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Abstract- The author previously developed a generalization of a binomial tree algorithm, PATHTREE, to develop 
options pricing for multiplicative-noise models possessing quite generally time dependent and nonlinear means and 
variances. This code is generalized here for complex variable spaces, to produce qPATHTREE useful for quantum 
systems. As highlighted in this paper, a quantum version, qPATHTREE, has the ability to take into account time 
dependent modifications of an evolving system. qPATHTREE is shown to be useful to study some aspects of serial 
changes to systems. Similarly, another path-integral code, PATHINT, used for several previous systems is developed 
into qPATHINT. An example is given for a free particle, and it is explained why an n-tree generalization of 
qPATHTREE beyond the binomial tree is required for such systems, similar to code developed for qPATHINT. Potential 
applications in neuroscience and financial markets are discussed.    

Index Terms: path integral; quantum mechanics; blockchains; parallel code; vector potential 
 

I. INTRODUCTION 
 

The author previously developed a generalization of a binomial tree algorithm, PATHTREE, to develop options pricing for 
multiplicative-noise models possessing quite generally time dependent and nonlinear means and variances [1]. Below, a 
short description is give of path integrals. In the next section, a brief review is given of PATHTREE [1], a fast and accurate 
C-coded algorithm evolves generally time-dependent short-time conditional probability distribution, in the context of path 
integrals, with quite general nonlinear means and variances, using a generalization of the limited binomial tree algorithm. 
This is followed by a brief description of a generalization of PATHTREE, qPATHTREE, a C code to evolve similar 
quantum mechanical functions in complex variable spaces. qPATHTREE is applied to a free particle. Calculations are give 
in the presence of random serial shocks to the particle. The current qPATHTREE is a binary tree. It is shown to be 
insufficient to handle oscillatory systems. The following section develops qPATHINT, another path-integral algorithm, 
which has been used for several systems, and which is capable of using an n-tree also useful for oscillatory systems 
[2][3][4][5][6]. 
 

The example a free quantum particle was chosen to test treatment of its oscillatory properties. However, of course this 
system has an infinite domain, and so calculations performed here cannot be accurate given the finite ranges used. 
However, a proof of principle has been demonstrated, which is poised to handle quantum options on quantum systems, in 
finance and in blockchains. Quantum computing is here, and in the near future it will be applied to financial products, e.g., 
blockchains. It not very far-fetched to assume that soon there will be derivatives developed on these products. Then, as is 
the case in classical real spaces with PATHTREE and PATHINT, qPATHTREE and qPATHINT are now poised to 
calculate derivatives in quantum complex spaces. This is beyond simply using quantum computation of derivatives, since 
the space of the dependent variables themselves may live in quantum worlds [7][8][9][10][11][12]. The section following 
that describes a physical-biological problem that arose in neuroscience, in a project undertaken by the author, 
“Electroencephalographic field influence on calcium momentum waves.” This project is the primary motivation to develop 
qPATHTREE. Several studies, fitting EEG data to a model of neocortex that explicitly accounts for multiple scales of 
neocortical interactions, Statistical Mechanics of Neocortical Interactions (SMNI) [13][14][15][16][2], were performed, 
wherein these 2Ca  -wave effects modified parameterization of background SMNI parameters. qPATHTREE may be 
useful to determine how the regenerative process that defines 2Ca   waves also may produce reasonable shocks to the 
waves without seriously damaging its coherence properties. 
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The conclusion stresses that these applications of qPATHTREE and qPATHINT give proofs of concept of these new 
algorithms and codes. 

 

1.1   PATH INTEGRALS  
The path-integral representation for P  for the short-time propagator is given in terms of a Lagrangian L  by 
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 The path integral defines the long-time evolution of P  in terms of the action A , 
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where   labels the S


-space over the volume  , and s  labels the 1u   time intervals, each of duration dt , 
spanning 0( )t t . Note that the path integral is a faithful mathematical representation of (properly defined) Fokker-Planck 
partial differential equations and Langevin stochastic differential equations [17]. This paper explicitly uses the prepoint 
discretization.  
 

II.  PATHTREE 
 

2.1   TREE ALGORITHMS  
 

Tree algorithms are generally derived from binomial random walks [18]. For many applications, these algorithms are more 
efficient for numerical computation, compared to their other mathematical representations as Langevin and Fokker-Planck 
equations [19][20]. These tree algorithms had previously typically been only well defined for specific functional forms of 
f  and g . The PATHINT algorithm deals with quite general f  and g  functions [4]. 

