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Statistical mechanics of neocortical interactions: High-resolution path-integral calculation
of short-term memory
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We present high-resolution path-integral calculations of a previously developed model of short-term
memory in neocortex. These calculations, made possible with supercomputer resources, supplant similar
calculations made by Ingber [Phys. Rev. E 49, 4652 (1994)] and support coarser estimates made by
Ingber [Phys. Rev. A 29, 3346 (1984)]. We also present a current experimental context for the relevance
of these calculations using the approach of statistical mechanics of neocortical interactions, especially in
the context of electroencephalographic data.

PACS number(s): 87.10.+e, 05.40.+j, 02.50.—r, 02.70.—c

I. INTRODUCTI(ON

This paper describes a higher-resolution calculation of
a similar calculation performed in a recent paper [1],us-
ing supercomputer resources not available at that time,
and are of the quality of resolution presented in a
diP'erent system using the same path-integral code
PATHINT [2]. A more detailed description of the theoreti-
cal basis for these calculations can be found in that paper
and in previous papers in this series of statistical mechan-
ics of neocortical interactions (SMNI) [3—18].

The SMNI approach is to develop mesoscopic scales of
neuronal interactions at columnar levels of hundreds of
neurons from the statistical mechanics of relatively mi-
croscopic interactions at neuronal and synaptic scales,
poised to study relatively macroscopic dynamics at re-
gional scales as measured by scalp electroencephalogra-
phy (EEG). Relevant experimental data are discussed in
the SMNI papers at the mesoscopic scales, e.g. , as in this
paper's calculations, as well as at macroscopic scales of
scalp EEG. Here we demonstrate that the derived firings
of columnar activity, considered as order parameters of
the mesoscopic system, develop multiple attractors,
which illuminate attractors that may be present in the
macroscopic regional dynamics of neocortex.

The SMNI approach may be complementary to other
methods of studying nonlinear neocortical dynamics at
macroscopic scales. For example, EEG and magneto-
encephalography data have been expanded in a series of
spatial principal components (Karhunen-Loeve expan-
sion). The coefficients in such expansions are identified as
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order parameters that characterize phase changes in cog-
nitive studies [19,20] and epileptic seizures [21,22], which
are not considered here.

The calculations given here are of minicolumnar in-
teractions among hundreds of neurons, within a macro-
columnar extent of hundreds of thousands of neurons.
Such interactions take place on time scales of several ~,
where ~ is on the order of 10 msec (of the order of time
constants of cortical pyramidal cells). This also is the ob-
served time scale of the dynamics of short-term memory.
We hypothesize that columnar interactions within
and/or between regions containing many millions of neu-
rons are responsible for phenomena at time scales of
several seconds.

That is, the nonlinear evolution as calculated here at
finer temporal scales gives a base of support for the phe-
nomena observed at the coarser temporal scales, e.g., by
establishing mesoscopic attractors at many macrocolum-
nar spatial locations to process patterns at larger regions
domains. This motivates us to continue using the SMNI
approach to study minicolumnar interactions across
macrocolumns and across regions. For example, this
could be approached with a mesoscopic neural network
using a conQuence of techniques drawn from. SMNI,
modern methods of functional stochastic calculus
defining nonlinear Lagrangians, adaptive simulated an-
nealing [23], and parallel-processing computation, as pre-
viously reported [16]. Other developments of SMNI,
utilizing coarser statistical scaling than presented here,
have been used to m.ore directly interface with EEG phe-
nomena, including the spatial and temporal filtering ob-
served experimentally [14,15,17,18].

Section II presents a current experimental and theoret-
ical context for the relevance of these calculations. We
stress that neocortical interactions take place at multiple
local and global scales and that a conAuence of experi-
mental and theoretical approaches across these scales
very likely will be required to improve our understanding
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of the physics of neocortex.
Section III presents our current calculations, summar-

izing 10 CPU days of Convex 120 supercomputer
resources in several figures. These results support the
original coarser arguments given in SMNI papers a de-
cade ago [6,8].

Section IV presents our conclusions.

II. EXPERIMENTAL AND THEORETICAL CONTEXT

A. EEG studies

EEG provides a means to study neocortical dynamic
function at the millisecond time scales at which informa-
tion is processed. BEG provides information for cogni-
tive scientists and medical doctors. A major challenge
for this field is the integration of these kinds of data with
theoretical and experimental studies of the dynamic
structures of EEG.

