
Adaptive Simulated Annealing (ASA) and Path-Integral (PATHINT) Algorithms:
Generic Tools for Complex Systems

Lester Ingber

ingber@ingber.com • ingber@alumni.caltech.edu
http://www.ingber.com/

ADAPTIVE SIMULATED ANNEALING (ASA)

MATHEMATICAL PHYSICS

NUMERICAL PATH INTEGRATION (PATHINT)

GENERIC MESOSCOPIC NEURAL NETWORKS (MNN)

SOME APPLICATIONS

$Id: asa01_lecture,v 1.36 2002/03/14 14:30:53 ingber Exp ingber $



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

COVER PAGE . . . . . . . . . . . . . . . . . . . .  1
CONTENTS-1 . . . . . . . . . . . . . . . . . . . .  2
CONTENTS-2 . . . . . . . . . . . . . . . . . . . .  3
ADAPTIVE SIMULATED ANNEALING (ASA) . . . . . . . . .  4

Applications . . . . . . . . . . . . . . . . . . .  5
Hills and Valleys . . . . . . . . . . . . . . . . .  6
Outline of ASA Algorithm . . . . . . . . . . . . . .  7
Index of Pre-Compile Tuning Parameters . . . . . . . . . .  8
Index of Adaptive Tuning Parameters . . . . . . . . . . .  9
Reannealing Example . . . . . . . . . . . . . . . .  10

MATHEMATICAL PHYSICS . . . . . . . . . . . . . . .  11
Nonlinear Nonequilibrium Multivariate Stochastic Aggregation . . .  12
Stochastic Differential Equation (SDE) . . . . . . . . . .  13
Partial Differential Equation (PDE) . . . . . . . . . . . .  14
Lagrangian Probability Distribution Function (PDF) . . . . . .  15
Path-Integral Riemannian Geometry . . . . . . . . . . .  16

Fitting Variance With ASA . . . . . . . . . . . .  17
Information . . . . . . . . . . . . . . . . . . .  18
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ADAPTIVE SIMULATED ANNEALING (ASA)
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Applications
This algorithm fits empirical data to a theoretical cost function over a D-
dimensional parameter space, adapting for varying sensitivities of parameters
during the fit.

For sev eral test problems, ASA has been shown to be orders of magnitude more
efficient than other similar techniques. ASA has been applied to several complex
systems, including specific problems in neuroscience, finance and combat systems.

Heuristic arguments have been developed to demonstrate that this algorithm is
faster than the fast Cauchy annealing, Ti = T0/k, and much faster than Boltzmann
annealing, Ti = T0/ ln k.
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Hills and Valleys
It helps to visualize the problems presented by such complex systems as a
geographical terrain. For example, consider a mountain range, with two
“parameters,” e.g., along the North−South and East−West directions. We wish to
find the lowest valley in this terrain. SA approaches this problem similar to using a
bouncing ball that can bounce over mountains from valley to valley. We start at a
high “temperature,” where the temperature is an SA parameter that mimics the
effect of a fast moving particle in a hot object like a hot molten metal, thereby
permitting the ball to make very high bounces and being able to bounce over any
mountain to access any valley, giv en enough bounces. As the temperature is made
relatively colder, the ball cannot bounce so high, and it also can settle to become
trapped in relatively smaller ranges of valleys.

We imagine that our mountain range is aptly described by a “cost function.” We
define probability distributions of the two directional parameters, called generating
distributions since they generate possible valleys or states we are to explore. We
define another distribution, called the acceptance distribution, which depends on
the difference of cost functions of the present generated valley we are to explore
and the last saved lowest valley. The acceptance distribution decides
probabilistically whether to stay in a new lower valley or to bounce out of it. All
the generating and acceptance distributions depend on temperatures.
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Outline of ASA Algorithm
For parameters

α i
k ∈[Ai , Bi] ,

sampling with the random variable xi ,

xi ∈[−1, 1] ,

α i
k+1 = α i

k + xi(Bi − Ai) ,

define the generating function

gT (x) =
D

i=1
Π

1

2 ln(1 + 1/Ti)(|xi | + Ti)
≡

D

i=1
Π gi

T (xi) ,

in terms of parameter “temperatures”

Ti = Ti0 exp(−ci k
1/D) .
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Index of Pre-Compile Tuning Parameters

OPTIONS_FILE=TRUE
OPTIONS_FILE_DAT A=TRUE
RECUR_OPTIONS_FILE=FALSE
RECUR_OPTIONS_FILE_DAT A=FALSE
COST_FILE=TRUE
ASA_LIB=FALSE
HAVE_ANSI=TRUE
IO_PROT OTYPES=FALSE
TIME_CALC=FALSE
TIME_STD=FALSE
TIME_GETRUSAGE=TRUE
INT_LONG=TRUE
INT_ALLOC=FALSE
SMALL_FLOAT=1.0E-18
MIN_DOUBLE=SMALL_FLOAT
MAX_DOUBLE=1.0/SMALL_FLOAT
EPS_DOUBLE=SMALL_FLOAT
CHECK_EXPONENT=FALSE
NO_PARAM_TEMP_TEST=FALSE
NO_COST_TEMP_TEST=FALSE
SELF_OPTIMIZE=FALSE
ASA_TEST=FALSE
ASA_TEST_POINT=FALSE
MY_TEMPLATE=TRUE
USER_INITIAL_COST_TEMP=FALSE
RATIO_TEMPERATURE_SCALES=FALSE
USER_INITIAL_PARAMETERS_TEMPS=FALSE
DELTA_PARAMETERS=FALSE
QUENCH_PARAMETERS=FALSE
QUENCH_COST=FALSE
QUENCH_PARAMETERS_SCALE=TRUE
QUENCH_COST_SCALE=TRUE
ASA_TEMPLATE=FALSE
OPTIONAL_DAT A_DBL=FALSE
OPTIONAL_DAT A_INT=FALSE
OPTIONAL_DAT A_PTR=FALSE
OPTIONAL_PTR_TYPE=USER_TYPE
USER_COST_SCHEDULE=FALSE
USER_ACCEPT_ASYMP_EXP=FALSE
USER_ACCEPTANCE_TEST=FALSE
USER_GENERATING_FUNCTION=FALSE
USER_REANNEAL_COST=FALSE
USER_REANNEAL_PARAMETERS=FALSE
USER_COST_FUNCTION=cost_function
RECUR_USER_COST_FUNCTION=recur_cost_function
MAXIMUM_REANNEAL_INDEX=50000
REANNEAL_SCALE=10.0
ASA_SAMPLE=FALSE
ASA_QUEUE=FALSE

