continued on next page. )



| n {(2)
< QP Y, ) loy x0T
n=-2
= (-5, (&) (-m) juslzir) j(ax) r° dr (11-12)
MLS = g‘% j’exp(—il:f e o) ul(Jlg(So T x(—iAr) exp{iki-‘r) y dr

H

-rn P .
i fdr T uLS(r)f (S - r X ki) exp({-iA+ r) er

fl

- 2
— [ dr i 4rir] >+ )
= T r uLS(r) i4 r}l{Ar) (S kX a)/ g

H

1 . 3
i (5 -k Xk (o) J[uLS(r) j lor) £ dr

L 2 sin@ ) 3
S.n ik e (-m) fuLS(r) Jl(Ar) r- dr , {11-13)

where n =k Xk /lk_xk
i f i

— o~

f

and |k, x k.| = &% sing
i i

Thus, assuming:

M=M +M o. o. + M S + M
1 o L

L.S+M g, PO, P,
192 2 g-p 1 e

S5

(il-14)
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one can calculate:

It

—t v 2 B .
Z ai)\([,\) Mi(A,p ) {I1-15)
=Y, 08B
IS, 0-p

3
£ {4,
K(z’\p)

where fk isone of the five invariant helicity amplitudes which have
. 11 ;
been found from the amplitudes for meson exchange. These five

equations are then inverted to {find

= z[a'lji f (A,kz) (I1-16)

2
) A

Mi(A s K
The arrows over the ¢+ p term indicate the directions of operation.
As written g. p is averaged after operating to both the left and right.
Finally, one takes inverse Bessel transforms to find Mi(r,kz).
The five Wigner operators are eigenoperators of eigenfunctions of the
total angular momentum {L + 5 =J), and by expressing the potential
by means of this setf, the Mi lend themselves, trivially, to a partial-

wave reduction. For this purpose o

y " POs p is given in a more

useful form in Appendix B,
. o son s . s A & 2
The non-relativistic reduction, to get a potential V(r,p ) {any
. 2 s : ; g .
higher powers of p~ used in Schroedinger's equation would obviously
require additional boundary conditions than assumed for the free
particles) is done by expanding all powers of

i/2
5
(k2 +m") kz klﬁl k6
m

gl
i
_I_
+
-+
..i-

22



2
; . A . .
and by keeping factors like cos @ =1 - —— and -5 which occur in
‘ 2 2
2k k
the b, . A phase space factor of i 77 is also expanded to
A
2 (m? + k%)
1 - 5 allowing local potentials to be defined. Then all powers
Zm
2
higher than — are dropped. This reduction is thus valid for
m
kZ
£ << 1. The velocity dependence is seen to arise from factors of
m
V2 4+ m?
e

and products of ¢+ k [combinations of which are deter-
mined by the type of meson being exchanged] from the nucleon spinors.

To remove the 5-function singularities at r = 0 due to infini-

75, (AT)
ties in momentum transfer space —

da., diverges for

2 2 : &

AT A

n=~0

E

a regularization in the form of products of Feynman-type

2 2
A= H
propagators (L multiplying the integrands of integrals
i Ai + A

2
over momentum-transfer space was introduced. 1 ({A, - U ) was
i 1
2 | ;
chosen as a factor to enable g for each meson to have the usual

e M¥
meaning | V ~ =

in the asymptotic region.

Four LA.'s were
AL
needed to take care of the highest power of 4

found in the central

part of the "induced-tensor' term of the meson.
T p

For example, to
regularize:

23



introduce e

2 2 2
A+ A AT+ (A2+u2) (A2+[\2)

an j (ar)
2 z 2 1 1
= A / ....218 - A[d&jﬂ(ﬁr) [ : g ]
AT+ A AT - AT R

PR 1 ] . (11-18)

2z 2
da A A ; _ [(AZ i uz) G LJ.Z] AZ jlar) da
j (Ar) =
Az g

2 2 2 2
Hoo- A A+ A

A look at the various Lagrangians and ai the nucleon spinors
ghow that, because the spinors are well-behaved functions of ki and
kf, only the p meson derivative coupling term should have any diver-

gences. Iowever, when expanding the spinor normalization factors,

2 2 2
ok - -
ZA 2 : 2 [1 - _-i] S
kW +m m m
such divergences "appear'. The 'masses' used to regularize these

divergences were, however, larger than the nucleon mass which im-
posed the harshest cutoff restrictions as explained below.

To insure having an analytic potential at small distances of r,



oo
[}

and to remedy the 1/v3 behavior of the L+ S and S12 terms, all
=gdages B

potentials in coordinate space were multiplied by {1 - e )

(After regularization, higher order products of propagators do not

necessarily change the 'order' of the potential at r = 0, but just intro-

duce more curvature in the potential at small coordinate space dis-

tances.) As these velocity-dependent potentials are expansions in

k2

2., and as the highest mass of mesons considered is on the order of

3
imn 2
1t

1 Bev [ meson], they should not be considered as having any mean-
ing within a distance of ~1!/m_, or .2 fermi. "This explains the
choice of cutoff to remove the divergences in coordinate space. Also,
: s 1 .
the potential within © < -—— was set equal to its value at v = -—— to
m m_
aid the numerical solution of the phase shifts. For the same physical
reasons, the cutoffs used in the regularizations should be on the order
of 1 Bev (but greater than the mass of the ¢ meson). This also influ-
enced the choice of meshes which was determined by insuring that,
within each interval at least several points spanned the Compton wave
length of the most predominant meson in that interval.

Mention should be made that the cutoffs recomimended in

Ref. 11



give rise to unphysical oscillatory potentials dying off as invcrse
powers of r, for large values of r.
The natural way to symmetrize the velocity -dependent k

terins is:

(2 & Ty . (11-20)

NSRS

However, the Ol -k g, Ik terms could be written as:

1 .

2o, ko, KV + : -k i

> (01 a, v VGl k a, ) (I1-21)
{again symmetrical in spins 1 and 2} or as:

Lo - BV k+g, - kVa, * k) (11-22)

2 97 2 Oa | :

admitting some arbitrariness in the symmetrization. The first form
was chosen as it coincides with the natural way the momentum-square,
2 . . s .
k~, is treated. Anyway, this was done before fitting the experimental
data, and the resultant effects would seem to be unimportant.
3. . ; : .

