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Noninvasive Recordings of Brain Activity
There are several noninvasive experimental or clinical methods of recording brain
activity, e.g.,

electroencephalography (EEG)
magnetoencephalography (MEG)
magnetic resonance imaging (MRI)
positron-emission tomography (PET)
single-photon-emission-computed tomography (SPECT)

While MRI, PET, and SPECT offer better three-dimensional presentations of brain
activity, EEG and MEG offer superior temporal resolutions on the order of
neuronal relaxation times, i.e., milliseconds.
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EEG Electrodes
A typical map of EEG electrode sites is given as below. Many neuroscientists are
becoming aware that higher electrode densities are required for many studies. For
example, if each site below represented 5 closely spaced electrodes, a numerical
Laplacian can offer relatively reference-free recordings and better estimates of
localized sources of activity.
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Single Electrode Recording of Dipole Activity
Macrocolumns may be considered as “point sources” of dipole-like interactions,
mainly due to coherent current flow of top-layer afferent interactions to bottom-
layer efferent interactions. However, there is a problem of non-uniqueness of the
electric potential that arises from such source activity; Laplacian measurements can
help to address this problem.
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EEG of Mechanical String
The mechanical string has linear properties and is connected to local nonlinear
oscillators. Local cortical dynamics in dipole layers is here considered analogous
to the nonlinear mechanical oscillators which influence global modes.
Macroscopic scalp potentials are analogous to the lower modes of string
displacement.

For purposes of illustration, a linear string with attached oscillators, e.g., nonlinear
springs may be compared to a one-dimensional strip of neocortex:
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String Equation
The following equation describes the string displacement Φ

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ [ω 2
0 + f (Φ)]Φ = 0 ,

for a linear array (length l) of sensors (electrodes) of size s. Thus, wav e-numbers
in the approximate range

π
l

≤ k ≤
π
s

can be observed. If the center to center spacing of sensors is also s, l = Ms, where
M = (number of sensors - 1), k = 2nπ /R for n = {1, 2, 3, . . . } (string forms closed
loop), and sensors span half the string (brain), l = R/2, then

1 ≤ n ≤ M

for some maximum M , which is on the order of 3 to 7 in EEG studies using 16 to
64 electrodes in two-dimensional arrays on the cortical surface.

For scalp recordings, the wav enumber restriction is more severe. For example, a
typical circumference of the neocortex following a coordinate in and out of fissures
and sulci is R = 100 cm (about 50 cm along the scalp surface). If EEG power is
mostly restricted to k < 0. 5  cm−1, only modes n < 4  are observed, independent of
the number of electrodes.

Theory should be able to be similarly “filtered,” e.g., in order to properly fit EEG
data.
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String Observables
The string displacement (potential within the cortex) is given by

Φ(x, t) =
∞

n=1
Σ Gn(t) sin kn x ,

but the observed Φ is given by

Φ†(x, t) =
M

n=1
Σ Gn(t) sin kn x .

In the linear case, where f (Φ) = 0 (equal linear oscillators to simulate local circuit
effects in cortical columns), then

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ ω 2
0Φ = 0 ,

Φ =
∞

n=1
Σ An cos ω nt sin kn x ,

ω 2
n = ω 2

0 + c2k2
n ,

giving a dispersion relation ω n(kn). For the nonlinear case, f (Φ) ≠ 0, the restoring
force of each spring is amplitude-dependent. In fact, local oscillators may undergo
chaotic motion.

What can be said about

Φ†(x, t) =
M

n=1
Σ Gn(t) sin kn x ,

the macroscopic observable displacement potential on the scalp or cortical surface?

It would seem that Φ† should be described as a linear or quasi-linear variable, but
influenced by the local nonlinear behavior which crosses the hierarchical level
from mesoscopic (columnar dipoles) to macroscopic.