Theoretical studies of the neocortical medium have in-
volved local circuits with postsynaptic potential delays
[24—27], global studies in which finite velocity of action
potential and periodic boundary conditions are important
[28—31], and nonlinear nonequilibrium statistical
mechanics of neocortex to deal with multiple scales of in-
teraction [3—18]. The local and the global theories com-

bine naturally to form a single theory in which control
parameters efFect changes between more local and more
global dynamic behavior [31,32], in a manner somewhat
analogous to localized and extended wave-function states
in disordered solids.

Recently, plausible connections between the multiple-
scale statistical theory and the more phenomenological
global theory were proposed [14]. Experimental studies
of neocortical dynamics with EEG include maps of mag-
nitude distribution over the scalp [29,33], standard
Fourier analyses of EEG time series [29], and estimates of
correlation dimension [34,35]. Other studies have em-
phasized that many EEG states are accurately described
by a few coherent spatial modes exhibiting complex tem-
poral behavior [19—22,29,31]. These modes are the order
parameters at macroscopic scales that underpin the phase
changes associated with changes of physiological state.

The recent development of. methods to improve the
spatial resolution of EEG has made it more practical to
study spatial structure. The new high-resolution methods
provide apparent resolution in the 2—3 cm range, as com-
pared to 5—10 cm for conventional EECx [36]. EEL data
were obtained in collaboration with the Swinburne Cen-
tre for Applied Neurosciences using 64 electrodes over
the upper scalp. These scalp data are used to estimate
potentials at the neocortical surface. The algorithms

FIG. 1. Magnitude (upper) and phase (lower) at 9 Hz of 1 sec of alpha rhythm is shown. The plots represent estimates of potential
on the cortical surface calculated from a 64 channel scalp recording (average center-to-center electrode spacing of about 2.7 cm). The
estimates of cortical potential wave forms were obtained by calculating spatial spline functions at each time slice to obtain analytic
fits to scalp potential distributions. Surface Laplacian wave forms were obtained from second spatial derivatives (in the two surface
tangent coordinates). Magnitude and phase were obtained from temporal Fourier transforms of the Laplacian wave forms. This par-
ticular Laplacian algorithm yields estimates of cortical potential that are similar to inverse solutions based on four concentric spheres
modes of the head. The Laplacian appears to be robust with respect to noise and head model errors [36]. The dark and the lighter
shaded regions are 90' out of phase, suggesting quasistable phase structure with regions separated by a few centimeters 180 out of
phase (possible standing waves). Data recorded at the Swinburne Centre for Applied Neurosciences in Melbourne, Australia.
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make use of general properties of the head volume con-
ductor. A straightforward approach is to calculate the
surface Laplacian from spline fits to the scalp potential
distribution. This approach yields estimates similar to
those obtained using concentric spheres models of the
head [36].

Here we report on data recorded from one of us
(P.L.N. ), while awake and relaxed with closed eyes (the
usual alpha rhythm). The resulting EEG signal has
dominant power in the 9—10 Hz range. We Fourier
transformed the 64 data channels and passed Fourier
coeKcients at 10 Hz through our Laplacian algorithm to
obtain cortical Fourier coefticients. In this manner the
magnitude and phase structure of EECr was estimated. A
typical Laplacian magnitude and phase plot for 1 sec of
EEG is shown in Fig. 1. This structure was determined
to be stable on 1-min time scales; that is, averages over 1

min exhibit minimal minute to minute changes when the
psychological and/or physiological state of the brain is
held fixed. By contrast, the structure is quasistable on 1-
sec time scales. To show this we calculated magnitude
and phase templates based on an average over 3 min. We
then obtained correlation coe%cients by comparing mag-
nitudes and phases at each electrode position for 1 sec
epochs of data with the templates. In this manner we
determined that the structure is quasistable on 1 sec time
scales. That is, correlation coef5cients vary from second
to second over moderate ranges, as shown in Fig. 2.
Another interesting aspect of these data is the periodic
behavior of the correlation coefficients; magnitudes and
phases undergo large changes roughly every 6 sec and
then return to patterns that more nearly match tern-
plates.