The 1/r~ singularities are quite unphysical. The attractive
tensor potential used without a cutoff would predict no lowest eigen-
value for the two-nucleon system which, of course, can exist as a
deuteron. Such a singularity, while clearly of dynamical origin in the
case of the L - 8 force, and therefore as suspect as the rest of the
potential in this small r region, is, however, purely static and physi-

cally necessary in the case of the tensor force. This cutoff in a purely



: . ; : 12 .
mechanical problem was first noticed by Hans Bethe ~ in 1940,
The final potentials may be found in Appendix A,
There does exist the question of other non-relativistic correc-
: . . 4 ; N
tions, primarily the p correction to the kinetic energy

Schroedinger's equaticon:

Z .
[%— + V(r}] () = B y{r) , (1I1-23)

ES

for E~ 0 suggests that P

T

o~ P?ri V, or that the kinetic energy correc-

tion is the same order of magnitude as the velocity-dependent potential.

But this appears to be true only on the average. As will be seen, for

2
large r, V{r) in Eq. (f1-23) is small, and %5 is therefore small, and
4 PZ
therefore both P‘”ﬁ and o V are small and negligible. For small r,
- .

V and P—;; V are large, but ¥is ~ 0, and for low energies the effects
of this small r region are unimportant. For larger energies, within
the energy range being considered, this last statement for small r is
probably also true. Anyway, this region is acknowledged to be
phenomologically treated. For large 1, regardless of the energy, it
is shown that the velocity-dependent function is orders of magnitude
smaller than the static term, so that there is no inconsistency in

neglecting the kinetic energy correction.



i, SCATTERING MATRIX

Schroedinger's equation,

2
-h 2 + -+
= . Wy ‘ 2 9B (.\ 1)
( m v (1)) JE(r) ute T _ (I-1)

can be recast into an integral equation:

i + )
y kel =g [G (r-1" )55 F(x) y Tty ar’ (II-2)
h
e " o
where w(r) = e " Tisa plane wave and G = - . e:Lk (x - x7)

41 |r - r’_[

is the Green's function for the problem (assuming outgoing spherical
waves as a boundary condition).

The procedure to solve:

I 2' | 2' -[— 1 + -
AT 4 <) qu (k)= F(r} "‘ifk'{'kr') R .{H_.L.(.._g.}
is to first solve
2 2

s
i

k(r, r’} = 8(r -r’), where G; is determined

then to solve (Vi + kz) G

by a sum over the eigenfunctions determined by the solution of the

28



29
homogeneous equation. This procedure leads to the wave equation:
+ +, 1
I (kr) = qgk(r} + jdr' Gk(r, Yy Bl ¢ (k") , (I1E-5)

: + i .
which expresses { as a sum of the homogeneous and inhomogeneous
solutions of the differential equation. The normalization correspond-

ing to this integral equation is

Jo)" ¥ ar = forn” ot ar=1.

For F(r) rotationally invariant, a partial wave reduction may

be made to find 6£,

T » g7
) f:'z 2 Yy o

'<-¢ﬁ(kr) - ;(zz +1) Pk - 7) @(kr)) , (ITI-6)

giving éz{k), the phase shift, determined by:

iéﬂ m +
e sinéﬂz ~ [j,e F£ ﬂ"g, (I11-7)
Similarly:
j,"x") 3 (k" x)
=j +[G F | Gk, -E =3 " (I11-8)
b=3,* [G, Ty 4, [ (k, = x) 22 Ay
gives tan 6 5 e fJ where Gg is the Green's function with

standing wave boundary COnditionS. Neglecting spin, for readability,

the standing wave soluticn is:



lim

Lh’@(kr) m jﬁ(kr) = nﬂ(kr) tan 6£.(k) ) (111-9)
(j}3 and n, are Bessel and Neumann functions,13 respectively. )

However, the potential derived in Section Il is velocity-

dependent:

v & &% 4 (r) = Vi, v) g () (ITI-10)

and to be useful for nuclear matter calculations {sece Appendix C), =
correct integral-equation representation must be found.

If one 'reiransforms’! the differential equation to resemble
Schroedinger's equation with a pure radial function as a potential, the
potential becomes a function of k,14 thereby destroying the eigen-
value properties of the integral equation. Alternative forms leave the
homogeneous equation andthe Green's function equation with a compli-
cated function multiplying the Laplacian operator which destroys the
usefulness of the simple Green's function solutions, and physigal intui -
tion gained when using a static potential. ¥or example, the differ-
ential equation

2 —
[V2+ K - (X(r) + Y{(r) ﬁ- + Z(r) %)} (=8 (=1 L]
dr

can certainly be solved by numerical means (for X, Y, Z well-behaved).
However, previous authors have, by dropping the 5. p terms (allowing

Y = 0), recast this equation inte the form:



2 ] “

2
and some have rewriltten
— A
( 2 K- x - éz \
7ok i = 1-12
v T / §=0 (T13-12)
as
Fis
( 2 Kz - x - Za z)
LA + k L= 0 ]
¥z K ju=0 (IL-13)

giving an "energy-dependent” potential.

The correct procedure to 'solve'

(v% + k%) ylkr) = Blr, ) (k) (111-14)
is to first sclve:
(v° + k%) yfkx) = 0, (II1-15)
then solve:
(v_+ ) G (r,2') = 8(r - 7). (I1I-16)
One thereby obtains:
plir) = yikr) + fdr’ G, (r, ') [H{x', 7_) 4(x,+1) (ITT-17)

or, after a partiazl wave reduction:

‘U:" j£ + fdr’ ji(r<) nﬁ(r>) {Hz(r’, vr,) %(kr')} ; (111-17a}

{r< is the lesgser of r and r', and T, the greater},



which gives a formula for the phase shift:

tan 8 (k) = - 37 fdr jkr) {H (5, 9) (k) ] (III-18)

‘ 2
H{r, v} = X(r) + ¥{r} él; ¥ Z{a) d—~2
dr

for the potential forms derived in Section II, Similar coupled equations
hold for the triplet J = L + 1 partial waves.
Integration by parts, for a potential well-behaved at the origin

(say as a constant), and decreasing exponentially at infinity, yields:

2
o d d
1 % =j + [ds + e =i .
( zz) V=, fdf b, 1%t Y, = 17, 2 GE, {(I11-19)
‘and
m d dz
& w5 4 = & —= 1] II-26
tan 6, . fd:a DL S 2 iy (I11-20)

m - .
e fdr lljﬂ Hﬂ(v,r) i, -

d
YE contains a — termm frorm the g

= p POy amplitude which

previously could not be properly used in calculations using the
"transformed equations' which is the probable reason many previous
calculations just used four of the five possible independent potential
forms. As the Gﬂ(r, r’'}) and jﬂ(r), and their derivatives, are simple
functions of sines and cosines, these equations are no harder to solve

than those using a potential depending solely on a radial parameter,



This was checked numerically by solving the 1SO—statc equa -
tion, first by a Runge-Kutta method for the differential equation, and
then by using a cornbination of matrix inversion and perturbation
methods for the integral equation. Only the potential used as defined
here gave the correct wave function and pbase shifts when comparison
between the two soluiions were made {i.e., formulations as that uased
by A. M. Greenl4 were found to disagree). This served as both a
check for the accuracy of the integral equation (meshes, etc.), and
also as a verification of the importance of solving the correct eigen-
value problem presented above. In light of this, previous calculations
involving energy-dependent potentials and/or energy-dependent
boundary conditions should be reexamined as to their regions of
validity.

The integrals were done using three regions of 10 point

Gausslan quadratures:
_ 11
1. r=20. -3, [Bev]
-1
2. r=3. -12. [Bev]

12, - 30. tBev]'l

[ON]
H
t

These 30 points were found to give the same accuracy as 47
points using Simpson's rule.
1

The conversion factor from fermis to [Bev] is

1f = 5. 0686 [Bev] L (L fermi = 1'f=1 fm = 1 fermometer = 10717 m),



34

The mass of the nucleon, m , is taken to be the averaged mass of the
n

proton and neutron:

1
m = = [m +m
n 2 proton neutron
= — 1 + 5
[2m e 1.3 Mev ]
1 ‘ -3
=z 2(.93821) + 1.3 x 10 " JBev
= .93885 Bew.
To solve:
o= oy f K,

matrix inversion was performed:

g =01 =K1y

Because the diagonal elements of [1 -K] were never zero, the pivot
element in the matrix inversion procedure could be set equal to it,
greatly reducing the time for matrix inversion to slightly over 2

seconds for a 30 by 30 matrix.



IV, NUCLEAR MATTER

The two nuclear properties sought in a nuclear matter calcula-
tion are the volume term of the Bethe-Welzaacker semi-empirical mass
formula, and the uniform saturation density of large nuclei,

The experimental binding energy can be taken to be
(-15.5 £ 2.) Mev. The mean spacing between nuclei in a saturated
large nucleus is taken to be (1,07 £ .03) fermi.

The calculations of nuclear matier, as performed by B—Ix/i,
were done for various potentials. If therefcre seemed more fruitful
to do a similar many-body calculation in order to directly compare
the effects of functional forms of those potentials to this work., It was
also hoped that the well-behaved potentials used would make the approxi-
mations used in B—M15 more palatable.

15 . .

The theory developed by K. A, Brueckner = describes the
interactions of nucleons below the Fermi sea {lowest energy level of
a system of fermions at zero temperature) via interactions of inter-
mediate states of particles above the Fermi sea. The interactions of
these particles above the Fermi sea correspond to repeated inter-
actions of each pair (7’-'1adder sum''), and also takes into account the
forward scattering (''self-energy’) of the excited "particles" with the
unexcited "holes' of the nuclear medium, to infinite order {see

Appendix C).



LWN]
o~

The eguations that are solved are:

Green's functions:

% k”?‘ ak” jﬂ(k”r) jﬂ(k”r’) 1P, k")
(IV-1)

= lee

Glr, ') =
£ { . 2Bk - E¥ X))

for on-energy shell propagation, and with {2[F{k} - EY(k") - A]) as a

denominator for off-energy shell propagation, with E{(k) = E(kf) for
k= kf due to averaging of the center of mass momenta.

A is an approximate mean excitation energy = E(kf) - E(0).
P is an average total momentumn:

2 2 12 2 k e kz k
P =P =5 p (-5 (1 iy +——£) (1 +m)

i P 6p B
£
for k < kf , (IV—_Z)
2 2
and P = PAV = 0, for k= Py
f(p, k") is the angular average of the Pauli exclusion-
principle projection operator:
> YrZ -
f{p, k") = 0 K+ B < p, (Iv-3)
= 1 (k” -P/Z) > pf
2
k”z 2. . DZ.
E i A
otherwise.

T

kll
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: e e 15
The integral from zere to infinity was calculated as:

5 2.6pf
=

1
bt
— e ———t
1o
8
(o ¥
=
K
A
=
o
T
—
bag
=
~
-
- §
~—
0
=
=
o
%
o

(IV-4)

because B (&'} was set equal to k“/2m for k"> 2.6 pe - The last

integral can be analytically evaluated:

2. :
© ko jkr)j{kr’)
2 ) £ _ . o e
— > = ma hﬂ(lar>) Jz{z.al'/) ,
T el h
5 o &
m
1 ] -
where a = [ -mz ] (z is always < O); (TV=5)

; th ;
J’Q’ and h,ﬂ are ¢ order Bessel and Hankel functions, respec-

tively with r, designating the greater value of r and r’, and r

<
designating the lesser,
Wave-Functions:
J5 : 2
W5 (kr) = fr) b, o+ é ar' +% G fr, v
J+1
v <J5 JS
8 Vol V) u, (kr') . (IV-6)
, 22 L3
£=J-1



38

L J+) o T+l e
N IS JS
E =47 Z Z C f r dr j (kx) z Vo ooAr,v)u (1)
k . TS ; N ?
K IS S5 R gty 24 bl
(Iv-7)

G the appropriate statistical weights, is given by:

TEs *

(2T+1) (27+1)
3

=1 for S-states),

T being the iso-spin, and J being the total angular momentum of the

state in question.