How can this intuition be mathematically articulated, for the purposes of consistent
description as well as to lay the foundation for detailed numerical calculations?
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Scales Illustrated

Illustrated are three biophysical scales of neocortical interactions: (a)-(a*)-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic
regions. In (a*) synaptic interneuronal interactions, averaged over by
mesocolumns, are phenomenologically described by the mean and variance of a
distribution Ψ. Similarly, in (a) intraneuronal transmissions are
phenomenologically described by the mean and variance of Γ. Mesocolumnar
av eraged excitatory (E) and inhibitory (I ) neuronal firings are represented in (a’).
In (b) the vertical organization of minicolumns is sketched together with their
horizontal stratification, yielding a physiological entity, the mesocolumn. In (b’)
the overlap of interacting mesocolumns is sketched. In (c) macroscopic regions of
neocortex are depicted as arising from many mesocolumnar domains. These are
the regions designated for study here. (c’) sketches how regions may be coupled
by long-ranged interactions.
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Microscopic Neurons
A derivation has been given of the physics of chemical inter-neuronal and electrical
intra-neuronal interactions. This derivation generalized a previous similar
derivation. The derivation yields a short-time probability distribution of a given
neuron firing due to its just-previous interactions with other neurons. Within
τ j∼5−10 msec, the conditional probability that neuron j fires (σ j = +1) or does not
fire (σ j = −1), given its previous interactions with k neurons, is

pσ j
≈ Γ Ψ ≈

exp(−σ j F j)

exp(F j) + exp(−F j)
,

F j =
V j −

k
Σ a∗

jk v jk

((π
k′
Σ a∗

jk′(v jk′
2 + φ jk′

2)))1/2 ,

a jk =
1

2
A jk(σ k + 1) + B jk .

Γ represents the “intra-neuronal” probability distribution, e.g., of a contribution to
polarization achieved at an axon given activity at a synapse, taking into account
av eraging over different neurons, geometries, etc. Ψ represents the “inter-
neuronal” probability distribution, e.g., of thousands of quanta of neurotransmitters
released at one neuron’s postsynaptic site effecting a (hyper-)polarization at
another neuron’s presynaptic site, taking into account interactions with
neuromodulators, etc. This development is true for Γ Poisson, and for Ψ Poisson
or Gaussian.

V j is the depolarization threshold in the somatic-axonal region, v jk is the induced
synaptic polarization of E or I type at the axon, and φ jk is its variance. The
efficacy a jk , related to the inverse conductivity across synaptic gaps, is composed
of a contribution A jk from the connectivity between neurons which is activated if
the impinging k-neuron fires, and a contribution B jk from spontaneous background
noise.

Even at the microscopic scale of an individual neuron, with soma ≈ 10 µm, this
conceptual framework assumes a great deal of statistical aggregation of molecular
scales of interaction, e.g., of the biophysics of membranes, of thickness ≈ 5 × 10−3

µm, composed of biomolecular leaflets of phospholipid molecules.
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Mesoscopic Aggregation
This microscopic scale itself represents a high aggregation of sub-microscopic
scales, aggregating effects of tens of thousands of quanta of chemical transmitters
as they influence the 5 × 10−3 µm This microscopic scale is aggregated up to the
mesoscopic scale, using

Pq(q) = ∫ dq1dq2Pq1q2
(q1, q2)δ [q − (q1 + q2)] .

The SMNI approach can be developed without recourse to borrowing paradigms or
metaphors from other disciplines. Rather, in the course of a logical, nonlinear,
stochastic development of aggregating neuronal and synaptic interactions to larger
and larger scales, opportunities are taken to use techniques of mathematical physics
to overcome several technical hurdles. After such development, advantage can be
taken of associated collateral descriptions and intuitions afforded by such
mathematical and physics techniques as they hav e been used in other disciplines,
but paradigms and metaphors do not substitute for logical SMNI development.
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Mesoscopic Interactions
Microscopic Scale

Retain independence of excitatory (E) and inhibitory (I ) interactions
Retain nonlinear development of probability densities

Mesoscopic Scale
Convergence<->Divergence — minicolumnar<->macrocolumnar
Nearest-neighbor (NN) interactions summarize N16N interactions