ASA_RESOLUTION=FALSE
FITLOC=FALSE
FITLOC_ROUND=TRUE
FITLOC_PRINT=TRUE
MULTI_MIN=FALSE
MULTI_NUMBER=2
ASA_PARALLEL=FALSE
FDLIBM_POW=FALSE
FDLIBM_LOG=FALSE
FDLIBM_EXP=FALSE
USER_OUT=
ASA_PRINT=TRUE
ASA_OUT=
USER_ASA_OUT=FALSE
ASA_PRINT_INTERMED=TRUE
ASA_PRINT_MORE=FALSE
G_FIELD=12 & G_PRECISION=7
ASA_SAVE=FALSE
ASA_SAVE_OPT=FALSE
ASA_SAVE_BACKUP=FALSE
ASA_PIPE=FALSE
ASA_PIPE_FILE=FALSE
SYSTEM_CALL=TRUE



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

Index of Adaptive Tuning Parameters

OPTIONS->Limit_Acceptances
OPTIONS->Limit_Generated
OPTIONS->Limit_Invalid_Generated_States
OPTIONS->Accepted_To_Generated_Ratio
OPTIONS->Cost_Precision
OPTIONS->Maximum_Cost_Repeat
OPTIONS->Number_Cost_Samples
OPTIONS->Temperature_Ratio_Scale
OPTIONS->Cost_Parameter_Scale_Ratio
OPTIONS->Temperature_Anneal_Scale
OPTIONS->User_Cost_Temperature
OPTIONS->Include_Integer_Parameters
OPTIONS->User_Initial_Parameters
OPTIONS->Sequential_Parameters
OPTIONS->Initial_Parameter_Temperature
OPTIONS->User_Temperature_Ratio
OPTIONS->User_Parameter_Temperature
OPTIONS->Acceptance_Frequency_Modulus
OPTIONS->Generated_Frequency_Modulus
OPTIONS->Reanneal_Cost
OPTIONS->Reanneal_Parameters
OPTIONS->Delta_X
OPTIONS->User_Delta_Parameter
OPTIONS->User_Tangents
OPTIONS->Curvature_0
OPTIONS->User_Quench_Param_Scale
OPTIONS->User_Quench_Cost_Scale
OPTIONS->N_Accepted
OPTIONS->N_Generated
OPTIONS->Locate_Cost
OPTIONS->Immediate_Exit
OPTIONS->Best_Cost
OPTIONS->Best_Parameters
OPTIONS->Last_Cost
OPTIONS->Last_Parameters
OPTIONS->Asa_Data_Dim_Dbl
OPTIONS->Asa_Data_Dbl
OPTIONS->Asa_Data_Dim_Int
OPTIONS->Asa_Data_Int
OPTIONS->Asa_Data_Dim_Ptr
OPTIONS->Asa_Data_Ptr
OPTIONS->Asa_Out_File
OPTIONS->Cost_Schedule
OPTIONS->Asymp_Exp_Param
OPTIONS->Acceptance_Test
OPTIONS->User_Acceptance_Flag
OPTIONS->Cost_Acceptance_Flag
OPTIONS->Cost_Temp_Curr
OPTIONS->Cost_Temp_Init

OPTIONS->Cost_Temp_Scale
OPTIONS->Prob_Bias
OPTIONS->Random_Seed
OPTIONS->Generating_Distrib
OPTIONS->Reanneal_Cost_Function
OPTIONS->Reanneal_Params_Function
OPTIONS->Bias_Acceptance
OPTIONS->Bias_Generated
OPTIONS->Average_Weights
OPTIONS->Limit_Weights
OPTIONS->Queue_Size
OPTIONS->Queue_Resolution
OPTIONS->Coarse_Resolution
OPTIONS->Fit_Local
OPTIONS->Iter_Max
OPTIONS->Penalty
OPTIONS->Multi_Cost
OPTIONS->Multi_Params
OPTIONS->Multi_Grid
OPTIONS->Multi_Specify
OPTIONS->Gener_Mov_Avr
OPTIONS->Gener_Block
OPTIONS->Gener_Block_Max
OPTIONS->Random_Array_Dim
OPTIONS->Random_Array
OPTIONS->Asa_Recursive_Level
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Reannealing Example

1 100 10000 1000000
generated

10
-10

10
0

10
10

10
20

co
st

ASA D=8
No Reanneal 

Superimposed are runs for n = 8, the case of no reannealing, 3 trajectories each for
cases of Q = 1, 2, 3, 4, 5, 6, 7, 8, 16, and 24. Although the actual final cost
function values are 0, they were set to 10−10 for purposes of these log-log plots.
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Superimposed are runs for n = 8, the case including reannealing, 3 trajectories each
for cases of Q = 1, 2, 3, 4, 5, 6, 7, 8, 16, and 24.
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MATHEMATICAL PHYSICS
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Nonlinear Nonequilibrium Multivariate Stochastic Aggregation
Complex systems typically are in nonequilibrium, being driven by nonlinear and
stochastic interactions described by many external and internal degrees of freedom.
For these systems, classical thermodynamic descriptions typically do not apply.
Many such systems are best treated by respecting some intermediate mesoscale as
fundamental to drive larger macroscopic processes.

Often these mesoscopic scales are aptly described by Gaussian Markovian
statistics. They naturally develop in physical and biological scales to maximally
process information from microscopic scales up to macroscopic scales. Possibly
this is true as well of some social systems such as financial markets.

For many physical systems this mesoscopic scale still has some audit trail back to
its microscopic origins. Often, statistical deviations of drift variables lead to
functional dependencies in diffusion variables.
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Stochastic Differential Equation (SDE)
The Stratonovich (midpoint discretized) Langevin equations can be analyzed in
terms of the Wiener process dW i , which can be rewritten in terms of Gaussian
noise η i = dW i/dt if care is taken in the limit.

dMG = f G((t, M(t)))dt + ĝG
i ((t, M(t)))dW i ,

Ṁ
G(t) = f G((t, M(t))) + ĝG

i ((t, M(t)))η i(t) ,

dW i → η i dt ,

M = { MG ; G = 1, . . . , Λ } ,

η = { η i; i = 1, . . . , N } .

