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A Riemannian curvature-scalar term arises when determining the difference between the

velocity-dependent potentials used in the differential Schr¨odinger equation and in its path-inte-
gral Lagrangian representation. Tw o previous papers have demonstrated that the magnitude of
this difference may be within experimental error in nuclear matter binding energy calculations,
when medium-range and long-range interactions are considered. This paper completes this first
series of analyses by focusing on the short-ranged velocity-dependent interaction as parametrized
by the Paris group.
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In previous papers [1,2], it was demonstrated that a velocity-dependent nucleon-nucleon
interaction, e.g., arising from nonrelativistic reductions of nucleon spinors and momentum cou-
plings of one-meson-exchange Lagrangians [3], differs in its differential Schr¨odinger equation
context from its global path-integral context, to the extent that this difference might account for
several MeV binding energy per nucleon in a nuclear matter calculation of the volume term in
the Bethe-Weis¨acker semi-empirical mass formula.

Independently, it is also of extreme interest that this calculation presents the nucleon-
nucleon interaction as the first quantum system to be investigated in which these Riemannian
contributions are of sufficient magnitude to fall within experimental errors of empirical data.
There are presently several derivations in the literature of the determination of the classical or the
quantum differential propagator from its path-integral Lagrangian representation [4-18]. These
methods also have been applied to classical physics-related problems in neuroscience [19-25],
economics [26] and artificial intelligence [27].

Whether starting with any giv en differential Schr¨odinger equation containing a velocity-
dependent potential with terms of up to second power in the velocity, or starting with its path-
integral representation wherein the Hamiltonian or Lagrangian contains momentum-dependence
or velocity-dependence, respectively, in addition to free kinetic energies, either differential-equa-
tion operator-ordering or path-integral time-discretization considerations unambiguously estab-
lishes the necessity that the potential terms in these two representations differ by terms which
turn out to be concisely expressed as the Riemannian curvature scalar in a space with a non-flat
metric induced by the velocity-dependence, e.g., as derived from the net coefficient of the Lapla-
cian operator in the Schr¨odinger equation. Even when the velocity-dependence of the potential is
only of first power in the velocity, operator ordering or discretization considerations must be
taken into account, e.g., to establish minimal coupling of the electromagnetic vector
potential [17].

As any path-integral-type derivation of the nuclearK -matrix directly illustrates [28,29], the
nonrelativistically-posed nuclear many-body problem (neglecting meson inelasticities [30], etc.),
although it cannot be formulated as a simple collection of two-body Schr¨odinger equations, does
assume from the outset that its two-body potential, before self-energy, ladder partial sums and
other renormalizations are taken, is the same as the potential interaction between two nucleons.
If the two-body velocity-dependent potential were fit to the (scattering and deuteron) data, by
numerically integrating the path-integral for each choice of the parameters to be fit, then this
two-body potential would be used in the same (discretized or operator-ordered) way as in the
many-body problem. Then, the curvature contribution would still be interesting physics, e.g.,
occurring in the differential Schr¨odinger equation if the choice is made to retain a classical
Lagrangian [1,2], and, e.g., wav e functions calculated either way would be identical.

However, in practice, the two-body potential is more easily fit by numerically integrating
the (energy-spectral) differential Schr¨odinger equation for each choice of the parameters to be fit.
Now, the Riemannian contribution necessarily appears as difference between the potential used
to describe the differential-equation two-body problem, and the two-body potential used inany
path-integral representation, e.g., the nuclear many-body problem, if, e.g., wav efunctions are to
be consistently calculated. As demonstrated here and in previous papers [1,2], this Riemannian
contribution affects the net binding energy of a nucleon in nuclear matter to a extent larger than
the empirical error in the Bethe-Weis¨acker semi-empirical mass formula. Therefore this contri-
bution is a measurable quantity, in that nuclear matter calculations require this contribution in
order to achieve empirical verification.

However, the recent calculation of this effect [1] is only valid for the medium-range (MR)
interaction (r∼ 4−10 GeV−1) and the long-range (LR) interaction (r∼ 10−∞ GeV−1), because these
are the only ranges within which the nucleon-nucleon interaction was fit to the scattering data
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and the deuteron [3,31]. Therefore, it is relevant to the more complete understanding or descrip-
tion of this interaction, and it is necessary for future nuclear matter calculations, to examine the
size of this effect for a short-range (SR) interaction (r∼ 0−4 GeV−1) fit to empirical data, albeit
that this nonrelativistic description of a relativistic region is clearly not unique.

The Paris group has in fact developed a potential which includes fits to data testing the SR,
and which has been parameterized to be velocity-dependent [32], as derived from the observed
energy-dependence in their previous fits to data [33].

Here, their SR velocity-dependent potential is examined with respect to the induced Rie-
mannian curvature term. There are additional terms arising from first-order gradients, but these
are subject to some interpretation not arising in the curvature contribution which is independent
of the ordering given to the momentum operators in the differential equation. It should be noted
that this calculation does exhibit a preferred ordering in which the first-order gradient contribu-
tions are not present inS-states [1,2].

The calculation of this effect in the combined3S and 1S states is identical to that done
previously [1,2]. TheL = 0 S-states are most sensitive because of theL2/r2 repulsion in higher
states. The potentialX used here is
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1
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whereV a,b
0,1 represent the 48 terms of theS-state potentials defined by the Paris group [32]. (The

previous calculation of this effect for the MR and LR interactions [1] required including 159
terms representing the exchanged set of mesons{ π, η , σ , ρ, ω, φ} in
momentum-transfer-space [3], which expands out to more terms when cutoffs are included and
when expressed in coordinate space.) The subscripts refer to the isospin states, e.g.,3S1 is a
T = 0 state, and1S0 is a T = 1 state. The av erage nucleon massm is taken here to be
2m1m2/(m1 + m2) = 0. 9385822. The units ofr have been converted to GeV−1 by using
hc = 0. 197329 GeV fm.