Single Particle Potential:

(pg-pl)/2
: 2
Vip) =5 Jﬁ K7 dk’ (K| K | k)
™ 0
X (ptp)/2 , (pi.-pz ity
i fn k7 dr/ (kK k) L1+ -
2 4pk
{(IV-8)
for p < Per Forp = Py the first integral vanishes.
The self-consistent energy is
kZ
E(k) = 5 T %{k), and the binding energy per particle

K 2 /e
- ax (5 + 3 V) | (1v-9)
- G

0



P r ——

The arrows on top of é{’/ﬂ.—tgu and Vﬂﬂf in the wave function and
K-matrix equations means V in V{r, V) operates on Gg,’ and j/z,
respectively, according to the index of Vr . This is analogous to the
treatment of the potential use in Section IIL for the proper trecatment
of velocity-dependent potentials,

At this point mention should be made that when calculating off
the enerygy shell (inelastic scattering), a new, sixth, possible invariant

potential form can arise:

2
o (pi X pf)/m (IV-10)

Since we wish to compare calculations made here with those
P 15 .. - . . ; 2
of B-M, this sixth form will not be included. Moreover, since 1t 1s
pZ
proporticnal to —5 its effects will notl be ncticed until high momenta,
m
when the scattering process is assumed to be elastic and p, X Py = 0.
i
This condition of elastic scattering at high intermediate
momentza, may explain why the off-diagonal matrix elements of the
equations coupled by the tensor force were found to be equal. For the
two particle scattering problem, unitarity forces these matrix ele-
ments to be equal, but no such physical property is known to exist for
the K-matrix.

Again 10 point Gaussian quadratures were used, this time in

four regions:

r=(0-2), (2-10), {10-21), (21 -41) [Bev]"l ;



In the last region, u, , was sel equal to j, 6£ o The momentum mesh
&K b b

1
used was the same as in B-M. #

Kl X, o8 P o s % Loy Lo 1,89 Py
The Fermi momentum is given, in Bev], as

1.524/r if r_ isin [Bev]"l, or

pf: 0
p, = .3006/r if r is in fermis,
f o o
) 4 . 3
z X % Iz
(@p)l LN 2T
3 P T v .3
= (27 1)

The computation for each value of the Fermi momentum (including the
exclusion principle integral) took about 7.5 seconds (30 peints of ¢
mesh), and one major iteration took about 12 minutes (2 minutes of

which were used to tabulate Bessel functions, potentials, etc.).

The equations actually solved {as in the scattering problem)

were for the radial wave functions fikr) = kr u(kr).

40



V. CONCLUSIONS

A. TPhase Shift Analysis

The experimental data for the phase shifts to be fit was

obtained from recent analyses at 25, 50, 95, 142, 210, and 310 Mev

e
lab incident kinetic energy compiled by Noyes, et al.

In order to directly cormpare this analysis to the data of Ball,

3
Scotti and V\7011g,1? a fit of the 381, 180, PO’ 3131, and 3P2 Wa s

done at the six energies mentioned above. Their fixed constants

were:
2
m = ,938 (Bev) g~ = 13.
n T
- g = .3
T M

m = .5H48
il
Parameters
1 2 2 2 2 2 2 2
= + 2, = 3, = = = = 1,36
] o 9 g, gpl gwl €
5 > _
gp2—13,4gv
2
= 1.36
gCT

Because of erratic, high-energy (higher than the experi-
: i 3
mental data) behavior in the nuclear-matter calculation, the ", and

1

off-diagonal tensor potentials were cut flat at r = Z/mn instead of

41
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r = 1/m as the other potentials.
n

2

5 § (calculated)- & (experiment)
1
A value of v = z =

. Ad {exp. error)
i=exp. ! i

data

= 446,5 (30 pieces of data}

was obiained for the following data:

Fized,
2 }
g = 14 m = ,135 {Bev)
T m
2z
= 14, i = .78
gﬂ, ”‘ﬂw
m = 1.02
(‘10
m = .548
e
Parameters
2
g = 3. 0362 m = .46052
o) [0)
2
g = 1.1 m_ = .53095
pl p
> .
= g =3,02723
& e
g ¢ = 21.9
F2

m_ {(highest cutoff) = 2.32140; Am = -. 06752 is the incre-

~—

ment of m determining the other three cutoffs.
c



This fit was achieved by varying each parameter until a local
minimum was reached whereupon a parabolic fit determined the 'exact'
minitoum of each parameter, and then this overall fit was checked by
redoing the fit with cach parameter.

In order to understand the meaning of this {fit, as other phase
shift analyses either use different data and/or rely on more primary
experimental data {polarization and cross-section data), it proves
enlightening to do the same calculation with two cther potentials widely
in use, the Breit potential (81 parameters), and the Brueckner-

" : ; s 5 15
Gammel-Thaler (BGT) potential, both reported in BM.
4 & 2 &5 ) e =

The BGT potential gave a y  of 1596, 6, The Breit potential,
using a core of . 506 { (iso-spin T = 0 states should have a coxe of
. 5002 £, and iso-spin T = 1 states should have a core of . 5116 i), gave

2

a y of 497.

However, the D-states are rather difficult to fit, and without

: . 2
any further adjustment of parameters, a ¥ was calculated for all 5,
P, and D waves (66 pieces of data):
. s 2
This potential (POT) gave y = 1483.5
2
BGT gave x = 2540.4
) . 2
Breit {using the proper cores) gave ¥ = 513,0.
With the same parameters, a low energy analysis was done:

. 3
The scattering lengths and effective range of the Sl(t) and

1

So(s) states were calculated using points near 5 Mev relative energy,



fitting the effective range formula:

-
1 Z
b pof B s g 1Y (V-1)
a Z
The binding energy of the deuteron can then be approximately calcu-

lated by soiving

1 Yt 2
Y= TT5Y where
S
(v-2)
B 1/2 : s
v = {-m ¢) , € is the binding energy,

The nuclear matter code was then used to solve the deuteron
problem. To do this: 1)} th.e exclusion principle correction term was
dropped, leaving the 'asymptotic’ Green's functions to be the full
Green's functions for the deuteron problem, and 2) the hole energy
spectrum was set equal to the corresponding free energy spectrum.