Ṁ
G = dMG /dt ,

< η j(t) >η= 0 ,

< η j(t), η j′(t′) >η= δ jj′δ (t − t′) ,

η i represents Gaussian white noise, and moments of an arbitrary function F(η)
over this stochastic space are defined by a path-type integral over η i , folding time
increments θ = ∆t,

< F(η) >η= N −1 ∫ DηF(η) exp



−

1

2

∞

t0

∫ dtη iη i




,

N = ∫ Dη exp



−

1

2

∞

t0

∫ dtη iη i




,

Dη =
v→∞
lim

v+1

α =0
Π

N

j=1
Π (2πθ )−1/2dW j

α ,

tα = t0 + αθ ,

1

2 ∫ dtη iη i =
1

2θ β
Σ

i
Σ (W i

β − W i
β −1)2 ,

< η i >η= 0 ,

< η i(t)η j(t′) >η= δ ijδ (t − t′) .
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Partial Differential Equation (PDE)
If some boundary conditions are added as Lagrange multipliers, these enter as a
‘‘potential’’ V , creating a Schrödinger-type equation:

P,t =
1

2
(gGG′P),GG′ − (gG P),G + VP ,

P =< Pη >η ,

gG = f G +
1

2
ĝG′

i ĝG
i,G′ ,

gGG′ = ĝG
i ĝG′

i ,

(. . .),G = ∂(. . .)/∂MG .

Note that gG replaces f G in the SDE if the Itô (prepoint discretized) calculus is
used to define that equation.
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Lagrangian Probability Distribution Function (PDF)
This can be transformed to the Stratonovich representation, in terms of the
Feynman Lagrangian L possessing a covariant variational principle,

P[Mt |Mt0
]d M(t) =

∫ . . . ∫ DM exp



− min

t

t0

∫ dt′L



δ ((M(t0) = M0))δ ((M(t) = Mt)) ,

DM =
u→∞
lim

u+1

ρ=1
Π g1/2

G
Π (2πθ )−1/2dMG

ρ ,

L( Ṁ
G , MG , t) =

1

2
( Ṁ

G − hG)gGG′( Ṁ
G′ − hG′) +

1

2
hG

;G + R/6 − V ,

[. . .],G =
∂[. . .]

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

g = det(gGG′) ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) .



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

Path-Integral Riemannian Geometry
The midpoint derivation explicitly derives a Riemannian geometry induced by
these statistics, with a metric defined by the inverse of the covariance matrix

gGG′ = (gGG′)−1 ,

and where R is the Riemannian curvature

R = gJL RJL = gJL gJK RFJKL ,

An Itô prepoint discretization for the same probability distribution P gives a much
simpler algebraic form,

M(ts) = M(ts) ,

L =
1

2
(dMG /dt − gG)gGG′(dMG′/dt − gG′) − V ,

but the Lagrangian L so specified does not satisfy a variational principle as useful
for moderate to large noise; its associated variational principle only provides
information useful in the weak-noise limit. Numerically, this often means that
finer meshes are required for calculations for the prepoint representation.
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Fitting Variance With ASA
Consider a one variable problem,

P[Mt+∆t |Mt] = (2π ĝ2∆t)−1/2 exp(−∆tL) ,

L = ( Ṁ − f )2/(2 ̂ g2) ,

with parameter-coefficients α n f and g to be fit to data.

The cost function to be fit to M(t) data is

L = L∆t +
1

2
ln(2π ∆tg2

t ) ,

The nonlinear entry of g into the cost function, e.g., competing influence in the
denominator of L and in the logarithm term from the prefactor in P, often enables
a tight fit to the absolute value of g. In most nonlinear regression methods, this is
not possible.

Similar considerations hold for more than one variable. The calculation of the
ev olution of Langevin systems has been implemented in several systems using
ASA. It has been used as an aid to debug the ASA fitting codes, by first generating
data from coupled Langevin equations, relaxing the coefficients, and then fitting
this data with the effective Lagrangian cost-function algorithm to recapture the
original coefficients within the diffusions defined by gGG′.
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Information
With reference to a steady state P(M̃), when it exists, an analytic definition of the
information gain ϒ̂ in state P̃(M̃) is defined by

ϒ̂[P̃] = ∫ . . .∫ DM̃ P̃ ln(P̃/P),

where a path integral is defined such that all intermediate-time values of M̃
appearing in the folded short-time distributions P̃ are integrated over. This is quite
general for any system that can be described as Gaussian-Markovian, even if only
in the short-time limit.

As time evolves, the distribution likely no longer behaves in a Gaussian manner,
and the apparent simplicity of the short-time distribution must be supplanted by
numerical calculations.
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Transformations Without Itô Calculus
Consider

V [S, t + δ t | S, t] = ((2π (σ S)2δ t))−1/2 exp(−Lδ t) ,

L =
( Ṡ + rS)2

2(σ S)2
+ r ,

Ṡ =
δ S

δt
=

S(t + δ t) − S(t)

δ t
.

Some care must be taken with nonconstant drifts and diffusions. For example, for
purposes of calculating volatilities, it is often convenient to transform to a variable
Z (S relative to some S scale)

Z = ln S .

The above distribution can be transformed into V [Z , t + δ t |Z , t],

dStV [S, t + δ t |S, t] = dZtV [Z , t + δ t |Z , t]

= dZt(2π σ 2δ t)−1/2 exp(−L′δ t) ,

L′δ t =
(([exp(Zt+δ t − Zt) − 1] + r))2

2σ 2δ t
+ rδ t .

This can be expanded into

L′δ t ≈
((Zt+δ t − Zt +

1

2
(Zt+δ t − Zt)

2 − rδ t)))2

2σ 2δ t
+ rδ t

≈
((Zt+δ t − Zt − (r −

1

2
σ 2)δ t))2

2σ 2δ t
+ rδ t ,

(Zt+δ t − Zt)
2 ≈ σ 2δ t ,

where only terms of order δ t have been kept, yielding

L′ =




Ż − (r −
1

2
σ 2)



2

2σ 2
+ r .
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Intuitive Variables
It must be emphasized that the output need not be confined to complex algebraic
forms or tables of numbers. Because L possesses a variational principle, sets of
contour graphs, at different long-time epochs of the path-integral of P over its
variables at all intermediate times, give a visually intuitive and accurate decision-
aid to view the dynamic evolution of the scenario. For example, this Lagrangian
approach permits a quantitative assessment of concepts usually only loosely
defined.
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Euler-Lagrange Variational Equations
The Euler-Lagrange variational equations give rise to the familiar force law

“F = ma ”: δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG /∂t)
,

“Force” =
∂L

∂M G
,

“Mass” = gGG′ =
∂2 L

∂(∂MG /∂t)∂(∂MG′/∂t )
,

where MG are the variables and L is the Lagrangian. These physical entities
provide another form of intuitive, but quantitatively precise, presentation of these
analyses.
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Canonical Momenta Indicators (CMI)
Canonical Momenta Indicators (CMI), defined by

“Momentum” = ΠG =
∂L

∂(∂MG /∂t )
,

can be used as financial indicators faithful to an underlying mathematics modeling
markets as stochastic distributions.