 

2.2   BINOMIAL TREE  
In a two-step binomial tree, the step up Su  or step down Sd  from a given node at S  is chosen to match the standard 
deviation of the differential process. The constraints on u  and d  are chosen as 
 

 = 1ud  (3) 
 

If probability p  is assigned to the up step Su , and q  = (1 )p  to the down step Sd , the matched mean and 
variance are 
 (1 ) =< ( ) >pSu p Sd S t t     

 2 2 2 2 2( ( ) )=< ( ( ) < ( ) >) >S pu qd pu qd S t t S t t         (4) 
  

2.2.1   DEFICIENCY OF STANDARD ALGORITHM TO ORDER dt   
 

The 4 unknowns { , , , }u d p q  are calculated by imposing the normalization of the probability and matching the first two 

moments conditioned by the value S  at t t  , using the variance of the exact probability distribution 0 0( , | , )P S t S t . 

One additional condition is arbitrary and is usually used to symmetrize the tree, e.g., = 1ud .  
 
The above procedure cannot be applied to a general nonlinear diffusion process, as previous knowledge is required of terms 
of ( )O t  in the formulas of quantities { , }u p  obtained from a finite time expansion of the exact solution P  sought. 



         International Journal of Innovative Research in Information Security (IJIRIS) ISSN: 2349-7017(O) 
          Issue 05, Volume 3 (August 2016)                                      ISSN: 2349-7009(P) 
                                                                               www.ijiris.com 

___________________________________________________________________________________________________ 
IJIRIS- Impact Factor Value - Innospace SJIF: 3.365 (2015) 

© 2014-16, IJIRIS- All Rights Reserved                                             Page -3 
 

The discrete numerical approximation obtained does not converge to the proper solution.  
 

2.3   PATHTREE  
A general path-integral solution of the Fokker-Plank equation, including the well-known Black-Scholes equation [21], can 
be numerically calculated using the PATHINT algorithm. Although this approach leads to very accurate results, it is 
computationally intensive. To ( )O t , in the prepoint discretization relevant to the construction of a tree, 
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Valid for displacements 'S  from S  “reasonable” as measured by the standard deviation g t , which is the basis for 

the construction of meshes in the PATHINT algorithm. PATHTREE starts with the initial value 0S , with successive 
increments 
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Where g  is evaluated at iS . Up and down probabilities p  and q , resp., are defined in an abbreviated notation, as 
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Where the short-time transition probability densities P ’s are calculated from Eq. (). Like PATHINT, PATHTREE easily 
handles American early-exercise, time-dependent and variable-dependent dividends, volatility, cost of carry and interest 
rates, etc. PATHTREE also can be used to fit shape-dependent conditional probability densities to near real-time strike 
data, e.g., a “bottom-up” approach to “smiles” (patterns of implied volatility). The same should be expected of 
qPATHTREE in complex-variable spaces.  
 

2.4   DIRECT CALCULATION OF PROBABILITY  
The formula developed for PATHTREE [1], is a discretized version of the Chapman-Kolmogorov equation 
 
 1 1 1 1 1 1( , ) = ( , ) ( , )j i j i j j i jp x t p x t pu p x t pd       (8) 
After computing the absolute probabilities at the final nodes, a proper estimation of the density is obtained by scaling the 
probabilities by the average of sizes of the two adjacent intervals, 2 2density = / (( ) / 2)i i i ip S S  .  
2.5   QPATHTREE  
The PATHTREE C code comprises about 7000 lines of code. The GCC code was rewritten to use complex double 
variables instead of double variables. The code also runs under CLANG. A lot of changes were made to I/O, since this 
requires separation of real and imaginary parts of each number. This code utilizes parallel processing on NSF.gov 
XSEDE.org platforms. OpenMP is used for parallel processing of some loops within each run. MPI is used for parallel 
processing of multiple runs. The section dealing with the evolution of the probability distribution was modified. The 
Lagrangian argument of the probability distribution is written in complex form. Similar to PATHTREE, in qPATHTREE, 
for systems that define complex variables over real-variable spaces, the real part of complex value of the square-root of the 
diffusion is used to generate the mesh of the tree.  
 