We have previously considered how mesoscopic activi-
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FICi. 2. Changes of alpha rhythm correlation coefficients
based on comparisons of magnitude (solid line) and phase
(dashed line) plots of successive 1-sec epochs of alpha rhythm
compared with spatial templates based on averages over 3 min
of data (similar to Fig. 1). The data show a quasistable structure
with major changes in magnitude or phase about every 6 sec,
after which the structure tends to return to the template struc-
ture.

ty may inhuence the very large scale dynamics observed
on the scalp [14]. In some limiting cases (especially those
brain states with minimal cognitive processing), this
mesoscopic inhuence may be su%ciently small so that
macroscopic dynamics can be approximated by a quasi-
linear "Auidlike" representation of neural mass action
[28—31]. In this approximation, the dynamics is crudely
described as standing waves in the closed neocortical
medium with periodic boundary conditions. Each spatial
mode may exhibit linear or limit cycle behavior at fre-
quencies in the 2—20 Hz range with mode frequencies
partly determined by the size of the cortex and the action
potential velocity in corticocortical fibers. The phase
structure shown in Fig. 1 may show the nodal lines of
such standing waves.

B. Short-term memory

SMNI has presented a model of short-term memory
(STM), to the extent it offers stochastic bounds for this
phenomena during focused selective attention
[1,6,8,37—39], transpiring on the order of tenths of a
second to seconds, limited to the retention of 7+2 items
[40]. This is true even for apparently exceptional
Inemory perform. ers who, while they may be capable ofL

more eKcient encoding and retrieval of STM and while
they may be more efficient in "chunking" larger patterns
of information into single items, nevertheless are limited
to a STM capacity of 7+2 items [41]. Mechanisms for.
various STM phenomena have been proposed acros&
many spatial scales [42]. This "rule" is verified for
acoustical STM, but for visual or semantic STM, which
typically require longer times for rehearsal in an hy-
pothesized articulatory loop of individual items, STM
capacity appears to be limited to 4+2 [43].

Another interesting phenomenon of STM capacity ex-
plained by SMNI is the primacy versus recency e6'ect in
STM serial processing, wherein first-learned items are re-
called most error-free, with last-learned items still more
error-free than those in the middle [44]. The basic as-
sumption being made is that a pattern of neuronal firing
that persists for many ~ cycles is a candidate to store the
"memory" of activity that gave rise to this pattern. If
several firing patterns can simultaneously exist, then
there is the capability of storing several memories. The
short-time probability distribution derived for the neo-
cortex is the primary tool to seek such firing patterns.

It has been noted that experimental data on velocities
of propagation of long-ranged fibers [29,31] and derived
velocities of propagation of information across local
rninicolumnar interactions [4] yield comparable time
scales of interactions across minicolumns of tenths of a
second. Therefore, such phenomena as STM likely are
inextricably dependent on interactions at local and global
scales, and this is assumed here.

III. PRESENT CALCULATIONS

A. Probability distribution and the Lagrangian

As described in more detail in a previous paper [1], the
short-time conditional probability of changing firing
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a G. =—' A G. +BG (2)

where AG and BG. are macrocolumnar-averaged inter-
neuronal synaptic efficacies, vG. and QG are averaged
means and variances of contributions to neuronal electric
polarizations, and nearest-neighbor interactions V' are
detailed in other SMNI papers [4,6]. M and NG in FG
are afferent macrocolumnar borings, scaled to efferent
minicolumnar firings by N/N' —10, where N' is the
number of neurons in a macrocolumn. Similarly,
and BG have been scaled by N'/N —10 to keep F in-
variant. This scaling is for convenience only. For neo-
cortex, due to chemical independence of excitatory and
inhibitory interactions, the diffusion matrix g is diago-
nal.

states within relaxation time r of excitatory (E) and inhi-
bitory (I) firings in a minicolumn of 110 neurons (twice
this number in the visual neocortex) is given by the fol-
lowing summary of equations. The Einstein summation
convention is used for compactness, whereby any index
appearing more than once among factors in any term is
assumed to be summed over, unless otherwise indicated
by vertical bars, e.g. , I,G . The mesoscopic probability
distribution P is given by the product of microscopic
probability distributions p, constrained such that the

aggregate mesoscopic excitatory firings M =g.~z o
and the aggregate mesoscopic inhibitory firings

IM =g
P= + P [M (r;t+7)~M (r', t)]

G=E,I
= g 5 g cr M(—r; t +r)

o. jEE
N

X5 g cr~
—M (r;t+ )r gp

jEI J

= g (2vrrg )
' exp( NrL )—,

G

where the final form is derived using the fact that
1V & 100. G represents contributions from both E and I
sources. This defines the Lagrangian, in terms of its
first-moment drifts g, its second-moment diffusion ma-
trix g, and its potential V', all of which depend sensi-
tively on threshold factors F,