The following resulis also agreed with. results from the
scattering code when the replacement sz - em  was made using
the Breit potential,

A 'search' was done about the binding energies calculated
above and it was affirmed that the phase shift changed sign {through
11/ 2) in the vicinity of the correct binding energy. At this energy, the
deuteron wave function was used to calculate the electric gquadrupole

23
moment of the deuteron  given as:

Q=(%, S, 8Y/ (3,

i=1]

12 ) 3 (V"3)



27
) 3 . . :
% being the total ~S. -state wave function (in the 'a -channel') - the sum

1
u o, W g
of an 5-state part and a I»-state part: & = o i o iz expressed
as:
[=o] oo o2
1 2 1 [ 2 2 / 2
Q= — 7 f r uwdr - 55 o orTwdr /_[ (uZerL) dr
(50} 0 0 / 0
(V-4)
Table V-1
T.ow Energy Daftsa
POT BREIT BGT EXPERIMENT
a_ -94.3 -142.8 -181.2 ~120,6 +.357 {Bev)
-1
x 1.2 14.0 13.6 12,21 £ 1.53 (Bev)
a, 20,8 Z5: 55 21. 75 27.38 = . 155 (Bev)
r, 9.33 10, 085 1o, 35 8.71 % . 153 (Bev) !
. 5.63 4,0 3: 0 2,22 Mev
-2
Q 5,75 5. 41 5. 46 7.02 £ .1 (Bev)
B, Nuclear Maftter
Nuclear matter calculations were done at Py = 22y x5

.275, .295 (Bev), obtaining -14.6 Mev binding at kF = 26 [ 5% F
= 1.15f]. (See Fig. 1.)

One check on the calculations was to obtain approximately
equal phase shifts, for very low energies, between the nuclear matter
{no exclusion principle and free energy spectrum) and the scattering

computer codes. The scattering code was best checked by obtaining



FIGURE V-1

Binding Energy vs. Kf for POT

(1f = 5. 07 {Bev]'l)
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the same solutions by also solving the corresponding differential
equation.
The computer code was also checked by doing a calculation
: . . . .15
at ro = 1. 00 using the BGT potential, thus simulating the BM "cal-
culation, A binding energy of 19. 3 (using the exclusion principle in
just the S-statez) was obtained. A repulsive contribution of 1.2 Mev
: . .8 . .
is reported for the P state core contribution raising this answer to
15 . s Lo -
18.1, to be compared to the BM  result of 16. 9. The additional
1.2 Mev discrepancy may in part be accounted for by the differences
in mesh, and the method of interpolation used te calculate the single-
particle potentials. The Gaussian-quadrature mesh gave at least five
significant figure accuracy in the wave-function calculations, as
demonstrated by the equality of the off-diagonal matrix eiements of
. 3 3 . .
the coupled S1 - D1 system in the scattering problem.
’ 2 :
B-M first interpolated X, then did fk K W{k} dk to obtzin
the single-particle potentials. The method used here was to inter-

polate (kZK}, then do the integral. The most important region of

kZK_. from .3 k_to.7k

- pr was found to be very closely fitted to &

straight segment. The accuracy was checked by quadratically inter-
polating by moving the three points interpolated on, up one point,

whenever the interpolated point passed the second point, i, e.:

48



Point p, uses points 1, 2, and 3 for interpolation, while
point P, uses peints 2, 3, and 4.
Then, the same procedure was done interpolating 'backwards’,

and averaging the results. This would average the values of p, cal-

&)

culated, by interpolating using both the points 1, 2, and 3, and the
points 2, 3, and 4,

These two procedures produced less than .2 Mev difference in

e - . 2 o

the binding energy, interpolating on k K, and .8 Mev (repulsion by not
averaging) when first interpolating on K. The points were interpolated
to coincide with twenty Gaussian points lying between the limits of each
integral done.

As concerns the nculear matter calculation, probably the most

important property of the nucleon-nucleon potential is the central/tensor

ratio. This apparently non-unique ratio to be fit by the scattering data
gives quite different answers for the binding energy, the larger ratio
giving the greater binding. On Fig. 2 is plotted the tensor force used
in this calculation, the diagonal part of the kernel:

2 2

1 a°W  dw a4 . wd
Glr, v) ¥~ 2 | dr dr 2 Gz, 7) (V=5

dr dr

versus the tensor force of the BGT potential and the Breit potential,
The large, short range repulsion of the tensor force in the
scattering problem was found to be unimportant as only slight

changes in the scattering problem were produced upon

el
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FIGURE V-2
Tensor Forces from FOT, BGT, and Breit

(PCT is evaluated at 95 Mev lab energy)

(1f = 5.07 [Bev]'l)

The 'bump' at r ~ 9 is explained in the

caption of Fig. b,
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Polad

erroneous inclusion of the hard core in the off-diagonal tensor potential
when doing the BGT calculations. This is because the lzrge repulsion
of the central force drives the wave function —» 0 in this region. The
much smaller attractive part of the POT tensor force is to be noted.
Although all three potentials give sub stantially the same nuclear

: 3 3 ;
bar phase shifts for S}, €1 and "D, itis very clucidating to comparc

1’
the ratio of

-1
. v g
tan (30 \0 1,1)

= R (V-6)

e T
t 1 Vo
BB (Jo o 1Tj2)

where VO and 15;1 are the diagonal potential and wave function respec-
tively, and VT and QIZ are the associated coupled, off-diagonal potential

and wave-function:

Table V-2
for ter:
RC/T for Nucleon Scattering
Lah Energy
(Bev) POT BREIT BGT
. 025 1.44/.254 -1.13/1. 435 1.027/1.434
. 095 1.033/-.576 -.745/1, 096 .031/.78
.21 .754/-.664 - 7306/, 919 -.197/.503
<57 .627/-.671 -.761/.835 -.3161/.394

Although POl gives a more 'reasonable’ ratio for the

: 1 .
S. matrix elements when compared to the S0 phase shifts to

1

. 3 : .
which the S1 nuzclear bar phase shifts are close, this larger,

ceniral/tensor admixture can be better understood as 2 large
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central contribution of the ¢ meson which is not contained in the other
potentials. The argument that this contribution is nccessary, by con-
sidering either the ¢ meson or contributions from m-n exchanges, is
well formulated in SW.I’ 2%
The qualitative differences due to this very large central/
tensor ratic explains why these calculations give more binding in
nuclear matter. In the following Table V-3, the first column gives the
ratio of the two 351 matrix elements {(the sum oi which contributeé to
the K-matrix). The denominator is the matrix element of the tensor
potential. The second column gives the contribution to the K-matrix
when the tensor potential is set identically to zero. The third column
gives the fraction of attraction gained with VT =0 (i.e., {value with

VT = 0 - fuli value)/full value).

