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Several studies in quantum mechanics and statistical mechanics have formally established that non-
flat metrics induce a difference in the potential used to define the path-integral Lagrangian from that used
to define the differential Schr¨odinger Hamiltonian. A recent study has described a statistical mechanical
biophysical system in which this effect is large enough to be measurable. This study demonstrates that
the nucleon-nucleon velocity-dependent interaction derived from meson exchanges is a quantum mechan-
ical system in which this effect is also large enough to be measurable.
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I. INTRODUCTION

In the last few years, several investigators have noted that the potential contribution in the differen-
tial Hamiltonian operator of the Schr¨odinger equation differs from the corresponding potential contribu-
tion to the path-integral Lagrangian, when the metric is non-flat [1-10]. Similar differences occur in sta-
tistical mechanics, between the differential Fokker-Planck equation and the Onsager-Machlup
Lagrangian, extended to systems with nonlinear drift and nonconstant diffusion [11-14].

All these authors have noted that these differences are as yet untested, in that these Riemannian
‘‘corrections’’ are too small to be measurable in most physical systems.

However, recently a statistical mechanical system, the statistical mechanics of neocortical
interactions [15,16], has been shown to possess such corrections that are large enough to be measurable
within ranges of current empirical values of synaptic and neuronal parameters. Although the scalar Rie-
mannian curvature and covariant divergence of the drift terms are within a few percent of the bulk of the
Hamiltonian and Lagrangian, the neocortical system is not quite yet sufficiently experimentally defined to
enable these calculations to predict actual changes in stability and information processing. The statistical
mechanics of financial markets also has been shown to have similar mathematical behavior [17], and here
these corrections further highlight the importance of dealing with the Stratonovich versus the Ito prescrip-
tions, i.e., the midpoint versus the prepoint discretization, respectively [8]. This system awaits definitive
fits to market data to establish the actual importance of these differences.

Also recently, a quantum mechanical system, nonrelativistic nuclear forces, has been shown to pos-
sess Riemannian corrections that are indeed large enough to be measurable [18]. These corrections are
enhanced because of the standard methodology, by which parameters of meson-exchange nuclear forces
are fitted by the Schr¨odinger equation to empirical scattering and deuteron data; but nuclear matter must
be described by a time-folded path-integral-type formalism to account for ladder and self-energy effects
among particles and holes relative to the Fermi surface [18,19]. A key point in this argument is that any
path-integral-type derivation of theK -matrix--i.e., involving the time-folding of a differential propa-
gator--that begins with a two-body momentum-dependent two-nucleon interaction, gives rise to a calcula-
ble difference in the effective potential compared with the potential used in the two-nucleon Schr¨odinger
equation. Since theK -matrix itself is not exactly reducible to a Schr¨odinger partial differential equation,
this argument is invoked at the earlier stage first defining the many-body operator containingVK , which of
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course is widely assumed to at least modelVψ , before the self-energy and ladder partial sums are taken.
In any such derivation, the modification of each kinetic energy term by its momentum-dependent potential
defines a non-flat metric giving rise to this effect.

In a previous paper [18], the curvature correction was argued to be measurable by virtue of simply
considering just two terms out of 159, in ‘‘momentum-transfer-space,’’ that have been used to fit nuclear
force data [19,20]. This paper includes the full potential, and therefore goes another step forward to quan-
titatively demonstrate that the curvature scalar is consistently at least a few percent as large as the
nucleon-nucleon potential itself, over the nonrelativistic region of interaction. Even though it is interest-
ing and relevant to path-integral formalism that this effect is large in some physical systems, an important
point is that, although this curvature scalar contribution might be considered to be absorbed by the
nucleon-nucleon potential parameters (e.g., coupling constants and masses of exchanged mesons) by their
fit to scattering and deuteron data, this is not true in practice [18]. These parameters have always been fit
using the Schr¨odinger equation, e.g., which contains the curvature scalar in its potential, but the path-inte-
gral-type derivation of the nuclear matter binding energy doesnot contain this term in the potential
appearing in the Lagrangian, and therefore a contribution∼1 Mev to the theoretical binding energy is
obtained which is larger than the empirical error in the binding energy, i.e., the volume term in the
‘‘Bethe-Weis̈acker semi-empirical mass formula.’’