Macroscopic scale
Include long-ranged interactions, constraints on mesocolumns

For the purposes of mesoscopic and macroscopic investigation, this biological
picture can be cast into an equivalent network. However, the above aspects must
not be simply cast away.
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Mathematical Development
A derived mesoscopic Lagrangian LM defines the short-time probability
distribution of firings in a minicolumn, composed of ∼102 neurons, given its just
previous interactions with all other neurons in its macrocolumnar surround. G is
used to represent excitatory (E) and inhibitory (I ) contributions. G designates
contributions from both E and I .

PM =
G
Π PG

M [MG(r; t + τ )|MG(r′; t)]

=
σ j

Σ δ 
 jE
Σσ j − M E (r; t + τ )


δ 

 jI
Σσ j − M I (r; t + τ )


N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG

M ) ,

PM ≈(2π τ )−1/2g1/2 exp(−Nτ LM ) ,

LM = LE
M + L I

M = (2N )−1(Ṁ
G − gG)gGG′(Ṁ

G′ − gG′) + MG JG /(2Nτ ) − V ′ ,

V ′ =
G
ΣV ′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + N G tanh FG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1 N Gsech2FG ,

g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
,

aG
G′ =

1

2
AG

G′ + BG
G′ ,

where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies,
vG

G′ and φ G
G′ are averaged means and variances of contributions to neuronal electric

polarizations. MG′ and N G′ in FG are afferent macrocolumnar firings, scaled to
efferent minicolumnar firings by N /N * ∼10−3, where N * is the number of
neurons in a macrocolumn, ∼105. Similarly, AG′

G and BG′
G have been scaled by

N * /N∼103 to keep FG invariant.
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Inclusion of Macroscopic Circuitry
The most important features of this development are described by the Lagrangian
LG in the negative of the argument of the exponential describing the probability
distribution, and the “threshold factor” FG describing an important sensitivity of
the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically
include interactions among macrocolumns, the JG terms can be dropped, and more
realistically replaced by a modified threshold factor FG ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N ‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
,

a‡E
E′ =

1

2
A‡E

E′ + B‡E
E′ .

Here, afferent contributions from N ‡E long-ranged excitatory fibers, e.g., cortico-
cortical neurons, have been added, where N ‡E might be on the order of 10% of N ∗:
Of the approximately 1010 to 1011 neocortical neurons, estimates of the number of
pyramidal cells range from 1/10 to 2/3. Nearly every pyramidal cell has an axon
branch that makes a cortico-cortical connection; i.e., the number of cortico-cortical
fibers is of the order 1010.
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Equivalent Nearest-Neighbor Interactions
Nearest-neighbor (NN) interactions between mesocolumns are illustrated. Afferent
minicolumns of ∼102 neurons are represented by the inner circles, and efferent
macrocolumns of ∼105 neurons by the outer circles. Illustrated are the NN
interactions between a mesocolumn, represented by the thick circles, and its
nearest neighbors, represented by thin circles. The area outside the outer thick
circle represents the effective number of efferent macrocolumnar nearest-neighbor
neurons. I.e., this is the number of neurons outside the macrocolumnar area of
influence of the central minicolumn.

This approximation, albeit successful in the 1983 calculations, can be replaced by a
more sophisticated algorithm, MNN, published in 1992.
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MATHEMATICAL AND NUMERICAL ASPECTS
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Induced Riemannian Geometry
A Riemannian geometry is derived as a consequence of nonlinear noise, reflecting
that the probability distribution is invariant under general nonlinear transformations
of these variables.