-2
Table V-3, RC/T for K Matrix ({Bev) )
k
= POT BREIT
k
£
Full Vi =0 A Full Vo, =0 %
1 -260.0 255.6 625 _B.b, -11.7 | -.882
. 112.8 TeIe # ~103. 5 : .
=17k, 3 43,2
sl -167. 16 i 25. -1.92
.5 e 167.9 | 1.1 % 5,7 1.9
-91.3 56. 1
= -4
.9 o 84.5 4,63 s 36.9 4, 55




To measure the sensitivity of the binding energy and equili-

brium density to these potentials, a calculation was done using

: 1
parameters giving a XZ = 770 for the 3S v SO, 3PO, 1,2 states:
2 Z
= = 14 = ;435 (Bex
g gﬂ m_ 5 {Bev)
& s
g = 3,05 m = .45
a a
2
g = 1.1 m_ = .531
B3, P
g & = 21,9 m = .78
Ps W
z 2
g = g = 3. m = 1.02
W ¢ P
m = ,548
Ul
m = 2.3 , Am = -,0667.
c c
This data is not very different from that data giving ¥ = 440, ,

v o . Z 5 .
but & greater R ratio did exist for y = 770., showing some sensi-

c/T
tivity in even the scattering problem calculation to the effective central
to tensor ratios. The result of the nuclear matter calculation was
17. 8 Mev binding at a density of kf = .27 (ro = 1,11) for this potential
{see Fig. 3).

As the D-waves were not carefully fitted to the scattering data,
a comparison of D-wave contributions was made to that of the Breit

potential which does fit the scattering data rather well, The Breit

potential gave a D-sfate contribution of -7. 27 Mev to the binding energy,



wn
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FIGURE V-3
Binding Energy vs. Kf for POT XZ = 770.

(If =5.07 [Bev]—l)
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while POT gave a D-state contribﬁiion of -8,73 Mev, a difference of
1.46 Mev. Inclusion of the ¥, G, and I partial waves, obtained directly
from the experimental phase shifts gave a repulsion of . 2. If one used
just Breit's D states, a binding energy of -12. 9 1s obtained, still 4.6
Mev lox.z.rer than the Breit potential gave {or the entire calculation. This
result is explained by the higher central/tensor ratio, as discussed
above.

Calculations at kf =.275 of the XZ = 770 potential, using the
resultant self-consistent spectrums were done to test the validity of

certain other approximations,

. . ; 19 .
The reference spectrum approximation, dropping

2.6 k; }
ik, K’ 1 : o
f L Ez‘(k’) i 3 (le) (e
O kfz
B(k) - =
2m

(V-1)

{done for both P and D waves)

gave the same K-matrix as calculations done by including the above
integral as part of the Green's function to within . 1%. This is seen to

be due to cancellation of

I “ieg . .
f dk 7 i, 3, (V-8)
0 6
2m
n

when f{k, k') is = 0, with the rest of the integral where f{k,k’) ~ 1,



Use of the free-particle energy-specirum for states above the
Fermi sarface instead of the self-consistent one in the S-state Green's
function gave a binding energy of -15.47 Mev, or 1.5 Mev less binding,
than the calculation using the self-consistent particle energies at

k=, .
£ 275

To illustrate the importance of recognizing the mornentum-

it

dependent nature of POT, a binding encrgy calculation was done using

. zZ
the self-consistent spectrum of POT, y = 770, letting —Cc;'— —=k {the
T

. . d N .
"elastic! potential) instead of = 5v2m (k) when operating on the
r n

ésymptotic Green's functions. The result was -39 Mev, instead of

-17 Mev binding due to the Green's functions' not "digging'' enough into

the shorter-range repulsive region of the potential ( Zmn E(k) > k ) .

;

These potentials, properly treated, are also non-local; that is, the

- d - !
potential is not a function of r, but rather of r and r' when used as:

Br) = x(e) + [ @’ X(e, 2 Gie'w) wie)

(V-9)
1|+ a“w AW 4 a
G(r, r’) o

Glr, ') .

X{r,r") =

The non-locality can usually be completely shouldered onto the (—5 term

can be reexpressed as |75 = O operating on simple Green's

a5 2

'drz T

functions by use of the homogeneous Bessel’s equation. o corresponds
to the proper momentum conjugate to the radial parameter in the
Green's function, and the + or - sign is to be taken depending on
whether a bound-state or scattering problem, respectively, is to be

d
done. The = term cannot be so treated.
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1
The lecal part of the potential for the SO state is:

s/
a“w (="} 2
- R . . I }." P s
Vg{i ) - P V\E(. ) 5 o (v-10)
m dr m .
n n

and to this is added the non-local part (for the scattering calculation):

dW({r’ k
- d(:' ) 2 d{il—_—;)(sin(kr<) cos(kr<)) f (sin(kr() cos(kr>)) (V-11)
m

n

where x, is the lesser of r and r, and T, is the greater. On Fig. 4

-1 dW{(z")

is plotted the local potential above and ey Y for kz =, 0445,

n

{In the nuclear matter calculation, there is some slight addi-

2
tional non-locality from the —5 term cperating on that part of the
dr

Green's function containing the exclusion principle correction.)

Fxhibited on Fig., 5 is the diagonal 'energy'-dependent 381

potential in nuclear matter at a value of k/kf =.1 (kf =,275})., On
Fig. 5 is plotted similar data for the off-diagonal tensor force. The
diagonal part includes local and non-local contributions. The Sl

was calculated with the exclusion principle correction.