P =(2vrr) '~ g' exp( NrL ), —

L =(2N) '(M —g )gGG (M —g )

+M JG/(2Nr) v', —
V'= y VG",G(pVM")2,

G

g G= —r '(M +N tanhF ),
gG =(g ) =$ NGsech F

g det(gGG')

(VG IGI IGING' 1g IGI IGIMG')
~G

G' G' 2 G' G'

I ~[(v IGI )2+ (ylGI)2](G I GING'+ t g IGIMG')] 1/2

The above development of a short-time conditional
probability for changing Gring states at the mesoscopic
entity of a mesocolumn (essentially a macrocolumnar
averaged minicolumn) can be folded in time over and
over by path-integral techniques developed in the late
1970s to process multivariate Lagrangians nonlinear in
their drifts and diffusions [45,46]. This is further
developed in the SMNI papers into a full spatial-
temporal field theory across regions of neocortex.

B. PA.THINT algorithm

The pATHINT algorithm can be summarized as a histo-
gram procedure that can numerically approximate the
path integral to a high degree of accuracy as a sum of
rectangles at points M; of height P; and width AM, For
convenience, just consider a one-dimensional system.
The path-integral representation described above can be
written, for each of its intermediate integrals, as

P(M;t+At)= f dM'[g, ''2(2~3, t)

X exp( L, b, t ) ]P—(M'; t )

= f dM'G(M M'b, t)P(M't)

P(M;t)= gm(M —M, )P, (t),

1, (M; —
—,
' AM, , ) ~ M ~ (M, + —,

' hM, )

m M —M 0, otherwise .

This yields

P, (t+bt)=. T,, (bt)P, (t),
2

, +aM;
M,. +AM, . /2

fX dM
M,. —AM, l/2

M. +6M-/2

X f dM'G(M, M', b, t) .
M.—bM )/2

(4)

T; is a banded matrix representing the Gaussian nature
of the short-time probability centered about the (possibly
time-dependent) drift. Care must be used in developing
the mesh in hM, which is strongly dependent on the di-
agonal elements of the diffusion matrix, e.g.,

bMG=(b, tg'G' G )' ' .

Presently, this constrains the dependence of the covari-
ance of each variable to be a nonlinear function of that
variable, albeit arbitrarily nonlinear, in order to present a
straightforward rectangular underlying mesh.

A previous paper [1] attempted to circumvent this re-
striction by taking advantage of previous observations
[6,8] that the most likely states of the "centered*' systems
lie along diagonals in M space, a line determined by the
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numerator of the threshold factor, essentially

AEM —AiM =0, (6)

where for the neocortex AE is on the order of Az. Along
this line, for a centered system, the threshold factor
E =0 and L is a minimum. However, looking at L, in
E the numerator ( AEM —AIM ) is typically small only
for small M, since for the neocortex Az « AE.

C. Further considerations for high-resolution calculation

exp[ —(M G/N ) /C ]—exp( —1/C )

1 —exp( —1/C )

where C is a cutoff parameter and the second term of the
transformed diffusion is weighted by N /~, the value of
the SMNI diffusion at M =0. A value of C=0.2 was
found to give good results.

However, the use of this cutoff rendered the difFusions

However, several problems plagued these calculations.
First, and likely most important, is that it was recognized
that a Sun workstation was barely able to conduct tests at
finer mesh resolutions. This became apparent in a subse-
quent calculation in a different system, which could be
processed at finer and finer meshes, where the resolution
of peaks was much more satisfactory [2]. Second, it was
difficult, if not impossible given the nature of the algo-
rithm discussed above, to disentangle any possible
sources of error introduced by the approximations based
on the transformation used.

The main issues to note here are that the physical
boundaries of firings M =+N are imposed by the nurn-
bers of excitatory and inhibitory neurons per minicolumn
in a given region. Physically, firings at these boundaries
are unlikely in normal brains, e.g. , unless they are epilep-
tic or dead. Numerically, PATHINT problems with SMNI
diffusions and drifts arise for large M at these boun-
daries.

(a) SMNI has regions of relatively small diffusions g
at the boundaries of M space. As the AM meshes are
proportional to (g b,t)', this could require PATHINT
to process relatively small meshes in these otherwise
physically uninteresting domains, leading to kernels of
size tens of millions of elements. These small diffusions
also lead to large Lagrangians, which imply relatively
small contributions to the conditional probabilities of
firings in these domains.