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

NUMERICAL PATH INTEGRATION (PATHINT)
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Applications
Given a form for L, we use the path-integral to calculate the long-time distribution
of variables. This is impossible in general to calculate in closed form, and we
therefore must use numerical methods. PATHINT is a code developed for
calculating highly nonlinear multivariate Lagrangians.

The path-integral calculation of the long-time distribution, in addition to being a
predictor of upcoming information, provides an internal check that the system can
be well represented as a nonlinear Gaussian-Markovian system. The use of the
path integral to compare different models is akin to comparing short- and long-time
correlations. Complex boundary conditions can be cleanly incorporated into this
representation, using a variant of ‘‘boundary element’’ techniques.
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Outline of PATHINT Algorithm
The histogram procedure recognizes that the distribution can be numerically
approximated to a high degree of accuracy as sum of rectangles at points Mi of
height Pi and width ∆Mi . For convenience, just consider a one-dimensional
system. The above path-integral representation can be rewritten, for each of its
intermediate integrals, as

P(M ; t + ∆t) = ∫ dM ′[g1/2
s (2π ∆t)−1/2 exp(−Ls∆t)]P(M ′; t)

= ∫ dM ′G(M , M ′; ∆t)P(M ′; t) ,

P(M ; t) =
N

i=1
Σ π (M − Mi)Pi(t) ,

π (M − Mi) =







1 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

0 ,  otherwise ,

which yields

Pi(t + ∆t) = Tij(∆t)P j(t) ,

Tij(∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ M j+∆M j /2

M j−∆M j−1/2
dM ′G(M , M ′; ∆t) .
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Boundary Condition Sensitivity
For derivative boundary conditions, for better numerical accuracy, it often is
necessary to generalize the histogram expansion to a trapezoidal expansion to give
some shape to the histograms.
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Mesh Limitations

Care must be used in developing the mesh in ∆MG , which is strongly dependent on
the diagonal elements of the diffusion matrix, e.g.,

∆MG ≈ (∆tg|G||G|)1/2 .

Presently, this constrains the dependence of the covariance of each variable to be a
nonlinear function of that variable, albeit arbitrarily nonlinear, in order to present a
straightforward rectangular underlying mesh.

A previous paper attempted to circumvent this restriction by taking advantage of
Riemannian transformations to a relatively diagonal problem.

For more than one variable, the above constraints on the mesh only suffice for
diagonal elements of the gGG′ matrix. To consider the influence on off-diagonal
terms, a tiling approach should be taken to the full mesh.
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Probability Tree (PATHTREE)
PATHINT motivated the development of PATHTREE, an algorithm that permits
extremely fast accurate computation of probability distributions of a large class of
general nonlinear diffusion processes.

The natural metric of the space is used to first lay down the mesh. The evolving
local short-time distributions on this mesh are then dynamically calculated.

The short-time probability density gives the correct result up to order O(∆t) for any
final point S′, the order required to recover the corresponding partial differential
equation.
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Standard Binomial Tree
In a two-step binomial tree, the step up Su or step down Sd from a given node at S
is chosen to match the standard deviation of the differential process. The
constraints on u and d are chosen as

ud = 1 ,

If we assign probability p to the up step Su, and q = (1 − p) to the down step Sd ,
the matched mean and variance are

pSu + (1 − p)Sd = < S(t + ∆t) > ,

S2((pu2 + qd2 − (pu + qd)2)) = < ((S(t + ∆t) − < S(t + ∆t) >))2 > .

The right-hand-side can be derived from the stochastic model used.
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Deficiency of Standard Algorithm to Order √ dt

A tree is constructed that represents the time evolution of the stochastic variable S.
S is assumed to take only 2 values, u, (up value), and d (down value) at moment t,
given the value S at moment t − ∆t. The probabilities for the up and down
movements are p and q, respectively. The 4 unknowns {u, d , p, q} are calculated
by imposing the normalization of the probability and matching the first two
moments conditioned by the value S at t − ∆t, using the variance of the exact
probability distribution P(S, t |S0, t0). One additional condition is arbitrary and is
usually used to symmetrize the tree, e.g., ud = 1.

If the system to be modeled is given by a differential form, e.g.,

dS = fdt + gdW

then the noise term is only given to order √ dt.

The Ornstein-Uhlenbeck (OU) process, f = bS and g = v, for constant b and v, is
special, as some higher order dt corrections in systems described by g∝S x are zero
for x = 0. The Black-Scholes (BS) process, f = bS and g = σ S, for constant b and
σ , also is special, as it can be simply transformed to a constant-diffusion lognormal
process with the same O(dt) simplifications.
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Problems Generalizing The Standard Tree
The main problem is that the above procedure cannot be applied to a general
nonlinear diffusion process, as the algorithm involves a previous knowledge of
terms of O(∆t) in the formulas of quantities {u, p} obtained from a finite time
expansion of the exact solution P sought. Otherwise, the discrete numerical
approximation obtained does not converge to the proper solution.
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Probability PATHTREE
In order to obtain tree variables valid up to O(∆t), we turn to the short-time path-
integral representation of the solution of the Fokker-Planck equation, which is just
the multiplicative Gaussian-Markovian distribution. In the prepoint discretization
relevant to the construction of a tree,

P(S′, t′|S, t) =
1

√ 2π ∆tg2
exp 


−

(S′ − S − fdt)2

2g2∆t



∆t = t′ − t

valid for displacements S′ from S “reasonable” as measured by the standard
deviation g√ ∆t, which is the basis for the construction of meshes in the PATHINT
algorithm.