That the S-states are so sensitive to the shape of this poten~
tial in the small r region is, of course, no less physical than the
sensitivity of similar calculations to the "hard-core' rédius, as was
demonstrated when using the Breil potential,

As can be seen from Eq. (V-11), the contribution of the

diagonal, non-local potentizl to the local potential is:
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r a bound

Wir} k 1W o
- g 1(:{" —= cot {Z kr) , (-— - (ﬁ-nh > coth {2 ar) ic
ar 2 ar
n n
siate calcuiation)
(V~12}
which for small values of kr is:
dw 1 :
. Sie) (V-13)

ar 2
Zm T
s

@ < . es P S ¢+ .
This is obtained from contributions at poinis 1’ approaching r
from above and below (notice - this largest contribution to the potential,

for small r, is energy-independent; outside this range W " 0 fastest

contribution is thus diminished)

and its kz
] ) i
i(kz) = ylkr) + cos {(kr}) [ sin(kr’) K{r’, Vr,) f{kr’) dr’
0
{(V-14)

[as]

+ sin(i(r) [ cos (kr’) K(v/, Vr,) Glkr") dr’

T

However, as r — 0, the only contribution to Eq. {(V-11) comes

from the second integral, and in contrast to Eq, {(V-12}, one obtains:

tan (kr), which for small kr:

L dW(r) k
dr 2
m
n
) (V-15)
k 11vr
:.dW(r) i . = av ___CL;_ for the bound state
dr 2 r 2
m mn

n
and does not diverge for small r. This is necessary to satisfy the

(When multiplied by the Green's function,

S-state boundary conditions.
this r = 0 contribution is negligible.) Unlike the "' é~function' behavior



2
. . . d
of the ) terzn, this "step-function' behavior of the i term cannot
dr i

be expliciily taken out from the infegral, and one must include this

somewhat discontinuous behavier in order to carry out the mathemalics

of this physical model. As can be scen from I'ig, V-4, the "%;* term

quickly becomes insignificant when compared to the local part of the
potential, as r increases, so that thesc sensitive, non-local effects

are only irnportant for the S-states.
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FIGURE V-4

Loczal and Non-local Contributions to the

kz =, 0445 (95 Mev incident lab energy)

{i¥= 503 [Bev]—l)

1
SO

-state Potential,
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FIGURE V-5

3

k i

381 POT fori(— =.1, k.=.275
i

(1f = 5,07 [Bev]"l)

Ag-mentioned in the text, these potentials, with proper
treatment of both momentum and non-locality possess
very little energy-dependence. In fact, the potentials
in Figs. 5 and 6 vary only a few percent, for r < 2,

when calculated at }—(- =.9, k,_=.,275
kf f
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FIGURE V-6

Tensor POT for ‘_’1’5" =,1, k,=.275
Kf H

(1f = 5.07 [Bev]"la

Comparison between this Fig, 6 and Fig. 2 iilustrates
the important, different contributions, between the

scattering and bound-state problems, from the

/

1/2
non-local potential. (Notice that kr =m = (. 0445) " X9

explains the anomalous bump in Fig. 2},



-0.02

Cnd
]
i

-004

™3

-006}

_008

A= | | -010

-012 -

g pmma
aee

[

I

G jom
Q2 o
0

g
L
]
i
fosnd



68

If one treats the momentum -dependence correctly, there does

exist an approximation for obtaining a lecal, energy-dependent potential

: 5 d . .

by approximating e s . This is seen to be true for both the scatter-

ing and the nuclear matter calculations. Only the S-states, (especially

the S1 state) in each case, really suffer from this approximaticon. Of
course, the larger o, the worse the approximation. Notice should

be taken however, that because of such error in the S-states the overall
calculations are qualitatively quite poor, illustrating the importance of

non-locality in the 'core'’ {small r) region. (See tables 4 and 5.)

In summation, one concludes that this one-meson exchange
potential has, in most cases gquantitatively, and in all cases qualita-
tively explained the non-relativistic observables of Nuclear Physics -
with only eight {8) parameters, which themselves are reasonable

physical quantities!



Lab, Energy

Table V-4

Non-locality in Nucleon Scattering

Fhage Shifts

{(Bev) With G, X2:1438.5 Wiﬂ1aCKa:k)X2::9& 6
1 . } )
5, . 025 . 895 ,973
142 . 249 . 335
.31 -. 192 -. 06
3PH 025 -.093 -.093
.142 -. 268 s, 276
.31 =~ B2 - B
31)2 .025 . 064 . 065
. 142 . 566 .552
.31 < LR .654
351 . 025 1,48/ -, 432 -1.56/1.45
& 142 .888/-.572 L718/-.192
c/T .31 L.625/-.668 L 448/ -, 363
Table V-5
Non-locality in Nuclear Matter {kf = .275)
E matrix ([Bev]_z)
K/, With G’ With a Gla = \/zmnE(kT)
1s0 .3 -99.5 ~95.9
.7 -38.9 _36. 8
3131 .3 10. 75 10, 78
.7 15, 64 15. 74
3D2 .3 -4,26 _4,25
N -17.8 -17.5
'381 & ~222.8 _pud. 3
107. 3 175.9
R -130.9 -135,8
C/T i 88,2 124, 1
Binding ~14, 48 Mev +8. 48
Energy
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APPENDIX A: POTENTIAL (POT)

. 11 . . i
For each meson consideread, five F functions (¥ , F , E e
c o

1
438 g F ) will be given. For the first four, the o; phase-space factor
Jd ap X,

1
is to be later expanded to — (1 e ) The fifth, ¥ , is already
. m ap

- 1 . ; . 1 .
multiplied by — Oy k o, K and proportional to k/m™, so T is
ot :

. 2n oL
replaced by L Each time a factor A appears, it is understood to
I3l
be regularized by the methods given in Section IL. Integrals over

momentum transfer space, for

2 2
+ g m
¥, F_, F_ _ give,with F = "Tu"? , (A-1)
L B + 4%
gi e
a term --—
r
2
s gu
Integrals of FIS - give a term
’ Elu + A
gz e—Llr 1 1 1-12
i ;
SN . N— gl | P Woa
z ( e p,r) 2 -2,
U T m
2
gU.
Integrals of FT =TT give a term
B+ a7)
2 -ur 2
g ' B .3 U
- 2 i ol B _
r (ZZTpr 1) 2 B =
Woor m

7



The F's given are the I =0 (isospin = 0) potentials due to the
exchange of I =0 particles. The other three possibilities are obtained
from the I-spin crossing matrix:

I-spin of Potential = (crossing matrix} X I-spin of Particle,

G- GG e

or

F = @
C
gz A2
I =
12E 2 2
g guoo+ A
gz 1
¥ = B e {A-5)
T 7 2
12 " +A2
FLS = )
¥ =0
op