III. PATHINT 
 
This approach was motivated by a previous non-Monte-Carlo multivariable generalization of a numerical path-integral 
algorithm [22][23][24], PATHINT, used to develop the long-time evolution of the short-time probability distribution as 
used in several studies in chaotic systems [3][6], neuroscience [2][3][5], and financial markets, including two-variable 
volatility of volatility [4]. These studies suggested applications of some aspects of this algorithm to the standard binomial 
tree. PATHINT develops bins ijT  about diagonal terms in the Lagrangian. 

 ( ) = ( ) ( ),i ij jP t t T t P t    
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ijT  is a banded matrix representing the Gaussian nature of the short-time probability centered about the (varying) drift. 
Fitting data with the short-time probability distribution, effectively using an integral over this epoch, permits the use of 
coarser meshes than the corresponding stochastic differential equation. The coarser resolution is appropriate, typically 
required, for numerical solution of the time-dependent path-integral: By considering the contributions to the first and 
second moments of GS  for small time slices  , conditions on the time and variable meshes can be derived [22]. 
 
The time slice essentially is determined by 1L  , where L  is the “static” Lagrangian with / = 0GdS dt , 
throughout the ranges of GS  giving the most important contributions to the probability distribution P . The variable 

mesh, a function of GS , is optimally chosen such that GS  is measured by the covariance 
'GGg , or 

1/2( )G GGS g   . PATHINT was generalized to process arbitrary N variable spaces, but in practice only N = 2 was used 
because of intensive computer resources.  
 
The author was Principal Investigator, National Science Foundation (NSF) Pittsburgh Supercomputing Center (PSC) Grant 
DMS940009P during 1994-1995 on a project, “Porting Adaptive Simulated Annealing and Path Integral Calculations to the 
Cray; Parallelizing ASA and PATHINT Project (PAPP)”. Eight volunteers were selected from many applicants and the 
PATHINT code was seeded to work on parallel machines. No further work has been done since that time to further develop 
parallel-coded applications.  
 

3.1   QPATHINT  
 
Similar to the development of qPATHTREE described above, the PATHTREE C code of about 7500 lines of code was 
rewritten for GCC code to use complex double variables instead of double variables.  
 

IV. FREE PARTICLE EXAMPLE 
4.1   QPATHTREE  
 
A simple example to test qPATHTREE is the evolution of the propagator P  for a free particle, 
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The long-time solution has the same form, with 0=t t  and ='
ft t . For brevity, take = 1m  and = 1 . P  is a 

complex-variable function over a real-variable space x . As noted above, the x -mesh for qPATHTREE is chosen to be 
the real part of 1/2( )i m . The number of iterations in the tree were initially determined by 2

0( ) / 10ft t  , but larger 
numbers of iterations only increases the number of oscillations, and the fit in the middle sections remains the same. 
Therefore, this number was chosen to be 2

0min[200, ( ) / 10 ]ft t  .  Fig. 1 gives graphical results for qPATHTREE 

calculations superimposed on the exact solutions, for times corresponding to 0ft t  equal to 0.5, 2 and 20.  
 

4.1.1   SERIAL SHOCKS  
 
In Figs. 2 and 3, calculations are give in the presence of random serial shocks to the particle. The standard C-code uniform 
integer random number generator, rand(), was scaled to develop random real numbers within [-1,1], which were multiplied 
by next value of the dependent variable times a scale factor. Shapes of the distribution are generally retained for all shocks 
relative to no shocks with parameter 0, with more disruptions at higher shocks and longer propagation. Higher shocks gave 
severe large disturbances at negative x , so the P -range was cut off at 1 . Note that the qPATHTREE imaginary part of 
P  agrees with the exact imaginary part at the center point. 
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[B]0.4TW 

 
Figure  1: time = 2 

 
[B]0.4TW 

 
Figure  2: time = 20 

 

Figure  3: Real and Imaginary parts of a free particle propagator evolved with qPATHREE are shown over periods of (a) 
2 and (b) 20, with a magnitude of shock set to 0. qPATHTREE calculations are shown as points. The exact analytical 
solutions are shown as lines. 