Section II summarizes the basic formalism. Section III summarizes the numerical calculations.
II. BASIC FORMALISM

The path integral for nonrelativistic interactions can be written for the scalar amplitudeΨ, Ψ invari-
ant under coordinate transformations.

Ψ =
N→∞
lim 


µm

2π iε



n(N+1)/2

∫ . . . ∫
N

s=1
Π g1/2∆z exp(i

sε

(s−1)ε
∫ L) ,  (1)

L =
1

2µm
gij ẋi ẋ j − v̂Ψ(x) ,

=
1

2µm
η ij ẋi ẋ j − V̂Ψ( ẋ, x) ,

whereη ij is the flat-space metric in the presence of velocity-dependent potentialV̂ , g = det(gij), gij is the
proper metric of the space,µm = m/2 is the reduced average nucleon mass, and∆z is a normalization to be
further specified subsequently. In the nucleon-nucleon problem,−V̂ is the interaction Lagrangian, e.g.,
defined by the Born terms of meson-exchange nucleon-nucleon amplitudes.

This is clearly very phenomenological, despite the fact that for many decades there has been moder-
ate to good numerical success in so definingV̂ : There are many prescriptions forV̂ , e.g., dispersion rela-
tions for multiple meson-exchanges [21], and quark models or tower graphs from regge analysis for the
core region inside 2 Gev−1 = 0.395 fm [22-24]. Therefore, theory has a long way to go to explain a
uniqueV̂ , if one even exists. However, the effect considered here arises from any momentum-dependent
contributions toV̂ , and it is clear that at the the least, such momentum dependence arises from nucleon
spinors and one-meson-exchange diagrams [19].

For very practical reasons, to facilitate fitting of experimental data and to formulate the nuclear
matter problem, a Schr¨odinger equation must be written corresponding toΨ. To specify the momentum
operators, first a covariant Schr¨odinger equation is required for the scalar wav e-functionΨ = g−1/4ψ ,
whereψ is the conventional nonrelativistic wav e-function.

i∂tΨ = HΨΨ = −
1

2µm
(gijΨ; j);i + VΨΨ (2)

≡ [−
1

2µm
g−1/2∂i g

1/2gij∂ j + VΨ]Ψ ,
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∂i[. . .] = ∂[. . .]/∂xi ,

wheregij = (gij)
−1, HΨ is the differential Hamiltonian operator, andVΨ = VΨ(x). As established by pre-

vious studies [1-6,8,11-14,25], the path-integral Lagrangian corresponding toHΨ is

LΨ =
1

2µm
gij ẋi ẋ j − VΨ − R/(6µm) .  (3)

Note that the covariant divergence of the gradient (gijΨ; j);i reduces to the ordinary Laplacian∇2
xΨ in

orthogonal coordinates, and thatR is defined here to have the same sign as the Gaussian curvature.

gij is defined here by the effect ofVψ (r,−∇2
r ) on the flat-space metricη ij in Hψ . Considering a

momentum-dependent central potential, e.g.,S-states,

i∂tψ = Hψψ = [−
1

m
g−1/4∂i g

1/2gij∂ j g
−1/4 + vs − R/(12µm)]ψ (4)

≡ [−
1

m
η−1/4∂iη

1/2η ij∂ jη
−1/4 + Vψ ′]ψ ≡ [

1

m
p2 + Vψ ]ψ ,

gij = (1+W )η ij , η = det(η ij) ,

Vψ (r, p2) = vs(r) − R(r)/(12µm) + {p2W (r)}/m ,

{p2W} = Wp2 + Y i[W ,η]∂i + Z [W ,η] .

The functionsW , Y and Z are directly, albeit tediously calculated in Eq. (4), from Eq. (2) with
Ψ = g−1/4ψ : gij is defined by the velocity-dependent potentialW ; Vψ (r, p2) is defined by expanding and
absorbing all terms from the second-order differential operator ingij-space which do not contribute to
∇2ψ in flat η ij-space, via the intermediate step involvingVψ ′ (e.g., factors ofη are passed through to the
LHS of differential operators); this also defines the calculation of terms{p2W} which contribute to the
sum of the usual static potentialvs plus the scalar curvature contribution. The terms inW , Y and Z will
be included in future nucleon-nucleon fits and nuclear matter calculations; similar terms were included in
previous calculations [19,20]. However, the scalar curvature term contribution is relatively independent
of the fitting process, and it is this contribution that is being analyzed in this paper.