The crucial aspects of this approach are: There is no a priori need of the first
moments of the exact long-time probability distribution P, as the necessary
statistical information to the correct order in time is contained in the short-time
propagator. The mesh in S at every time step need not recombine in the sense that
the prepoint-postpoint relationship be the same among neighboring S nodes, as the
short-time probability density gives the correct result up to order O(∆t) for any
final point S′. Instead, we use the natural metric of the space to first lay down our
mesh, then dynamically calculate the evolving local short-time distributions on this
mesh.
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Construction of PATHTREE
We construct an additive PATHTREE, starting with the initial value S0, with
successive increments

Si+1 = Si + g√ ∆t , Si > S0

Si−1 = Si − g√ ∆t , Si < S0 ,

where g is evaluated at Si . We define the up and down probabilities p and q, resp.,
in an abbreviated notation, as

p =
P(i + 1|i; ∆t)

P(i + 1|i; ∆t) + P(i − 1|i; ∆t)

q = 1 − p .

where the P’s are the short-time transition probability densities. Note that in the
limit of small ∆t,

∆t→0
lim p =

1

2
.
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Direct Calculation of Probability
We can calculate the probability density function by first recursively computing the
probabilities of reaching each node of the tree. This can be performed efficiently
thanks to the Markov property. To compute the density function we need to rescale
these probabilities by the distance to the neighboring nodes: the more spread the
nodes are, the lower the density. First we compute the probability of reaching each
final node of the tree. We do this incrementally by first computing the probabilities
of reaching nodes in time slice 1, then time slice 2 and so forth. At time slice 0, we
know that the middle node has probability 1 of being reached and all the others
have probability 0. We compute the probability of reaching a node as a sum of two
contributions from the previous time slice. We reach the node with transition pu
from the node below at the previous slice, and with transition pd from the node
above. Each contribution is the product of the probability at the previous node
times the transition to the current node. This formula is just a discretized version
of the Chapman-Kolmogorov equation

p(x j , ti) = p(x j−1, ti−1)pu j−1 + p(x j+1, ti−1)pd j+1 .

After we have computed the absolute probabilities at the final nodes, we can give a
proper estimation of the density, by scaling the probabilities by the average of sizes
of the two adjacent intervals, densityi = pi/((Si+2 − Si−2)/2).
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Numerical Derivatives of Expectation of Probability
The probability P at time of expiration T can be calculated as a numerical
derivative with respect to strike X of a European call option, taking the risk-free
rate r to be zero, given an underlying S0 evaluated at time t = 0, with strike X ,
given other variables such as volatility σ and cost of carry b. The call is the
expectation of the function Max(S − X , 0).

P[S(T )|S(t0)]
S(T )≡X

= P[X |S(t0)] =
∂2C

∂X2

This calculation of the probability distribution is dependent on the same conditions
necessary for any tree algorithm, i.e., that enough nodes are processed to ensure
that the resultant evaluations are a good representation of the corresponding
Fokker-Planck equation, and that the number of iterations in PATHTREE are
sufficient for convergence.
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Alternative First Derivative Calculation of Probability
An alternative method of calculating the probability P a a first-order numerical
derivative, instead of as second-order derivative, with respect to X is to define a
function CH using the Heaviside step-function H(S, X) = 1 if S ≥ X and 0
otherwise, instead of the Max function at the time to expiration. This yields

P[S(T )|S(t0)]
S(T )≡X

= P[X |S(t0)] = −
∂CH

∂X

Sometimes this is numerically useful for sharply peaked distributions at the time of
expiration, but we have found the second derivative algorithm above to work fine
with a sufficient number of epochs.

Our tests verify that the three methods give the same density. We consider the
numerical-derivative calculations a very necessary baseline to determine the
number of epochs required to get reasonable accuracy.
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PATHTREE vs PATHINT
For PATHINT, the time and space variables are determined independently. I.e., the
ranges of the space variables are best determined by first determining the
reasonable spread of the distribution at the final time epoch. For PATHTREE just
one parameter, the number of epochs N , determines the mesh for both time and the
space variables. This typically leads to a growth of the tree, proportional to √ N ,
much faster than the spread of the distribution, so that much of the calculation is
not relevant.
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Black-Scholes (BS) and Ornstein-Uhlenbeck (OU) Examples
The graphs below compare analytic solutions with second-derivative numerical
("+"s) PATHTREE calculations.
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GENERIC MESOSCOPIC NEURAL NETWORKS (MNN)
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Applications
Modern stochastic calculus permits development of alternative descriptions of
path-integral Lagrangians, Fokker-Planck equations, and Langevin rate equations.
The induced Riemannian geometry affords invariance of probability distribution
under general nonlinear transformations.

ASA presents a powerful global optimization that has been tested in a variety of
problems defined by nonlinear Lagrangians.

Parallel-processing computations can be applied to ASA as well as to a neural-
network architecture.
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MNN Learning
“Learning” takes place by presenting the MNN with data, and parametrizing the
data in terms of the “firings,” or multivariate MG “spins.” The “weights,” or
coefficients of functions of MG appearing in the drifts and diffusions, are fit to
incoming data, considering the joint “effective” Lagrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost
function.

The cost function is a sum of effective Lagrangians from each node and over each
time epoch of data.

This program of fitting coefficients in Lagrangian uses methods of adaptive
simulated annealing (ASA). This maximum likelihood procedure (statistically)
avoids problems of trapping in local minima, as experienced by other types of
gradient and regression techniques.
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MNN Prediction
“Prediction” takes advantage of a mathematically equivalent representation of the
Lagrangian path-integral algorithm, i.e., a set of coupled Langevin rate-equations.
The Itô (prepoint-discretized) Langevin equation is analyzed in terms of the
Wiener process dW i , which is rewritten in terms of Gaussian noise η i = dW i/dt in
the limit:

MG(t + ∆t) − MG(t) = dMG = gG dt + ĝG
i dW i ,

dMG

dt
= Ṁ

G = gG + ĝG
i η i ,

M = { MG ; G = 1, . . . , Λ } , η = { η i; i = 1, . . . , N } ,

< η j(t) >η= 0 , < η j(t), η j′(t′) >η= δ jj′δ (t − t′) .

Moments of an arbitrary function F(η) over this stochastic space are defined by a
path integral over η i . The Lagrangian diffusions are calculated as

gGG′ =
N

i=1
Σ ĝG

i ĝG′
i .

A coarse deterministic estimate to “predict” the evolution can be applied using the
most probable path

dMG /dt = gG − g1/2(g−1/2gGG′),G′ .

PATHINT, even when parallelized, typically can be too slow for “predicting”
ev olution of these systems. However, a new algorithm, PATHTREE holds some
promise.
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MNN Parallel Processing
The use of parallel processors can make this algorithm even more efficient, as ASA
lends itself well to parallelization.

During “learning,” blocks of random numbers are generated in parallel, and then
sequentially checked to find a generating point satisfying all boundary conditions.

Advantage is taken of the low ratio of acceptance to generated points typical in
ASA, to generate blocks of cost functions, and then sequentially checked to find
the next best current minimum.

Additionally, when fitting dynamic systems, e.g., the three physical systems
examined to date, parallelization is attained by independently calculating each time
epoch’s contribution to the cost function.