This becomes explicit under a transformation to the midpoint discretization, in
which the standard rules of differential calculus hold for the same distribution:

MG(ts) =
1

2
(MG

s+1 + MG
s ) , Ṁ

G(ts) = (MG
s+1 − MG

s )/θ ,

P̃ =
ν
Π P , P = ∫ . . . ∫ DM exp(−

u

s=0
Σ ∆tLFs) ,

DM = g1/2
0+

(2π ∆t)−1/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π ∆t)−1/2dMG

s ,

∫ dMG
s →

N G

α =1
Σ ∆MG

α s , MG
0 = MG

t0
, MG

u+1 = MG
t ,

LF =
1

2
( Ṁ

G − hG)gGG′( Ṁ
G′ − hG′) +

1

2
hG

;G + R/6 − V ,

[. . .],G =
∂[. . .]

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(ts), ts] = det(gGG′)s , gs+
= gs[MG

s+1, ts] ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) .
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Measures of Nonlinear Nonequilibrium

“Momentum” = ΠG =
∂L

∂(∂MG /∂t )
,

“Mass” = gGG′ =
∂2 L

∂(∂MG /∂t)∂(∂MG′/∂t )
,

“Force” =
∂L

∂M G
,

“F = ma ”: δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG /∂t)
,

where MG are the variables and L is the Lagrangian. These physical entities
provide another form of intuitive, but quantitatively precise, presentation of these
analyses.
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Representations of Path Integral
The Langevin Rate-Equation exhibits a stochastic equation, wherein drifts can be
arbitrarily nonlinear functions, and multiplicative noise is added.

M(t + ∆t) − M(t)∼∆t f [M(t)] ,

Ṁ =
dM

dt
∼ f ,

Ṁ = f + ĝη ,

< η(t) >η= 0 , < η(t)η(t′) >η= δ (t − t′) .

The Diffusion Equation is another equivalent representation of Langevin equations.
The first moment ‘‘drift’’ is identified as f , and the second moment ‘‘diffusion,’’
the variance, is identified as ĝ2.

∂P

∂t
=

∂(− fP)

∂M
+

1

2

∂2(ĝ2P)

∂M2
.

The Path-Integral Lagrangian represents yet another equivalent representation of
Langevin equations. Recently it has been demonstrated that the drift and diffusion,
in addition to possibly being quite general nonlinear functions of the independent
variables and of time explicitly, may also be explicit functions of the distribution P
itself.

P[Mt+∆t |Mt] = (2π ĝ2∆t)−1/2 exp(−∆tL) ,

L = ( Ṁ − f )2/(2 ̂g2) ,

P[Mt |Mt0
] = ∫ . . . ∫ dMt−∆t dMt−2∆t

. . . dMt0+∆t

×P[Mt |Mt−∆t]P[Mt−∆t |Mt−2∆t] . . . P[Mt0+∆t |Mt0
] ,

P[Mt |Mt0
] = ∫ . . . ∫ DM exp(−

u

s=0
Σ ∆tLs) ,

DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s∆t)−1/2dMs ,

∫ dMs →
N

α =1
Σ ∆Mα s , M0 = Mt0

, Mu+1 = Mt .

This representation is useful for fitting stochastic data to parameters in L.
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Adaptive Simulated Annealing (ASA)
This algorithm fits empirical data to a theoretical cost function over a D-
dimensional parameter space, adapting for varying sensitivities of parameters
during the fit. This algorithm was first published in 1989, and made publicly
available in November 1992.

Heuristic arguments have been developed to demonstrate that this algorithm is
faster than the fast Cauchy annealing, Ti = T0/k, and much faster than Boltzmann
annealing, Ti = T0/ ln k.

For parameters

α i
k ∈[Ai , Bi] ,

sampling with the random variable xi ,

xi ∈[−1, 1] ,

α i
k+1 = α i

k + xi(Bi − Ai) ,

define the generating function

gT (x) =
D

i=1
Π

1

2 ln(1 + 1/Ti)(|xi | + Ti)
≡

D

i=1
Π gi

T (xi) ,

in terms of parameter “temperatures”

Ti = Ti0 exp(−ci k
1/D) .

The cost-functions L under consideration are of the form

h(M ; α ) = exp(−L/T ) ,

L = L∆t +
1

2
ln(2π ∆tg2

t ) ,

where L is a Lagrangian with dynamic variables M(t), and parameter-coefficients
α to be fit to data. gt is the determinant of the metric, and T is the cost
“temperature.”

