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Abstract — The author previously developed a numerical multivariate path-integral algorithm, PATHINT, which 
has been applied to several classical physics systems, including statistical mechanics of neocortical interactions, 
options in financial markets, and other nonlinear systems including chaotic systems. A new quantum version, 
qPATHINT, has the ability to take into account nonlinear and time-dependent modifications of an evolving system. 
qPATHINT is shown to be useful to study some aspects of serial changes to systems. Applications to options on 
quantum money and blockchains in financial markets are discussed.  
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I. INTRODUCTION 
 
The author previously developed a numerical multivariate path-integral algorithm, PATHINT. PATHINT has been used 
for several systems [1][2][3][4][5], The second section briefly describes path integrals and the numerical PATHINT 
algorithm. 
A quantum version, qPATHINT, has the ability to take into account nonlinear and serial time-dependent modifications 
of an evolving system. Quantum computing is here, and in the near future it will be applied to financial products, some 
using blockchain technologies. It not implausible to assume that soon there will be derivatives developed on these 
products, e.g., options. Then, similar to cases in classical real spaces with PATHINT, qPATHINT is now poised to 
calculate derivatives in quantum complex spaces. qPATHINT has been successfully baselined to PATHINT. 
qPATHINT goes beyond simply using quantum computation of derivatives, since the space of the dependent variables 
themselves may live in quantum worlds. Another paper has applied qPATHINT to a neuroscience problem [6]. 
 

In the second section, qPATHINT is described in the context of quantum money (QM, not to be confused here with the 
more common use of “QM” for quantum mechanics). Previous papers have addressed the use of PATHINT to 
qPATHINT versus the similar generalization of another numerical path-integral algorithm, PATHTREE to 
qPATHTREE [7][8]. 
 

The third section describes the PATHINT and qPATHINT algorithms. 
 

The fourth section describes the use of qPATHINT and PATHINT to compare options calculations in the presence of 
serial shocks. 
 

The Conclusion stresses that these applications of qPATHINT give proofs of concept of these new algorithms and 
codes. 

 

II. QUANTUM MONEY 
 

Since the early 1970’s there have been occasional papers proposing QM [9][10][11][12][13][14][15][16]. There are 
good reasons to consider QM, including possibilities of counterfeit-proof currency, and combining of such currency 
with blockchain technologies yielding improved efficiencies of mining and permitting scaling beyond today’s 
blockchains.As yet, there is not a clear proposal for just how QM would be implemented or exchanged with classical 
money. However, quantum computing is here now and rapidly growing [17], which will be applied in many ways to 
current financial markets. It seems reasonable that soon financial markets will be expanded to include quantum 
variables, and financial markets will determine how QM is to be valued and how it may ne exchanged with current 
financial instruments. 

http://www.ijiris.com
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Note that this paper does not address the problems in defining QM. This study does address how options on such QM 
can be calculated.  

 

2.1   QUANTUM  OPTIONS ON QUANTUM  MARKETS  
It seems that “if” QM is not much of an issue. When QM does arrive, it is clear that options on quantum markets will be 
required for purposes of hedging and speculation. Quantum options on quantum markets will require technologies 
similar to those required by trading options on classical financial markets. For example, American options, that may be 
exercised before maturation, is a key technology in today’s markets requiring numerical algorithms. Furthermore, 
similar to today’s technologies, probability distributions of prices in real markets will not generally be simple Gaussian 
or log-normal distributions that yield closed form options solutions. Real-world data, especially given seasonal changes 
and taxation issues, require fits to determine actual distributions.  
2.2  PATH-INTEGRAL METHODS APPLIED TO MARKETS  
 

The author has developed two sets of path-integral related algorithms, PATHINT [1][2][3][4][5] and PATHTREE [8] 
These algorithms have been applied to several disciplines, including financial options [3][18]. Other authors also have 
applied classical path-integral techniques to options [19]. 
 

A key feature of these algorithms is capabilities of developing the evolution of multivariate probability distributions 
with quite generally nonlinear means and (co-)variances and time dependencies. This is important to take into account 
known future sudden changes in markets, e.g., dividends, as well as possible drastic crashes and mini-crashes which at 
least should be regularly included in risk analyses.  
 

2.3.  QPATHINT  
qPATHINT is a code that is developed from PATHINT, useful for propagation of quantum wave functions [7][6]. This 
has been tested in a neuroscience project [6]. 
 

qPATHINT has been baselined to PATHINT, using real variables as input. This paper gives results of comparing 
PATHINT with qPATHINT, for a model of options that simply generalities classical variables x  to complex variable 

=z x ix , in the presence of random serial shocks. PATHINT and qPATHINT are particularly well suited to process 
serial shocks, much more so than other Monte Carlo methods that also are applied to classical and quantum 
development of probabilities and wave functions [20].  