(b) At the boundaries of M space, SMNI can have
large negative drifts g . This can cause anomalous nu-
merical problems with the Neumann rejecting boundary
conditions t'aken at all boundaries. For example, if g ht
is sufficiently large and negative, negative probabilities
can result. Therefore, this would require quite small At
meshes to treat properly, affecting the AM meshes
throughout M space.

A quite reasonable solution is to cut ofF the drifts and
diffusions at the edges by Gaussian factors I,

approximately constant over the E and the I firing states,
e.g. , on the order of N . Therefore, here the diffusions
were taken to be these constants.

While a resolution of At =0.5~ was taken for the previ-
ous PATHINT calculation [1], here a temporal resolution
of At =0.01& was necessary to get well-developed peaks
of the evolving distribution for time epochs on the order
of several ~. As discussed in the Appendix of an earlier
paper [6], such a finer resolution is quite physically
reasonable, i.e., even beyond any numerical requirements
for such temporal meshes. That is, defining 0 in that pre-
vious study to be b, t, firings of M (t+ 6 t ) for 0 ~ ht ~ r
arise due to interactions within rnernory ~ as far back
as M (t+ ht —r). That is, the mesocolumnar unit
expresses the firings of afferents M (t+r) at time t+r as
having been calculated from interactions M (t ) at the r-
averaged efferent firing time t. With equal likelihood
throughout time ~, any of the N* uncorrelated efferent
neurons from a surrounding macrocolumn can contribute
to change the minicolumnar mean firings and fluctuations
of their N uncorrelated minicolumnar afferents. There-
fore, for ht ~ r, at least to resolution b, t ~ r/N and to or-
der b, t /r, it is reasonable to assume that efferents effect a
change in aff'erent mean firings of AtM =M (t+ht)—M (t)=b, tg with variance b, tg . Indeed, columnar
firings (e.g., as measured by averaged evoked potentials)
are observed to be faithful continuous probabilistic mea-
sures of individual neuronal firings (e.g. , as measured by
poststimulus histograms) [47].

When this cutoff procedure is applied with this tem-
poral mesh, an additional physically satisfying result is
obtained, whereby the hM mesh is on the order of a
firing unit throughout M space. The interesting physics
of the interior region as discussed in previous papers is
still maintained by this procedure.

D. Four models of selective attention

Three representative models of neocortex during states
of selective attention are considered, which are effected
by considering synaptic parameters within experirnental-
ly observed ranges.

A model of dominant inhibition describes how min-
icolumnar firings are suppressed by their neighboring
minicolumns. For example, this could be effected by de-
veloping nearest-neighbor mesocolumnar interactions [5],
but the averaged efFect is established by inhibitory meso-
columns (IC) by setting Az = At =2AEE=0. 01N" /N.
Since there appears to be relatively little I-I connectivity,
we set Af =0.0001N*/N. The background synaptic
noise is taken to be Bz =BE=2BE=10Bz=0.002%*/X.
As minicolumns are observed to have —110 neurons (the
visual cortex appears to have approximately twice this
density) [48] and as there appear to be a predominance of
E over I neurons [29], we take N =80 and N =30. As
supported by references to experiments in early SMNI
papers, we take N*/N=10, JG=0 (absence of long-
ranged interactions), V =10 mV, ~uG. ~=0. 1 mV, and

PG. =O. 1 mV. It is discovered that more minima of L are
created, or "restored, " if the numerator of F contains
terms only in M, tending to center the Lagrangian
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about M =0. Of course, any mechanism producing
more as well as deeper minima is statistically favored.
However, this particular centering mechanism has plausi-
ble support: M (t+r)=0 is the state of afferent firing
with highest statistical weight. That is, there are
more combinations of neuronal firings o. =+1, yielding
this state more than any other M ( t +r); e.g. ,

xG+ it'2-2 +'I (mN )
'I relative to the states M =+N .

Similarly, M* (t) is the state of efferent firing with
highest statistical weight. Therefore, it is natural to ex-
plore mechanisms that favor common highly weighted
efferent and afferent firings in ranges consistent with
favorable firing threshold factors F =0.