Similarly, during “prediction,” blocks of random numbers are generated to support
the Langevin-equation calculations, and each node is processed in parallel.
PATHINT or PATHTREE also possess features to promote fast calculations.
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SOME APPLICATIONS
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Statistical Mechanics of Financial Markets (SMFM)



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

2-Factor Interest-Rate Model
The Brennan-Schwartz model is developed in the variables of short- and long-term
interest rates, assumed to follow a joint Wiener stochastic process,

dr = β1(r, l, t)dt + η1(r, l, t)dz1 ,

dl = β2(r, l, t)dt + η2(r, l, t)dz2 ,

where r and l are the short- and long-term rates, respectively. β1 and β2 are the
expected instantaneous rates of change in the short-term and long-term rates
respectively. η1 and η2 are the instantaneous standard deviations of the processes.
dz1 and dz2 are Wiener processes, with expected values of zero and variance of dt
with correlation coefficient ρ . BS simplified and reduced this system to

dr = ((a1 + b1(l − r)))dt + rσ1dz1 ,

dl = l(a2 + b2r + c2l)dt + lσ2dz2 ,

where {a1, b1, a2, b2, c2} are parameters to be estimated.
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Lagrangian Representation
The BS equations can be rewritten as Langevin equations (in the Itô prepoint
discretization)

dr/dt = a1 + b1(l − r) + σ1r(γ +n1 + γ −n2) ,

dl/dt = l(a2 + b2r + c2l) + σ2l(γ −n1 + γ +n2) ,

γ ± =
1

√2
[1 ± (1 − ρ2)1/2]1/2 ,

ni = (dt)1/2 pi ,

where p1 and p2 are independent [0,1] Gaussian distributions.

L =
1

2
F†gF ,

F = 


dr/dt − ((a1 + b1(l − r)))

dl/dt − l(a2 + b2r + c2l)



,

g = det(g) ,

k = 1 − ρ2 .

g, the metric in {r, l}-space, is the inverse of the covariance matrix,

g−1 = 


(rσ1)2

ρrlσ1σ2

ρrlσ1σ2

(lσ2)2



.

The cost function C is defined from the equivalent short-time probability
distribution, P, for the above set of equations.

P = g1/2(2π dt)−1/2 exp(−Ldt)

= exp(−C) ,

C = Ldt +
1

2
ln(2π dt) − ln(g) .
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ASA Fits
Interest rates were developed from Treasury bill and bond yields during the period
October 1974 through December 1979, the same period as one of the sets used by
BS. Short-term rates were determined from Treasury bills with a maturity of three
months (BS used 30-day maturities), and long-term rates were determined from
Treasury bonds with a maturity of twenty years (BS used at least 15-year
maturities).
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Bond PDE/PATHINT
Some tentative PATHINT calculations were performed by another colleague on my
project. It would be interesting to repeat them with this enhanced code.



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

Po wer-Law Model
There is growing evidence that the Black-Scholes lognormal distribution has been
less and less descriptive of markets over the past two decades. An example of a
generalization of the lognormal distribution is

dS/F(S, x) = µ dt + σ dwS

F(S, S0, S∞, x, y) =







S,

S x S1−x
0 ,

S yS1−x
0 S x−y

∞ ,

S < S0

S0 ≤ S ≤ S∞
S > S∞

where S0 and S∞ are selected to lie outside the data region used to fit the other
parameters, e.g., S0 = 1 and S∞ = 20 for fits to Eurodollar futures. We hav e used
the Black-Scholes form F = S inside S < S0 to obtain the usual benefits, e.g., no
negative prices as the distribution is naturally excluded from S < 0, preservation of
put-call parity, etc. We hav e taken y = 0 to reflect total ignorance of markets
outside the range of S > S∞.
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Multi-Factor Volatility Model
Any study that geared to perform ASA fits of multivariate Lagrangians and
PATHINT long-time calculations can also consider another variable σ , stochastic
volatility, that can generalize the BS lognormal distribution:

dS/F(S, x) = µ dt + σ dwS

dσ = ν + ε dwσ

The drawback of the two-factor PATHINT code is that it is slow. Howev er, it is
accurate and robust so we can process any diffusion for general x.
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PATHINT Options
PATHINT is being used to perform European and American, one-factor and two-
factor, PATHINT calculations. Some examples are F(S, S0, S∞, x, y) dzS for x in
{-1, 0, 1, 2}.

The short-time probability distribution at time T = 0. 5 years for x = 1, the
(truncated) Black-Scholes distribution. The short-time probability distribution at
time T = 0. 5 years for x = 0, the normal distribution. The short-time probability
distribution at time T = 0. 5 years for x = −1. The short-time probability
distribution at time T = 0. 5 years for x = 2.
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PATHINT Two-Factor
The two-factor distribution at time T = 0. 5 years for x = 0. 7.
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x Market Indicators

We hav e developed x’s as indicators of different market contexts. E.g., x may be
-2 for some quarter and +2 for a different quarter.

(a) Weekly two-month moving-averaged one-factor and two-factor exponents for
ED contract expiring in September 1999 during the period June 1998 through
March 1999. (b) Weekly two-month moving-averaged two-factor correlation ρ for
this same data. (c) Raw price data used in fits for the above parameters. (d)
Implied-volatility data used in fits for the above parameters.
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S&P Interday Futures-Cash
CMI and ASA were blended together to form a simple trading code, TRD. An
example was published on inter-day trading the S&P 500, using stops for losses on
short and long trades and using CMI of the coupled cash and futures data. Data for
years 1989 and 1990 was used, wherein one of the years was used to train TRD,
and the other year to test TRD; then the years were reversed to establish two
examples of trading on two years of quite different data.

In the 1991 study, it was noted that the sensitivity of testing trades to CMI
overshadowed any sensitivity to the stops. Therefore, a second study was
performed on this same data, but using only CMI. Better results were obtained, but
more important, this established that the CMI themselves could lead to profitable
trading, taking advantage of inefficiencies in these markets. Therefore, CMI at
least can be useful supplemental indicators for other trading systems.
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Tick Resolution CMI Trading
We are developing a fully automated electronic trading system using CMI on S&P
with minute resolution data.
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Statistical Mechanics of Combat (SMC)
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National Training Center — Janus(T)
The U.S. Army National Training Center (NTC) is located at Fort Irwin, just
outside Barstow, California. As of 1989, there have been about 1/4 million soldiers
in 80 brigade rotations at NTC, at the level of two battalion task forces (typically
about 3500 soldiers and a battalion of 15 attack helicopters), which train against
two opposing force (OPFOR) battalions resident at NTC. NTC comprises about
2500 km2, but the current battlefield scenarios range over about 5 km linear spread,
with a maximum lethality range of about 3 km. NTC is gearing up for full brigade
level exercises. The primary purpose of data collection during an NTC mission is
to patch together an after action review (AAR) within a few hours after completion
of a mission, giving feedback to a commander who typically must lead another
mission soon afterward. Data from the field, i.e., multiple integrated laser
engagement system (MILES) devices, audio communications, OCs, and stationary
and mobile video cameras, is sent via relay stations back to a central command
center where this all can be recorded, correlated and abstracted for the AAR.
Within a couple of weeks afterwards, a written review is sent to commanders, as
part of their NTC take home package.