 

III. PATH INTEGRALS 
The path-integral representation for the short-time propagator P  is given in terms of a Lagrangian L  by 
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The path integral defines the long-time evolution of P  in terms of the action A , 
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where   labels the S


-space over the volume  , and s  labels the 1u   time intervals, each of duration dt , 
spanning 0( )t t . The path integral is a faithful mathematical representation of (properly defined) Fokker-Planck 
partial differential equations and Langevin stochastic differential equations [21].  
3.1   PATHINT  
qPATHINT is motivated by a previous non-Monte-Carlo multivariable generalization of a numerical path-integral 
algorithm [22][23][24], PATHINT, used to develop the long-time evolution of the short-time probability distribution as 
applied to several studies in chaotic systems [2][5], neuroscience [1][2][4], and financial markets, including 
two-variable volatility of volatility [3]. 
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These studies suggested applications of some aspects of this algorithm to the standard binomial tree, PATHTREE [8], 
which is in development for a quantum version, qPATHTREE. However, as noted previously [7], [q]PATHINT quite 
easily extends beyond a diagonal across a (multivariate) drift, enabling oscillatory distributions/wave-functions to be 
calculated, whereas this is not very practical for [q]PATHTREE. 
PATHINT develops bins ijT  about diagonal terms in the Lagrangian. 

 ( ) = ( ) ( )i ij jP t t T t P t    

 
/2/2
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ijT  is a banded matrix representing the Gaussian nature of the short-time probability centered about the (varying) drift. 
Fitting data with the short-time probability distribution, effectively using an integral over this epoch, permits the use of 
coarser meshes than the corresponding stochastic differential equation. The coarser resolution is appropriate, typically 
required, for numerical solution of the time-dependent path-integral. By considering the contributions to the first and 
second moments of GS  for small time slices  , conditions on the time and variable meshes can be derived [22]. 
The time slice essentially is determined by 1L  , where L  is the “static” Lagrangian with / = 0GdS dt , 

throughout the ranges of GS  giving the most important contributions to the probability distribution P . The variable 

mesh, a function of GS , is optimally chosen such that GS  is measured by the covariance 
'GGg , or 

1/2( )G GGS g   . 
 
PATHINT was generalized by the author to process arbitrary N variable spaces, but in practice only N = 2 was used 
because of intensive computer resources. The author was Principal Investigator, National Science Foundation (NSF) 
Pittsburgh Supercomputing Center (PSC) Grant DMS940009P during 1994-1995 on a project, “Porting Adaptive 
Simulated Annealing and Path Integral Calculations to the Cray; Parallelizing ASA and PATHINT Project (PAPP)”. 
Eight volunteers were selected from many applicants and the PATHINT code was seeded to work on parallel machines. 
No further work has been done since that time to further develop parallel-coded applications.  

 
3.2   QPATHINT  
Similar to the development of qPATHINT described above, the PATHINT C code of about 7500 lines of code was 
rewritten for the GCC C-compiler to use complex double variables instead of double variables. 
 
qPATHINT, using real variables, was baselined to PATHINT by obtaining numerical agreement to previous results 
using PATHINT to calculate options for financial markets [3]. Note that options calculations include calculations of 
evolving probability distributions, making such codes very useful for similar calculations in other disciplines. 
qPATHINT evolves a wave function whose absolute square at any node is a probability, e.g., to determine payoffs at 
nodes when calculating American options.  
3.3   SERIAL SHOCKS  
This path-integral study is used to examine the nature of disturbances on the propagation of the wave function   due 
to serial shocks. The standard C-code uniform integer random number generator, rand(), is scaled to develop random 
real numbers within [-1,1], which adds a multiplier   to the drift, e.g., drift = (1 + Rand) drift.  

 
IV. COMPARISON OF PATHINT AND QPATHINT 

 
4.1   PROBABILITY DISTRIBUTIONS  
Table 1 gives a sample of the values of coordinates and distributions from PATHINT, resp., with = 0  (no shocks), 
and a sample of the values of distributions from PATHINT, resp., with = 0.5 . 
 