The Schr¨odinger equation with a velocity-dependent potential is written as
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gij = (1 + W )η ij , (2)

whereη ij is the (usual) flat-space contravariant metric,gij is the induced contravariant metric in
the space curved byW , and the summation convention has been invoked. As mentioned above,
in general, the partial-wav e reduced equations contain contributions to the coefficient ofpi in
addition to theW,i contribution here in Eq. (2). Thepi andWp2 terms have been treated consis-
tently in previous scattering, deuteron, and nuclear matter calculations [3,31].

The arc length in isotropic form is defined by

ds2 = (1 + W )−1(dr2 + r2dθ 2 + r2 sin2 θ dφ2) .  (3)

This can be put into ‘‘standard form,’’ [34] which is more convenient for further calculation.

ds2 = gij dxi dx j ,

= A(r ′)dr ′2 + r ′2(dθ 2 + sin2 θ dφ2) ,

r ′2 = [1 + W (r)]−1r2 ,

A(r ′) = {1 −
r

2
W (r),r [1 + W (r)]−1} −2 ,

[. . .],r = ∂[. . .]/∂r . (4)

Using the Ricci tensorR j
i ,

Rr ′
r ′ = (r ′ A2)−1 A,r ′ ,

Rθ
θ = Rφ

φ = r ′−2 + (2r ′ A2)−1 A,r ′ − (r ′2 A)−1 ,

A,r ′ = A,r r,r ′ , (5)

yields the curvature scalarR(r),
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As Figure 1 and Table I demonstrate, the curvature contributionR is larger than the veloc-
ity-dependentW throughout the range ofr. This R contribution is a much larger percentage of
the W contribution, than was found for the MR and LR regions calculated previously [1,2].
Examining the ranger > 0. 1  GeV−1, the SRW terms are much smaller than the staticV terms by
a factor of 10−3, and the net effect is to keepR less thanV in this range. However, within
r < 0. 01 GeV−1, R is not suppressed to 0 asr → 0, as areV andW , by the constraint onGσ

12T in
Eq. (1). Therefore, it would seem appropriate for future fits to add an additional constraint on
Gσ

11T , as was done for tensor and spin-orbit potentials [32], if these potentials are to be used as
well for nuclear matter calculations. Therefore, within the range 0. 05≤ r ≤ 0. 1 GeV−1, R is
appreciable relative toV .

It now is clear that these Riemannian corrections are small, but not negligible [1,2]. For
example, if a velocity-dependent potential were fit to data using the Schr¨odinger equation, this
potential would have to include the curvature term. The parameters of this fit most likely would
absorb this affect so that the net functional form would be only slightly affected. However, in
calculating the nuclear matterK matrix, which is derived from a Lagrangian or Hamiltonian
path-integral representation, this curvature term wouldnot appear, thereby directly affecting the
binding energy and saturation properties. A correction on the order of 1% in the potential could
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mean on the order of a 1 MeV correction to the binding energy, which is itself determined by a
cancellation of the kinetic energy and the self-consistent nuclear matter potential∼ 100 MeV,
especially since this correction is influential in the steep part of the potential which most sensi-
tively determines this cancellation [1].

Thus, it is still an open question as to what will be the net effect of using a nucleon-nucleon
potential, including these Riemannian contributions, to calculate self-consistent Brueckner-type
nuclear matter.

Calculations and plots were facilitated with the PDP-10 MACSYMA Consortium algebraic
manipulator at the Massachusetts Institute of Technology, supported in part by USERDA
E(11-1)-3070 and NASA NSG 1323. This project has been supported by personal contributions
to the University of California at San Diego Physical Studies Institute agency account through
the Institute for Pure and Applied Physical Sciences, and by computer resources at the Naval
Postgraduate School. The author currently holds a National Research Council-NPS Senior
Research Associateship.
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r V  W R
0.001 17.8 0.225 -11155.0
0.005 16.9 0.172 -1481.0
0.01 15.6 0.124 -420.0
0.05 5.60 0.0175 2.80
0.1 0.996 5.36×10−3 -0.0691
0.5 -3.42×10−3 8.56×10−7 -9.65×10−6

1.0 -1.85×10−4 1.03×10−7 4.88×10−7

5.0 -2.94×10−11 1.67×10−14 8.21×10−14

Lester Ingber TABLE I
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FIGURE CAPTION
FIG. 1. The abscissa in all figures is ther-axis. (a), (b) and (c) represent 0. 01≤ r ≤ 0. 1

GeV−1; (d), (e) and (f) represent 0. 1≤ r ≤ 1. 0 GeV−1; (g), (h) and (i) represent 1. 0≤ r ≤ 4. 0
GeV−1. The ordinate units of the potentials are in GeV. The figures in the left-hand column rep-
resent the static contributionV ; the figures in the center column represent the velocity-dependent
contributionW ; the figures in the right-hand column represent theW -induced curvatureR. See
Table I for representative values of these potentials.

TABLE CAPTION
TABLE I. Values ofV , W AND R, in units of GeV, for representative values ofr in the

SR, in units of GeV−1.