Janus(T) is an interactive, two-sided, closed, stochastic, ground combat computer
simulation. We hav e expanded Janus(T) to include air and naval combat, in several
projects with the author’s previous thesis students at the Naval Postgraduate School
(NPS).

Stochastic multivariate models were developed for both NTC and Janus, to form a
common language to compare the two systems to baseline the simulation to
exercise data.
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Basic Equations of Aggregated Units
Consider a scenario taken from our NTC study: two red systems, red T-72 tanks
(RT ) and red armored personnel carriers (RBMP), and three blue systems, blue
M1A1 and M60 tanks (BT ), blue armored personnel carriers (BAPC), and blue
tube-launched optically-tracked wire-guided missiles (BTOW ), where RT specifies
the number of red tanks at a given time t, etc. Consider the kills suffered by BT ,
∆BT , e.g., within a time epoch ∆t ≈ 5 min. Here, the x terms represent attrition
owing to point fire; the y terms represent attrition owing to area fire. Note that the
algebraic forms chosen are consistent with current perceptions of aggregated large
scale combat. Now consider sources of noise, e.g., that at least arise from PD, PA,
PH, PK, etc. Furthermore, such noise likely has its own functional dependencies,
e.g., possibly being proportional to the numbers of units involved in the combat.
We write

ḂT =
∆BT

∆t
= xBT

RT RT + yBT
RT RT BT + xBT

RBMP RBMP + yBT
RBMP RBMP BT

+zBT
BT BTη BT

BT + zBT
RTη BT

RT + zBT
RBMPη BT

RBMP

ṘT = . . .

˙RBMP = . . .

˙BAPC = . . .

˙BTOW = . . .

where the η represent sources of (white) noise (in the Itô prepoint discretization
discussed below). The noise terms are taken to be log normal (multiplicative)
noise for the diagonal terms and additive noise for the off-diagonal terms. The
diagonal z term (zBT

BT ) represents uncertainty associated with the target BT , and the
off-diagonal z terms represent uncertainty associated with the shooters RT and
RBMP. The x and y are constrained such that each term is bounded by the mean
of the KVS, averaged over all time and trajectories of similar scenarios; similarly,
each z term is constrained to be bounded by the variance of the KVS. Equations
similar to the ḂT equation are also written for ṘT , ˙RBMP, ˙BAPC, and ˙BTOW .
Only x and y that reflect possible nonzero entries in the KVS are free to be used
for the fitting procedure. For example, since Janus(T) does not permit direct-fire
fratricide, such terms are set to zero. In most NTC scenarios, fratricide typically is
negligible.
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Long-Time Correlations Test Short-Time Models
Especially because we are trying to mathematically model sparse and poor data,
different drift and diffusion algebraic functions can give approximately the same
algebraic cost-function when fitting short-time probability distributions to data.
The calculation of long-time distributions permits a better choice of the best
algebraic functions, i.e., those which best follow the data through a predetermined
epoch of battle. Thus, dynamic physical mechanisms, beyond simple Lanchester
“line” and “area” firing terms, can be identified. Afterwards, if there are closely
competitive algebraic functions, they can be more precisely assessed by calculating
higher algebraic correlation functions from the probability distribution.

Data from 35 to 70 minutes was used for the short-time fit. The path integral used
to calculate this fitted distribution from 35 minutes to beyond 70 minutes. This
serves to compare long-time correlations in the mathematical model versus the
data, and to help judge extrapolation past the data used for the short-time fits. The
means are fit very well by this model, even in out-of-sample time periods,
something that other Lanchester modelers have not achieved, especially with such
empirical data. The variances strongly suggest that the additive-noise model is
superior to the multiplicative-noise model.
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CMI
The results of Janus(T) attrition of Red and Blue units are given in the upper figure.
The canonical momenta indicators (CMI) for each system are given in the lower
figure.

Using the particular model considered here, the CMI are seen to be complementary
to the attrition rates, being somewhat more sensitive to changes in the battle than
the raw data. The coefficients fit to the combat data are modifiable to fit the current
“reality” of system capabilities.

The CMI are more sensitive measures than the energy density, effectively the
square of the CMI, or the information which also effectively is in terms of the
square of the CMI (essentially integrals over quantities proportional to the energy
times a factor of an exponential including the energy as an argument). This is even
more important when replenishment of forces is permitted, often leading to
oscillatory variables. Neither the energy or the information give details of the
components as do the CMI.
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Statistical Mechanics of Neocortical Interactions (SMNI)



ASA & PATHINT: Generic Tools for Complex Systems Lester Ingber

Multiple Scales
Multiple scales are aggregated, from synaptic dynamics, to neuronal dynamics, to
minicolumnar dynamics (100’s of neurons). At the level of minicolumns,
neocortex seems to be well described by Gaussian-Markovian dynamics.

A derivation is given of the physics of chemical inter-neuronal and electrical intra-
neuronal interactions. The derivation yields a short-time probability distribution of
a giv en neuron firing due to its just-previous interactions with other neurons.
Within τ j∼5−10 msec, the conditional probability that neuron j fires (σ j = +1) or
does not fire (σ j = −1), given its previous interactions with k neurons, is

pσ j
≈ Γ Ψ ≈

exp(−σ j F j)

exp(F j) + exp(−F j)
,

F j =
V j −

k
Σ a∗

jk v jk

((π
k′
Σ a∗

jk′(v jk′
2 + φ jk′

2)))1/2 ,

a jk =
1

2
A jk(σ k + 1) + B jk .

Γ represents the “intra-neuronal” probability distribution.
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Microscopic Aggregation
A derived mesoscopic Lagrangian LM defines the short-time probability
distribution of firings in a minicolumn, composed of ∼102 neurons, given its just
previous interactions with all other neurons in its macrocolumnar surround. G is
used to represent excitatory (E) and inhibitory (I ) contributions. G designates
contributions from both E and I .