Table 2 gives a sample of the values of coordinates and real and imaginary distributions from qPATHINT, resp., with 
= 0  (no shocks), and a sample of the values of coordinates and real and imaginary distributions from qPATHINT, 

resp., with = 0.5 . 
width=0.8tw   
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TABLE  1: COLUMNS 1 AND 2 HAVE VALUES OF COORDINATES AND DISTRIBUTIONS FROM PATHINT, RESP., WITH A SHOCK MULTIPLIER OF 

0. COLUMNS 3 HAS VALUES OF DISTRIBUTIONS FROM PATHINT, WITH A SHOCK MULTIPLIER OF 0.5. 
 

 x-P   P-0   P-0.5  
.12942  6.25793  6.2521 
.30794  6.50949  6.50477 
.49967  6.59601  6.59499 
.70463  6.55281  6.55491 
.92282  6.42107  6.42265 
.15425  6.2352  6.23592 
.39892  6.01785  6.01706 
.65683  5.7812  5.77962 

.928  5.53064  5.52912 
.21243  5.26809  5.26886 
.51011  4.9941  4.99533 
.82106  4.7087  4.71042 
.14528  4.41184  4.41369 
.48276  4.10344  4.10557 
.83352  3.78344  3.78544 
.19755  3.45182  3.45277 
.57485  3.10865  3.10997 
.96544  2.75435  2.75566 

.3693  2.39016  2.39118 
.78645  2.01916  2.01932 
.21688  1.64766  1.64762 
.66059  1.28647  1.28589 
.11759 0.950734 0.949436 
.58788 0.657414 0.656073 
.07146 0.420468 0.419593 
.56833 0.246061 0.245715 

 

width=1.0tw 
TABLE  2: COLUMNS 1, 2 AND 3 HAVE VALUES OF COORDINATES AND REAL AND IMAGINARY DISTRIBUTIONS FROM QPATHINT, RESP., 

WITH A SHOCK MULTIPLIER OF 0. COLUMNS 4 AND 5 HAVE VALUES REAL AND IMAGINARY DISTRIBUTIONS FROM QPATHINT, RESP., WITH 
A SHOCK MULTIPLIER OF 0.5. 

 
 z   P-rl   P-im   qP-rl   qP-im  

.08059+i1.08059  1.26001  1.22204  1.25961  1.22156 

.18684+i1.18684  1.26603  1.23262  1.26553  1.23204 
.2981+i1.2981  1.23223  1.20642  1.2316  1.20573 

.41437+i1.41437  1.16609  1.14872  1.16505  1.14771 

.53566+i1.53566  1.07644  1.06651  1.07553  1.06563 

.66197+i1.66197 0.971171 0.966859 0.970277 0.965963 

.79328+i1.79328 0.856197 0.855897 0.855609 0.855274 

.92962+i1.92962  0.73569  .738588 0.735898 0.738703 

.07097+i2.07097  .613086 0.619194 0.613698  0.61973 

.21735+i2.21735 0.492107 0.501867 0.492577 0.502338 

.36874+i2.36874 0.377303 0.390973 0.377838 0.391508 

.52515+i2.52515 0.273802 0.290938 0.274335 0.291488 

.68658+i2.68658 0.186369 0.205707  0.18692 0.206299 

.85303+i2.85303 0.118264 0.138147 0.118666  0.13859 

.02451+i3.02451 0.0706271 0.0897805 0.0708143 0.089998 
.201+i3.201 0.042876 0.0610806 0.0429495 0.0611828 

.38252+i3.38252 0.0337658 0.0518205 0.033812 0.051894 
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4.2.  OPTIONS  
Options models describe the market value of an option, V  as 
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where S  is the asset price, and   is the standard deviation, or volatility of S , and r  is the short-term interest rate. 
For example, the basic equation can apply to a number of one-dimensional models of interpretations of prices given to 
V , e.g., puts or calls, and to S , e.g., stocks or futures, dividends, etc. 
The basic options model considers a portfolio   in terms of  , 
 
 = V S    (5) 
 in a market with Gaussian-Markovian (“white”) noise X  and drift  , 

 =dS dX dt
S
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where ( , )V S t  inherits a random process from S , 
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This yields 
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Which defines the “Greeks” as 
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The portfolio can be “risk-neutral,” if   is chosen such that 

 = V
S





 (10) 

The expected risk-neutral return of   is 
 = = ( )d r dt r V S dt    (11) 
 

4.3   OPTIONS CALCULATIONS  
Table 3 gives path-integral (PI) options values from PATHINT and qPATHINT (here, real parts only), for American 
(early exercise) and European call and put (AC, AP, EC, EP) calculations. Columns 2 and 3 are for PATHINT and 
qPATHINT, resp., with = 0 . Columns 4 and 5 are for PATHINT and qPATHINT, resp., with = 0 . A value of 9 

off-diagonal terms are used on each side of the diagonal kernel. The model uses a noise of xS , where S  is the 
underlying price and x  is an exponent. The underlying price is taken to be 7.0. A strike value of 7.5 is used for this 
table. The risk-free rate is taken to be 0.0675. The cost of carry is taken to be 0. A daily volatility of 0.00793725 is 
used, and this parameter is taken to be real for both PATHINT and qPATHINT. 
 