2

2 4
e 2z Az & A4 A kz A kz
Wt 2 4
64m 16m 128m

2 4

2 4 2 4 :
~ g (A A 1F At )
¥ - 2 2 )
A7) \64m 24m 128m

(Equation A-6 continued oa next page. }
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gZ
2y S
2z 2
f: BloT+ A
2
F __._’)“:“__m,_m_
{ 2 2
L3 Eu™ +4a7)
gZ
F
y 2 2z
P E(u +a)
Vector Meson {p, w,®)
Vector coupling
2
F zg —
= E{L” + A%
—
e -
E{u +40)
gZ
¥
2 2
¥ E(u +47)
gZ
i .t
z
T E(uz + A7)
z
i g
gp

74
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Tensor coupling (for the g only)

2
e Lt ( S NS b S )
© E(,LJ,Z + AZ) 16m2 256m 64m 512m
2
Po. 2 (ﬁ TS SR b
2 EZ + 2% Sm>  TShme  Bm®
] A4 kz AE) kz)
4
961 512m (A-8)
2
>
e e A (_1“ LKt )
1 E(p,z + AZ} 1z 6m2 192m4
2
2 2
B s s NV N &
Fis ™ 72 2 U2 27 2T g
E(u + A7) 8m 64m 32m 128m
2
2 4
F _ .tz ( L. _A__)
- ) ‘ 2
op B + A%) 2 64m

Mixed vector-tensor coupling

2 2.2
= ) £8; (A S L A%k ,*Aélhkz)
T 2 ' 2 A
N Eu° + 1% 8- 2m~  32m

(Eguation A-9 continued on next page.)



- B% (_A_i

- o
wt + 8% %7
__gng# (_1“
o B z 6
E{u - AT)

4 2.2 4 2
oA bk 2Kk
8m 3rn& 32n14
K
6m2
2 2
A%k )
2 T
2m 2 81’114

{A-9)
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e, ™

APPENDIX Br~CORRECT USE OF FIFTH L (o
o. p POTENTIAL.

. Pz 2. 2
To express o- po + p @s an eigenopcrator of 37, L., 5,

write:
p = V/i (B-1)
o~ r x{r X
v = =z - ¥) ~ ]
T
- _a;_ 5 _i\_x I
= r 9 i " , and (B-2)
o.V 5.8, .82 L
' v ar Z
T
& r g . L
= g . e =« A (53-3)
ar 2
T
The Dirac identity gives:
g-r gL =1L tig rx L =ig.-r X L, (B -4)
A d g L}
¥ = e - i,
o G [dr T (B-5)
Using
5. L d d 5. 1L 25 -1, d 1
- T = - O, Y § .
T dr dr r T dr 2 5L, (B-5)
one obtains:
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L + N
9 Lo, | (ol 0‘2) 5.1
T 2 " 2
r r
Using
25 = o - o, (B-8)
ais . LY = 1 L g L ¥20. - Lo+l (B9
B Tl SR M i T
and
, , 2
6eLg.L = LeL +ig-LXxL=L"=¢-L, (B-10)
2 2
6, Lo, L = 2(s+-1)" -1L7+5 .1, (B-11)
yvields
. o B - dZ_ZS°L£L2(S-L)Z—L2+ZS-L
1Y% By = %0y 2 ¥  dr 7
dr T
(B-12)
Finally:
o @ 28-L d  2s.-19°-1.%+28. 1L
Lk A AL R e A T z
dr r
(B-13)
where
Sgg = 30y - T8, « &~y ~ Uy

is the tensor operator.



APPENDIX C: DERIVATION OF NUCLEAR
MATTER EQUATIONS
According to the rules set down in Section I, K. A. Brueckner's
theory sclectively sums the perturbation series. This roethod rules out
the possibility of caiculating collective properties such as supexr-
conductivity. However, other investigations show this state, if it
exists, to be close to the greund state calculated here.
First the 'ladder sum' is calculated:

o-0 + 0000 o

1; &y

I
=V + S . Twiw 5
1:ij;k,\% —\iJ;k,@ - ‘V]__];l’nl'l e +e -e -8 an;k,@
mnn :

V is the two-body potential, and ¢ is the kinetic energy.
In terms of this t-matrix, the energy shift {expectation value of

3]

the Hamiltonian} in Brueckner -Goldstone theory is given as:

AFV_E E t _1_2 t nknﬂ(l~nm.)\l—nn)
"2 kosks k2T 2 ran;k
k4 k2 (e. + L )2
Ty k' %27 "m ®n
t xj £, o+t L -t
mn;ik ) lEJ; ( i]:ik N ik358) tjm;(jm}
-t ) n.{ + (hole - hole + 3 body clusters of
jn;{jn)/ ]
order t° + ... Yo (C-2)
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wherc

_ (1-n X1-n_)
+f =V © > v ™ m
il {3k) jk ik e ik;mn (:J + € " €m - E:n - 5 E)

mn;{jk)

(¢E is later approxirnated, and set equal to E{kf) - E(0)).

Next, self-energy inserts are made:

i
i
O

o ¢t s P

i

!
O

H
O
+

i
R

-+
SN
I8

e +eg - g -z UJ'I—*-UJ!"UJI"LU! (C—4)

Next, one defines a new reaction matrix, K:

. (1-n j(1-n)
Z ) m n

Vij;mn S+ Eﬁ’ =R - En" Kmn;k,@

X =V +
me itk g
ik 11:k2 o K -

where



and the enevgy shift becomes:

- 3
g‘ K , r + 0 (K C-6
L Prgske) Tk e (& (C-6)
k£

However, the energy shift for particles is taken in the presence

of excited sfates which produces a shift 8F in propagators delining

their intermediate states:

e
b4

(1 —nm)(i —nn)

K=Vt D :
ij;kd ij3k i Vij;mn 7 +E _-E -E -E Kmn;kﬂ
mn ‘k 4 m n (C-7)

Mention should be made that another summation has been done
e L ; 3 ; . . - ;
by Bethe ° of the O(X7) and higher terms in a density expansion. The
first term of this new sum contains three hole lines {as compared to
P . ” 20

two hole lines in X}, However, it has recently shown  that these
terms taken together with the high partial waves of the two body X
matrix gives a negligible contribution to the total energy in high
intermedi ite states.

The approximations necessary for a partial wave reduction
are:

1) angle average of energies

2) angle average of the exclusion principie.

s . . 8 :

A further approximation was introduced by Masterson to

average the center of mass momenta 1o facilitate computations.

The final ecuations are given in Section IV,