         International Journal of Innovative Research in Information Security (IJIRIS) ISSN: 2349-7017(O) 
          Issue 05, Volume 3 (August 2016)                                      ISSN: 2349-7009(P) 
                                                                               www.ijiris.com 

___________________________________________________________________________________________________ 
IJIRIS- Impact Factor Value - Innospace SJIF: 3.365 (2015) 

© 2014-16, IJIRIS- All Rights Reserved                                             Page -6 
 

[B]0.4TW 

 
Figure  4: time = 2 

 
[B]0.4TW 

 
Figure  5: time = 20 

    

Figure  6: Real and Imaginary parts of a free particle propagator evolved with qPATHREE are shown over periods of (a) 
2 and (b) 20, with a magnitude of shock set to 0.01. qPATHTREE calculations are shown as points. The exact analytical 
solutions are shown as lines. 
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[B]0.4TW 

 
Figure  7: time = 2 

 
[B]0.4TW 

 
Figure  8: time = 20 

 

Figure  9: Real and Imaginary parts of a free particle propagator evolved with qPATHREE are shown over periods of (a) 
2 and (b) 20, with a magnitude of shock set to 0.1. qPATHTREE calculations are shown as points. The exact analytical 
solutions are shown as lines. 
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4.1.2   QPATHTREE FLAWS  
Note that qPATHTREE, as reported here, simply uses this binary tree to develop a wave function, not the probability of the 
square of the evolving wave function. However, even at this stage, there is a flaw in the current qPATHTREE code: The 
oscillatory behavior of the analytic solution is not replicated. However, in the region of the main peak, qPATHTREE 
agrees very well with the analytic solution. This particular test system has zero drift and constant diffusion, so that every 
node in the tree just tests the same dx  mesh, with no opportunity to explore any other x  dependence. It is clear that just 
using a binomial tree for this system is insufficient to capture functional behavior just one standard deviation on each side 
of a branch. Rather, an n-tree is required with at least several points of deviations on each side of the each branch.  
 
4.2   QPATHINT  
PATHINT, and the qPATHINT currently under development, already is coded to span each branch for any number of 
offsets from the dx  diagonal read in as a parameter to the code. qPATHINT as reported here, normalizes the evolving 
matrix of distributions according the the square of the evolving wave function ( * ).  
4.2.1   PROPAGATION OF IMPULSE WITH SERIAL SHOCKS  
An example of the use of qPATHINT is to study the propagation of an initial impulse to the free quantum particle at = 0t  
and = 0x . For this example, this initial propagator gives the same results after 100 time slices as using the free 
propagator itself for the initial condition. Fig. 4 gives graphical results for qPATHINT calculations; normalization at each 
time slice is being investigated. Real and Imaginary parts of a free particle propagator evolved with qPATHINT are shown 
over a periods 0.5, with 282 points of x -mesh in the path for 100 time-slices, for an off-diagonal offset of 1. Similar to the 
tests with qPATHTREE, shocks are given as multiple of variables during each time-slice as 0, 0.01 and 0.1. Note the 
absence of oscillatory behavior. Fig. 5 gives graphical results for qPATHINT calculations for an off-diagonal offset of 3 
(on each side of the diagonal). Shocks are given as multiple of variables during each time-slice as 0, 0.01 and 0.1. Note that 
oscillatory behavior captured using information further from the diagonal. With extreme shocks at 0.1, the x  variables are 
randomly displaced each time slice (as described above for qPATHTREE), causing cancellations of the oscillations. 

 
[B]0.3TW 

 
Figure  10: shock = 0 
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[B]0.3TW 

 
Figure  11: shock = 0.01 

 

[B]0.3TW 

 
Figure  12: shock = 0.1     

Figure  13: Real and Imaginary parts of a free particle propagator evolved with qPATHINT are shown over a periods 0.5 
with 100 intermediate time points in the path, for an off-diagonal offset of 1. Shocks are 0 in (a), 0.01 in (b), and 0.1 in (c). 
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[B]0.3TW 

 
Figure  14: shock = 0 

[B]0.3TW 

 
Figure  15: shock = 0.01 
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[B]0.3TW 

 
Figure  16: shock = 0.1 

Figure  17: Real and Imaginary parts of a free particle propagator evolved with qPATHINT are shown over a periods 0.5 
with 100 intermediate time points in the path, for an off-diagonal offset of 3. Shocks are 0 in (a), 0.01 in (b), and 0.1 in (c). 

   
V.  EEG INFLUENCE on CALCIUM MOMENTUM WAVES 

 

This section gives a summary of the XSEDE project that was developed between February 2013 through June 2016, 
“Electroencephalographic field influence on calcium momentum waves”, which generated interest in developing 
qPATHTREE and qPATHINT from PATHTREE and PATHINT, resp. This is just one example of studies that may take 
advantage of these new non-Monte-Carlo algorithms to study sequential development of quantum systems. In addition to 
the intrinsic interest of researching STM and multiple scales of neocortical interactions via EEG data, there is interest in 
researching possible quantum influences on highly synchronous neuronal firings relevant to STM to understand possible 
connections to “free will” [25][26].  
 