This choice ofVψ leaves the path-integral Lagrangian forψ , Lψ (to be associated withVK and the
K -matrix), R-free and ‘‘gauge’’-free: R does not appear in the classicalLψ , resulting in
−R/(12µm) = −R/(6m) in Hψ instead of−R/(6µm) in LΨ. The covariance of (gijΨ; j);i dictates the order-
ing of p2 andW in Hψ , and also keepsLψ a quadratic form in ˙xi ẋi, i.e., not in ( ˙xi − wi)( ̇xi − wi) for some
nonzerowi. Note that |W | < 1  for all reasonable two-nucleon potentials in the nonrelativistic region. In
this form, the scattering problem, the deuteron and nuclear matter can be solved straightforwardly, as
demonstrated previously [19,20].

Much mystery is taken out of this calculation by recognizing that the differentialHΨ is calculated
from LΨ by considering fluctuationsyi about the geodesics in normal coordinates.

gij(y) = gij(0)−
1

6
[Rikjl(0)+ R jkil(0)]yk yl + . . . , (5)

g(y) = g(0)(1−
1

3
Rij yi y j + . . .) ,

Rkjil =
1

2
(gij,kl − g jk,il − gil, jk + g jl,ik) + gmn(Γm

ikΓ
n
jl − Γ

m
il Γ

n
jk) ,

Γi
jk = gli[ jk, l] =

1

2
gli(g jl,k + gkl, j − g jk,l) ,

R = g jl R jl = g jl gik Rijkl ,
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[. . .],i = ∂[. . .]/∂xi ,

Therefore, ifLΨ is R-free, thenHΨ contains a term of−R/(6µm). If Lψ is R-free, thenHψ contains
a term−R/(12µm) due to theg1/4 normalization factor. This source ofR in Ψ also summarizes why it is
possible to have an ‘‘extra’’ normalization of∆z in the path integral, as long asLΨ is redefined as
LΨ′ = LΨ + zR/(6µm) [4]. With this consistent choice ofΨ′ and∆z, the path-integral solution forΨ is
independent of the numerical value ofz. I.e., in Eq. (1),L should be replaced byLΨ′. Here,z is taken to
be zero. In statistical mechanics, in two dimensions where one component of the curvature tensor suffices
to specify the curvature scalar, it has also been noted that ifHΨ is keptR-free by redefining the potential
V , Ψ now representing the scalar probability function, then theR term in LΨ can be interpreted as the
square of a correlation length, since the classical flat-space arc-length,ξ∝ ∫ (gij ẋi ẋ j)1/2dt, must be cor-
rected by∼R/Ω, Ω the mesoscopic volume of the discretized path integral, when the volume element
becomes sufficiently small [26]. This interpretation is intimately connected to the generalization of the
Onsager-Machlup result [13], by observing that the factorg1/2 is related to the inverse Jacobian of the
transformation, to the mesoscopic-macroscopic variables from the phase space of fluctuations of end-
points of the folded short-time propagators. Note thatLΨ is equivalent to the Feynman Lagrangian with
its associated variational principle. This is not equivalent to specifying the Lagrangian of the WKB prop-
agator of the most-probable path [5,7], which differs essentially in having the van Vleck determinant in
the prefactor of the propagator, and in having a Lagrangian containingR/(12µm) instead ofR/(6µm).

III. NUCLEAR FORCES CURVA TURE SCALAR

To proceed with the calculation of the curvature scalar, the arc length in isotropic form is defined by

ds2 = (1+W )−1(dr2 + r2dθ 2 + r2 sin2θ dφ2) .  (6)

This can be put into ‘‘standard form,’’ [27] which is more convenient for further calculation.

ds2 = gij dxi dx j , (7)

= A(r′)dr′2 + r′2(dθ 2 + sin2θ dφ2) ,

r′2 = [1 +W (r)]−1r2 ,

A(r′) = {1−
r

2
W (r),r [1 +W (r)]−1}−2 ,

[. . .],r = ∂[. . .]/∂r .