The centering effect of the IC model of dominant inhi-
bition, labeled here as the IC' model, is quite easy for the
neocortex to accommodate. For example, this can be ac-
complished simply by readjusting the synaptic back-
ground noise from BE to B'E,

B'6 2 I I I 2 E EVG (
] AG+BG)vGNI 1 AGUGNE

E
VE6~6

for both G=E and 6=I. This is modified straightfor-
wardly when regional influences from long-ranged firings
Mt are included [15]. In general, BE and BI (and possi-
bly AE and AI due to actions of neuromodulators and
JG or Mt constraints from long-ranged fibers) are avail-
able to force the constant in the numerator to zero, giv-
ing an extra degree(s) of freedom to this mechanism. (If
BE would be negative, this leads to unphysical results in
the square-root denominator of F . Here, in all examples
where this occurs, it is possible to instead find positive
BI to appropriately shift the numerator of I' .) In this
context, it is experimentally observed that the synaptic
sensitivity of neurons engaged in selective attention is al-
tered, presumably by the inhuence of chemical neuromo-
dulators on postsynaptic neurons [49].

By this centering mechanism, the model F,c. is ob-
tained
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The other "extreme" of normal neocortical firings is a
model of dominant excitation, effected by establishing ex-
citatory mesocolumns (EC) by using the same parameters
[BG., v G. , pG, AI J as in the IC model, but setting
AE =2AE =2AI =0.01K*/X. Applying the centering
mechanism to EC, BI =10.2 and BI =8.62. This yields

Q,QG25 4-

Q, QM

Q.QQ) &e

FEcE

FIEc'

0.25M —0.5M
n' (0 05M +0 10.M +17.2. }'

0.005M —0.25M

(0.001M +0.05M +12.4)'I (10)

Now it is natural to examine a balanced case inter-
mediate between IC and EC, labeled BC. This is accom-
plished by changing AE = Az = AI =0.005N /¹ Ap-
plying the centering mechanism to BC, BE =0.438 and

&jei4~ 4. 'E,

~.(W+~

! 0

FIG. 3. Model BC': (a) the evolution at ~, (b) the evolution at
5~, (c) the evolution at 10r, and (d) the evolution at 30~.
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Bl =8.62. This yields

+BC =

I+BC =

0.25M —0.25M
m' (0 050M +0 050M +7 40)'

0.005M —0.25M
m' (0 001M +0.050M +12.4)'i

A fourth model, similar to BC', for the visual neocor-
tex is considered as well, BC' VIS, where N is doubled.

0.25M —0.25M
~'"(0.050M'+0. 050M'+20. 4)'" '

0.005M —0.25M
(0 001M +0.050M +26.8)'

EIBC' VIS

I+BC' VIS

E. Results of calculations

Models BC', EC', and IC' were run at time resolutions
of ht =0.01&, resulting in firing meshes of hM
=0.894427 (truncated as necessary at one end point
to fall within the required range of +N ) and
AM =0.547723. To be sure of accuracy in the calcula-
tions, off-diagonal spreads of firing meshes were taken as
+5. This lead to an initial four-dimensional matrix of

179X 110X 11X 11=2 382 490 points, which was cut
down to a kernel of 2289020 points because the off-
diagonal points did not cross the boundaries. ReAecting
Neumann boundary conditions were imposed by the
method of images, consisting of a point image plus a con-
tinuous set of images leading to an error function [50]. A
Convex 120 supercomputer was used, but there were
problems with its C compiler, so gcc version 2.60 was
built and used. Runs across several machines, e.g., Suns,
Dec workstations, and Crays, checked reproducibility of
this compiler on this problem. It required about 17 CPU
min to build the kernel and about 0.45 CPU min for each
ht folding of the distribution.

For model BC' VIS, the same time resolution and
off-diagonal range was taken, resulting in firing meshes of
6 =1.26491 and AM =0.774597, leading to a kernel of
size 4611275 elements. It required about 34 CPU min to
build the kernel and about 0.90 CPU min for each At
folding of the distribution.

An initial 5-function stimulus was presented at
M =M =0 for each model. The subsequent dispersion
among the attractors of the systems gives information
about the pattern capacity of this system. Data was
printed every 100 foldings, representing the evolution of
one unit of v.. For run BC', data were collected for up to
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FIG. 4. Model EC': (a) the evolution at ~ and (b) the evolu-
tion at 10m.

FIG. 5. Model IC': (a) the evolution at ~ and (b) the evolu-
tion at 10m..
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50 ~, and for the other models data were collected up to
30 w.