PM =
G
Π PG

M [MG(r; t + τ )|MG(r′; t)]

=
σ j

Σ δ 
 jE
Σσ j − M E (r; t + τ )


δ 

 jI
Σσ j − M I (r; t + τ )


N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG

M ) ,

PM ≈(2π τ )−1/2g1/2 exp(−Nτ LM ) ,

LM = LE
M + L I

M = (2N )−1( Ṁ
G − gG)gGG′( Ṁ

G′ − gG′) + MG JG /(2Nτ )− V ′ ,

V ′ =
G
ΣV ′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + N G tanh FG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1 N Gsech2FG ,

g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
,

aG
G′ =

1

2
AG

G′ + BG
G′ .
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Short-Term Memory (STM)
We choose empirical ranges of synaptic parameters corresponding to a
predominately excitatory case (EC), predominately inhibitory case (IC), and a
balanced case (BC) in between. For each case, also consider a ‘‘centering
mechanism’’ (EC’, IC’, BC’), whereby some synaptic parameter is internally
manipulated, e.g., some chemical neuromodulation or imposition of patterns of
firing, such that there is a maximal efficiency of matching of afferent and efferent
firings:

MG ≈ M∗G ≈ 0 .

This sets conditions on other possible minima of the static Lagrangian L.
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Electroencephalography (EEG)
A coarse calculation begins by considering the Lagrangian LF , the Feynman
midpoint-discretized Lagrangian. The Euler-Lagrange variational equation
associated with LF leads to a set of 12 coupled first-order differential equations,
with coefficients nonlinear in MG , in the 12 variables {
MG , Ṁ

G , M̈
G , ∇MG , ∇2 MG } in (r; t) space. In the neighborhood of extrema

<< MG >>, LF can be expanded as a Ginzburg-Landau polynomial, i.e., in powers
of M E and M I . To inv estigate first-order linear oscillatory states, only powers up
to 2 in each variable are kept, and from this the variational principle leads to a
relatively simple set of coupled linear differential equations with constant
coefficients:

0 = δ LF = LF , Ġ:t − δG LF

≈ − f |G| M̈
|G| + f 1

G Ṁ
G¬

− g|G|∇
2 M |G| + b|G| M

|G| + b MG¬
, G¬ ≠ G ,

(. . .), Ġ:t = (. . .), ĠG′ Ṁ
G′ + (. . .), Ġ Ġ′ M̈

G′ ,

MG = MG− << MG >> , f 1
E = − f 1

I ≡ f .

These equations are then Fourier transformed and the resulting dispersion relation
is examined to determine for which values of the synaptic parameters and of the
normalized wav e-number ξ , the conjugate variable to r, can oscillatory states,
ω (ξ ), persist.

For instance, a typical example is specified by extrinsic sources JE = −2. 63 and
J I = 4. 94, N E = 125, N I = 25, V G = 10 mV, AG

E = 1. 75, AG
I = 1. 25, BG

G′ = 0. 25,
and vG

G′ = φ G
G′ = 0. 1 mV. The synaptic parameters are within observed ranges, and

the JG’s are just those values required to solve the Euler-Lagrange equations at the
selected values of MG . The global minimum is at M E = 25 and M I = 5. This set
of conditions yields (dispersive) dispersion relations

ωτ = ± { − 1. 86 + 2. 38(ξ ρ)2; −1. 25i + 1. 51i(ξ ρ)2 } ,

where ξ = |ξ |. The propagation velocity defined by dω /dξ is ∼1 cm/sec, taking
typical wav enumbers ξ to correspond to macrocolumnar distances ∼ 30ρ .
Calculated frequencies ω are on the order of EEG frequencies ∼ 102 sec−1,
equivalent to ν = ω /(2π )= 16 cps (Hz). These mesoscopic propagation velocities
permit processing over sev eral minicolumns ∼ 10−1 cm, simultaneous with the
processing of mesoscopic interactions over tens of centimeters via association
fibers with propagation velocities ∼600−900 cm/sec. I.e., both intraregional and
interregional information processing can occur within ∼ 10−1 sec.
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ASA Fits of CMI
These momenta indicators should be considered as supplemental to other clinical
indicators. This is how they are being used in financial trading systems. The CMI
are more sensitive measures of neocortical activity than other invariants such as the
energy density, effectively the square of the CMI, or the information which also
effectively is in terms of the square of the CMI. Neither the energy or the
information give details of the components as do the CMI. EEG is measuring a
quite oscillatory system and the relative signs of such activity are quite important.
Each set of results is presented with 6 figures, labeled as [{alcoholic|control},
{stimulus 1|match|no-match}, subject, {potential|momenta}], where match or no-
match was performed for stimulus 2 after 3.2 sec of a presentation of stimulus 1.
For each subjects run, after fitting 28 parameters with ASA, epoch by epoch
av erages are developed of the raw data and of the multivariate SMNI canonical
momenta. Below is a comparison between an alcoholic and control subject under
the match paradigm.
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Chaos in SMNI
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Duffing Analog
Some aspects of EEG can be approximately cast as a model of chaos, the Duffing
oscillator.

ẍ = f (x, t) ,

f = −α ẋ − ω 2
0 x + B cos t .

This can be recast as

ẋ = y ,

ẏ = f (x, t) ,

f = −α y − ω 2
0 x + B cos t .

Note that this is equivalent to a 3-dimensional autonomous set of equations, e.g.,
replacing cos t by cos z, defining ż = β , and taking β to be some constant.

We studied a model embedding this deterministic Duffing system in moderate
noise, e.g., as exists in such models as SMNI. Independent Gaussian-Markovian
(“white”) noise is added to both ẋ and ẏ, η j

i , where the variables are represented by
i = {x, y} and the noise terms are represented by j = {1, 2},

ẋ = y + ĝ1
xη1 ,

ẏ = f (x, t) + ĝ2
yη2 ,

< η j(t) >η= 0 ,

< η j(t), η j′(t′) >η= δ jj′δ (t − t′) .

In this study, we take moderate noise and simply set ĝ j
i = 1. 0δ j

i .

The equivalent short-time conditional probability distribution P, in terms of its
Lagrangian L, corresponding to these Langevin rate-equations is

P[x, y; t + ∆t |x, y, t] =
1

(2π ∆t)( ̂ g11 ĝ22)2
exp(−L∆t) ,

L =
( ẋ − y)2

2( ̂ g11)2
+

( ẏ − f )2

2( ̂ g22)2
.
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Noise Washes Out Chaos/PATHINT
No differences were seen in the stochastic system, comparing regions of Duffing
parameters that give rise to chaotic and non-chaotic solutions. More calculations
must be performed for longer durations to draw more definitive conclusions.

Path Integral Evolution of Non-Chaotic Stochastic Duffing Oscillator
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Path Integral Evolution of Chaotic Stochastic Duffing Oscillator
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