5.1   MOLECULAR PROCESSES CONTRIBUTING TO SYNAPTIC INTERACTIONS  
There are many studies on tripartite neuron-astrocyte interactions [27], and on 2Ca   waves at tripartite sites. The short 
summary below is presented to set the context for SMNI calculations of probability distributions of synaptic activity that 
include background contributions. Several studies have shown that glutamate release from astrocytes through a 

2Ca  -dependent mechanism can activate receptors located at the presynaptic terminals. Regenerative intercellular calcium 
waves (ICWs) can travel over 100s of astrocytes, encompassing many neuronal synapses. These ICWs are documented in 
the control of synaptic activity [28]. Analysis of fluorescence accumulation clearly demonstrates that glutamate is released 
in a regenerative manner, with subsequent cells that are involved in the calcium wave releasing additional glutamate [29]. 
Although the full set of mechanisms affecting 2[Ca ]  and the influences of 2Ca   on other mechanism are not yet fully 

understood and experimentally verified, it is clear that 2Ca   waves exist in intercellular and in intracellular media [30]. 
There are regenerative as well as non-regenerative processes observed, both “locally” at cellular sites as well as into 
“expanded” regions through which 2Ca   travel at relatively fast velocities for large distances over relatively long periods 
of time [31][32][33]. 2Ca   affects spontaneous synaptic production of glutamate.  
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5.2   INFLUENCE OF SYNCHRONOUS NEURAL FIRINGS  
Results of SMNI fits to EEG data gave strong confirmation of the SMNI model of short-term memory (STM), and give 
support to a basic physical mechanism that couples highly synchronous firings to control underlying molecular processes, 
the canonical momentum P , = qp AP , where p  is the momenta of a 2Ca   wave, q  the charge of 2Ca  , 

= 2q e , e  the magnitude of the charge of an electron [32]. Previous papers have used classical physics to calculate and 
compare the molecular p  and large-scale q A  components of P , demonstrating that indeed they of comparable 

magnitudes [34][35][33][36]. Also, in the context of quantum mechanics, the wave function of the 2Ca  -wave system 
was calculated, and it was demonstrated that overlap with multiple collisions, due to their regenerative processes, during 
the observed long durations of typical 2Ca   waves [31][33] support a Zeno effect [37][38][39][40][41][42][43][44] 
promoting long coherence times.  
 

5.2.1   CLASSICAL PHYSICS OF P   
 

Previous papers have modeled minicolumns as wires which support neuronal firings, due largely from large neocortical 
excitatory pyramidal cells in layer V (of six), giving rise to currents which give rise to electric potentials measured as scalp 
EEG [34][35][36]. This gives rise to a magnetic vector potential 

 
0

= log
4

r
r




 
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 

A I  (11) 

Which has an insensitive log dependence on distance. In the brain, 0  , where 0  is the magnetic permeability in 

vacuum 7= 4 10   H/m (Henry/meter), where Henry has units of kg-m-C 2 , which is the conversion factor from 
electrical to mechanical variables. For oscillatory waves, the magnetic field B = A  and the electric field 

= ic

E A  do not have this log dependence on distance. The magnitude of the current is taken from experimental 

data on dipole moments =| | zQ I  where ẑ  is the direction of the current I  with the dipole spread over z . Q  

ranges from 1 pA-m = 1210  A-m for a pyramidal neuron [45], to 910  A-m for larger neocortical mass [46]. These 
currents give rise to qA  on the order of 2810  kg-m/s. p  from one 2Ca   ion in a wave is typically on the order of 

3010  kg-m/s, and this can be multiplied by the number of ions in a wave, e.g., 100’s to 1000’s.  
 
5.2.2   QUANTUM PHYSICS OF P   
Previous papers have detailed quantum calculations of the wave function of 2Ca   waves in the presence of A  [31][33]. 
The normalized wave function in momentum space, ( , )t p , is 

 
2 2( ) /(4( ) )2 3/4 0( ,0) = (2 ( ) ) e     p p pp p  

 
2(( ) )/(2 )( , ) = i q t mU t e p Ap   

 ( , ) = ( ,0) ( , )t U t p p p  (12) 
In momentum space the wave packet, consider ( , )t p  being “kicked” from p  to p p , and simply assume that 

random repeated kicks of p  result in < > 0 p , and each kick keeps the variance 2 2( ) ( )   p p p . Then, the 
overlap integral at the moment t  of a typical kick between the new and old state is 