As pointed out in Sec. II, long-ranged minicolumnar
circuitry across regions and across macrocolumns within
regions is quite important in the neocortex and this
present calculation only represents a model of
minicolumnar interactions within a mac rocolumn.
Therefore, only the first few ~ foldings should be con-
sidered as having much physical significance.

Figure 3(a) shows the evolution of model BC' after 100
foldings of At=0. 01, or one unit of relaxation time ~.
Note the existence of ten well developed peaks or possible
trappings of firing patterns. The peaks more distant from
the center of firing space would be even smaller if the ac-
tual nonlinear diffusions were used, since they are smaller
at the boundaries, increasing the Lagrangian and dimin-
ishing the probability distribution. However, there still
are two obvious scales. If both scales are able to be ac-
cessed, then all peaks are available to process patterns,
but if only the larger peaks are accessible, then the capa-
city of this memory system is accordingly decreased.
This seems to be able to describe the "7+2" rule. Figure
3(b) shows the evolution after 500 foldings at 5r; note
that the integrity of the different patterns is still present.
Figure 3(c) shows the evolution after 1000 foldings at 10';
note the deterioration of the patterns. Figure 3(d) shows
the evolution after 3000 foldings at 30~; note that while
the original central peak has survived, now most of the
other peaks have been absorbed into the central peaks
and the attractors at the boundary.

Figure 4(a) shows the evolution of model EC' after 100
foldings of At=0. 01, or one unit of relaxation time ~.
Note that, while ten peaks were present at this time for
model BC', now there are only four well developed peaks,
of which only two are quite strong. Figure 4(b) shows the
evolution after 1000 foldings at 10~; note that only the
two previously prominent peaks are now barely distin-
guishable.

Figure 5(a) shows the evolution of model IC' after 100
foldings of At=0. 01, or one unit of relaxation time v..
While similar to model BC', here too there are ten peaks
within the interior of firing space. However, quite con-
trary to that model, here the central peaks are much
smaller and therefore less likely than the middle and the
outer peaks (the outer ones prone to being diminished if
nonlinear diffusions were used, as commented on above),
suggesting that the original stimulus pattern at the origin
cannot be strongly contained. Figure 5(b) shows the evo-
lution after 100 foldings at 10~; note that only the attrac-
tors at the boundaries are still represented.

Figure 6(a) shows the evolution of model BC' VIS
after 100 foldings of At =0.01, or one unit of relaxation
time ~. In comparison to model BC', this model exhibits
only six interior peaks, with three scales of relative im-
portance. If all scales are able to be accessed, then all
peaks are available to process patterns, but if only the
larger peaks are accessible, then the capacity of this
memory system is accordingly decreased. This seems to
be able to describe the "4+2" rule for visual memory.
Figure 6(b) shows the evolution after 100 foldings at 10';
note that these peaks are still strongly represented. Also

note that now other peaks at lower scales are clearly
present, numbering on the same order as in the BC' mod-
el, as the strength in the original peaks dissipates
throughout firing space, but these are much smaller and
therefore much less probable to be accessed. As seen in
Fig. 6(c), similar to the BC' model, by 15', only the origi-
nal two large peaks remain prominent.
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FIG. 6. Model BC' VIS: (a) the evolution at ~, (b) the evo-
lution at 10~, and I,

'c) the evolution at 15~.
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IV. CONCLUSION

Experimental EEG results are available for regional in-
teractions and the evidence supports attractors that can
be considered to process short-term memory under con-
ditions of selective attention. There are many models of
nonlinear phenomena that can be brought to bear to
study these results.

There is not much experimental data available for
large-scale minicolumnar interactions. However, SMNI
offers a theoretical approach, based on experimental data
at finer synaptic and neuronal scales, that develops at-
tractors that are consistent with short-term memory
capacity. The duration and the stability of such attrac-
tors likely are quite dependent on minicolumnar circuitry
at regional scales, and further study will require more in-
tensive calculations than presented here [16].

We have presented a reasonable paradigm of multiple

scales of interactions of the neocortex under conditions of
selective attention. Presently, global scales are better
represented experimentally, but the mesoscopic scales are
represented in more detail theoretically. We have offered
a theoretical approach to consistently address these mul-
tiple scales [14—16] and more a phenomenological macro-
scopic theory [28—32] that is more easily compared with
macroscopic data. We expect that future experimental
efforts will offer more knowledge of the neocortex at
these multiple scales as well.
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