Using

Rr′
r′ = (r′A2)−1A,r′ , (8)

Rθ
θ = Rφ

φ = r′−2 + (2r′A2)−1A,r′ − (r′2A)−1 ,

A,r′ = A,r r,r′ ,

yields

R(r) =
2

r′2



1−

1

A(r′)
+

r′A(r′),r′

A(r′)2





. (9)

The potential used to determine the size ofR is taken from the earliest paper that developed a
momentum-dependent potential based on one-meson-exchange Born amplitudes, the set of
{π ,η,σ , ρ,ω ,φ} [19]. Although this potential had moderate success in fitting the nonrelativistic scatter-
ing data, the deuteron, and nuclear matter, as well as being useful for neutron stars [28], with much fewer
parameters than its static predecessors, certainly a more updated potential, e.g., including meson inelastic-
ities and off-shell effects, should eventually be used to more precisely calculateV and R. Howev er, this
potential is much easier to handle, algebraically and numerically, and the resulting calculations are
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certainly within the correct order of magnitude.

The potential taken here is the sum of1S0 and3S1 states, the latter without including coupling to
the 3D1 state. This is not a serious approximation for this momentum-dependent potential, since it was
shown [19,20] that the fitted coupling is much less than in previous static potentials. This permits the
isotropic assumption made above.r × p ⋅ S (Spin-Orbit) and (3σ1 ⋅ r̂σ2 ⋅ r̂ − σ1 ⋅ σ2) (Tensor) amplitudes

are zero in these states, leaving 1 (Central),σ1 ⋅ σ2 (Spin-Spin), and
1

2m2
(σ1 ⋅ pσ2 ⋅ p + σ2 ⋅ pσ1 ⋅ p) to

be considered; inS-states the latter reduces to
1

3m2
σ1 ⋅ σ2 p2 [19].

The parameters used to fit the potential [19] are:g2
π = 14. 0, µπ = 0. 135 (all masses given in

Gev−1), gη = 14. 0,µη = 0. 548,g2
σ = 3. 036,µσ = 0. 461,g2

ρ1 = 1. 1 (vector coupling),g2
ρ2 = 21. 9 (tensor

coupling), g2
ρ12 = gρ1gρ2 (mixed vector-tensor coupling),µρ = 0. 531,g2

ω = g2
φ = 3. 03, µω = 0. 78, and

µφ = 1. 02. The artificial necessity of including theσ and the low mass of theρ were important factors in
determining that much work remained to be done on theπ − π and theπ − π − π regions [20]. To cut off
the artificialr−3 divergence of the Spin-Orbit and Tensor forces, all these amplitudes were multiplied by
[1 − exp(−mr)]3. Not included here, because of computer restrictions, was the additional regularization of
powers of (q − q′)n in the t-channel (n = 0, 2, 4, 6), before Fourier transforming tor-space, by

Π3
i=1 (Λ2

i − µ2)/[Λ2
i + (q − q′)2], where allΛi > m. As with the former, the latter cutoffs also affect the

potential near the core region, but they die off soon afterwards, e.g., after 3 to 4 Gev−1, relative to the con-
tributions being made by the exchanged mesons. Instead, here (q − q′)n → (−µ2)n/2.

-- Fig. 1 --

Figure 1 presents the results. Note that the ratio,R/(6mvs) in (d) is substantial throughout the main

potential region, to eventually approach its asymptote at−
1

6
(µπ /m)2 = −0. 00345.

IV. CONCLUSION

It now is clear that these Riemannian corrections are small, but not negligible. For example, if a
velocity-dependent potential were fit to data using the Schr¨odinger equation, this potential would have to
include the curvature term. The parameters of this fit most likely would absorb this affect so that the net
functional form would be only slightly affected. However, in calculating the nuclear matterK matrix,
which is derived from a Lagrangian or Hamiltonian path-integral representation, this curvature term
would not appear, thereby directly affecting the binding energy and saturation properties. A correction on
the order of 1% in the potential could mean on the order of 1 Mev correction to the binding energy ( a
cancellation of the kinetic energy and the self-consistent nuclear matter potential), especially since this
correction is influential in the steep part of the potential presented in Fig. 1 [19,20].

It would be interesting to see whatR-effects exist in hadrons, e.g., as modeled by velocity-depen-
dent quark-quark potentials.
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FIGURE CAPTION

FIG. 1. The abscissa in all Figures is ther-axis, from 2 Gev−1 to 6 Gev−1. (a) The curvature con-
tribution to the Schr¨odinger equation,R/(12µm), versusr. (b) The static part of the potential (without
terms from the symmetrized W contribution),vs, versusr. (c) The momentum-dependent part of the
potential,W , which contributes to the metricgij , versusr. (d) The ratio of (a):(b),R/(6mvs) versus r.