 *< ( , ) | ( , ) >=
i

t t e
 
  


p p p  

 2 2 2
0= 8 ( ) 4( )m q t t     p p A p p p  

 2= ( )m  p  
 2= 8( )m p  (13) 
Where ( , )t p p  is the normalized wave function in p p  momentum space. A crude estimate is obtained of the 
survival time ( )A t  and survival probability ( )p t  [38], 

 *( ) =< ( , ) | ( , ) >A t t t  p p p  

 2( ) =| ( ) |p t A t  (14) 
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These numbers yield: 

 
1 2 2 7* (1.67 10 1.15 10 ) 1.25 10< ( , ) | ( , ) >= i t tt t e  

      p p p  (15) 
Even many small repeated kicks do not appreciably affect the real part of  , and these projections do not appreciably 

destroy the original wave packet, giving a survival probability per kick as 7 7( ) exp( 2.5 10 ) 1 2.5 10p t        . 
Both time-dependent phase terms in the exponent are sensitive to time scales on the order of 1/10 s, scales prominent in 
STM and in synchronous neural firings measured by EEG. This suggests that A  effects on 2Ca   wave functions may 
maximize their influence on STM at frequencies consistent with synchronous EEG during STM by some mechanisms not 
yet determined.  
 
5.2.3   COHERENCE OF REGENERATIVE PROCESSES  
The short summary above argues for Zeno-type long-time coherence of 2Ca   wave packets, during which they are 
affected by the = qp AP  interaction due to highly synchronous neural activity, and in turn their role in modifying 
synaptic interactions is affected. This study using qPATHTREE and qPATHINT is motivated to further calculate just how 
much shock the 2Ca   wave packets may endure by virtue of the regenerative process that defines it.  
 

VI. CONCLUSION 
 

Algorithms originally developed for classical complex financial options, PATHTREE and PATHINT, have been 
generalized to complex variable spaces, resulting in a new code useful for quantum wave functions and/or quantum 
probability functions, qPATHTREE and qPATHINT. The essence of PATHTREE is its ability to process quite generally 
time-dependent and nonlinear Lagrangians, and this is also useful for qPATHTREE. The PATHTREE algorithm is 
surprisingly fast, robust and accurate. For another path-integral code, PATHINT, also already applied to various systems, 
including chaotic studies, neuroscience and finance, the time and space variables are determined independently. I.e., the 
ranges of the space variables are best determined by first determining the reasonable spread of the distribution at the final 
time epoch. For PATHTREE just one parameter, the number of epochs, determines the mesh for both time and the space 
variables. This typically leads to a growth of the tree, proportional to the square root of the number of epochs, much faster 
than the spread of the distribution, so that much of the calculation is not relevant. 
 

Much CPU in both qPATHTREE and qPATHINT is used just calculating the distribution at all nodes. The added 
generalization of dealing with N dimensions in qPATHINT, which eventually will be added to qPATHTREE, requires a lot 
of overhead taking care of indices and boundaries within many for-loops. Parallel processing can at least make these codes 
more efficient in real-time. qPATHTREE’s and qPATHINT’s accuracy is best for moderate-noise systems. qPATHTREE 
is applied to a free particle. Calculations are give in the presence of random serial shocks to the particle. The strength of the 
code is seen only in the region of the initial value. Although oscillatory behavior is not reproduced, the current 
qPATHTREE is shown to be useful to study some aspects of serial changes to systems. qPATHINT also applied to a free 
particle, and it does handle oscillatory system in it present form that has a wider span than qPATHTREE over independent 
variables at each time slice.The current qPATHINT does handle more general systems, as it can easily span wider ranges of 
variables. Codes under development for qPATHTREE and qPATHINT will have sufficient spans of multiple deviations on 
each branch to address such oscillatory behavior. qPATHTREE can be similarly developed.The example a free quantum 
particle was chosen to test treatment of its oscillatory properties. However, of course this system has an infinite domain, 
and so calculations performed here cannot be accurate given the finite ranges used. However, a proof of principle has been 
demonstrated, which is poised to handle quantum options on quantum systems, in finance and in blockchains. 
qPATHTREE and qPATHINT can be useful in multiple disciplines, e.g., neuroscience and financial markets. Both 
qPATHTREE and qPATHINT will be further generalized to N-variable parallel code in complex-variable spaces. 
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