There is no additional drift added, but a drift arises from the nonlinear noise used [3][18]. In this context, note that 
shocks can affect Greeks with “p” in Table 3 quite severely, where “p” denotes an additional order of derivatives, e.g., 
VegapPI (second derivative of   with respect to volatility) is very sensitive to shocks in this particular drift as 
described above in the section Serial Shocks. 
width=1.0tw   
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Table  3: Columns 1 designates path-integral (PI) options values from PATHINT and qPATHINT (here, real parts 
only), for American and European call and put (AC, AP, EC, EP) calculations. Columns 2 and 3 are for PATHINT and 
qPATHINT, resp., with a shock multiplier of 0. Columns 4 and 5 are for PATHINT and qPATHINT, resp., with a shock 
multiplier of 0.5. 

 

 PI   P-0   qP-0   P-0.5   qP-0.5  
PricePIEC  0.288756  0.288756  0.208977  0.208977 
DeltaPIEC  0.380897  0.380897  0.303623  0.303623 
ThetaPIEC  -0.109478  -0.109478  -0.105974  -0.105974 
VegaPIEC  3.02971  3.02977  2.95609  2.96872 
RhoPIEC  -0.312973  -0.313763  -0.425339  -0.426127 

GammaPIEC  0.324376  0.162188  0.300693  0.150346 
DeltapPIEC  0.755352  0.755352  1.39363  1.37307 
VegapPIEC  1.17653  1.17745  51.1558  51.3351 
PricePIEP  0.515915  0.515915  0.663187  0.663187 
DeltaPIEP  -0.518676  -0.518676  -0.596342  -0.596342 
ThetaPIEP  -0.095225  -0.095225  -0.0768704  -0.0768704 
VegaPIEP  3.0557  3.05573  2.75136  2.74061 
RhoPIEP  -0.991903  -0.994407  -0.901005  -0.903511 

GammaPIEP  0.324985  0.162493  0.306842  0.153421 
DeltapPIEP  0.718208  0.718208  1.19527  1.20402 
VegapPIEP  1.83548  1.83482  72.1266  72.712 
PricePIAC  0.295256  0.295256  0.212971  0.212971 
DeltaPIAC  0.39382  0.39382  0.312081  0.312081 
ThetaPIAC  -0.117647  -0.117647  -0.111751  -0.111751 
VegaPIAC  3.10626  3.10621  3.0099  3.02144 
RhoPIAC  -0.244397  -0.24536  -0.340059  -0.341156 

GammaPIAC  0.346264  0.173132  0.316041  0.15802 
DeltapPIAC  0.805888  0.805551  1.44574  1.42869
VegapPIAC  1.54957  1.70147  40.5332  40.5649 
PricePIAP  0.531893  0.531893  0.687709  0.687709 
DeltaPIAP -0.545672 -0.545672 -0.635442 -0.635442 
ThetaPIAP  -0.110369  -0.110369  -0.0972145  -0.0972145 
VegaPIAP  3.11602  3.11596  2.7026  2.68574 
RhoPIAP  -0.555006  -0.559152  -0.537712  -0.541252 

GammaPIAP  0.365988  0.182994  0.362628  0.181314 
DeltapPIAP  0.823279  0.823017  1.5532  1.53829 
VegapPIAP  1.54039  1.66711  -42.8045  -42.4406 

 

V. CONCLUSION 
 

A numerical path-integral algorithm, PATHINT, has been generalized to complex variable spaces, resulting in a new 
qPATHINT code useful for quantum wave functions and/or quantum probability functions. 
 

PATHINT has already applied to various systems, including financial-market options, chaotic studies, and 
neuroscience. Similar to PATHINT, qPATHINT’s accuracy is best for moderate-noise systems. Much CPU in 
qPATHINT is used just calculating the distribution at all nodes. The added generalization of dealing with N dimensions 
in qPATHINT requires a lot of overhead taking care of indices and boundaries within many for-loops. Parallel 
processing makes these codes more efficient in real-time. qPATHINT is applied to options on QM. A proof of principle 
has been demonstrated, which is poised to handle quantum options on quantum systems, in finance and in blockchains. 
qPATHINT can be useful in multiple disciplines, e.g., neuroscience and financial markets. A neuroscience example is 
given here. A proper treatment of financial options often requires inclusion of aperiodic dividends and distributions that 
deviate nonlinearly from Gaussian of log-normal [3][8]. 
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