For sev eral test problems, ASA has been shown to be orders of magnitude more
efficient than other similar techniques. ASA has been applied to several complex
systems, including specific problems in neuroscience, finance and combat systems.
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GENERIC MESOSCOPIC NEURAL NETWORKS (MNN)
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Applications
Modern stochastic calculus permits development of alternative descriptions of
path-integral Lagrangians, Fokker-Planck equations, and Langevin rate equations.
The induced Riemannian geometry affords invariance of probability distribution
under general nonlinear transformations.

ASA presents a powerful global optimization that has been tested in a variety of
problems defined by nonlinear Lagrangians.

Parallel-processing computations can be applied to ASA as well as to a neural-
network architecture.
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MNN Learning
“Learning” takes place by presenting the MNN with data, and parametrizing the
data in terms of the “firings,” or multivariate MG “spins.” The “weights,” or
coefficients of functions of MG appearing in the drifts and diffusions, are fit to
incoming data, considering the joint “effective” Lagrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost
function.

The cost function is a sum of effective Lagrangians from each node and over each
time epoch of data.

This program of fitting coefficients in Lagrangian uses methods of adaptive
simulated annealing (ASA). This maximum likelihood procedure (statistically)
avoids problems of trapping in local minima, as experienced by other types of
gradient and regression techniques.
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MNN Prediction
“Prediction” takes advantage of a mathematically equivalent representation of the
Lagrangian path-integral algorithm, i.e., a set of coupled Langevin rate-equations.
The Itô (prepoint-discretized) Langevin equation is analyzed in terms of the
Wiener process dW i , which is rewritten in terms of Gaussian noise η i = dW i/dt in
the limit:

MG(t + ∆t) − MG(t) = dMG = gG dt + ĝG
i dW i ,

dMG

dt
= Ṁ

G = gG + ĝG
i η i ,

M = { MG ; G = 1, . . . , Λ } , η = { η i; i = 1, . . . , N } ,

< η j(t) >η= 0 , < η j(t), η j′(t′) >η= δ jj′δ (t − t′) .

Moments of an arbitrary function F(η) over this stochastic space are defined by a
path integral over η i . The Lagrangian diffusions are calculated as

gGG′ =
N

i=1
Σ ĝG

i ĝG′
i .

A coarse deterministic estimate to “predict” the evolution can be applied using the
most probable path

dMG /dt = gG − g1/2(g−1/2gGG′),G′ .

PATHINT, even when parallelized, typically can be too slow for “predicting”
ev olution of these systems. However, a new algorithm, PATHTREE holds some
promise.
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MNN Parallel Processing
The use of parallel processors can make this algorithm even more efficient, as ASA
lends itself well to parallelization.

During “learning,” blocks of random numbers are generated in parallel, and then
sequentially checked to find a generating point satisfying all boundary conditions.

Advantage is taken of the low ratio of acceptance to generated points typical in
ASA, to generate blocks of cost functions, and then sequentially checked to find
the next best current minimum.

Additionally, when fitting dynamic systems, e.g., the three physical systems
examined to date, parallelization is attained by independently calculating each time
epoch’s contribution to the cost function.

Similarly, during “prediction,” blocks of random numbers are generated to support
the Langevin-equation calculations, and each node is processed in parallel.
PATHINT or PATHTREE also possess features to promote fast calculations.
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SHORT-TERM MEMORY (STM)
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Derivation of Short-Term Memory (STM)
At this mesoscopic scale, properties of STM— its capacity, duration and
stability—have been calculated, and found to be consistent with empirical
observations. The first publications on this approach to STM appeared in 1984.

The maximum STM capacity, consistent with the 7 ± 2 rule, is obtained when a
‘‘centering mechanism’’ is inv oked. This occurs when the threshold factor FG

takes minima in the interior of MG firing-space (i.e., not the corners of this space),
as empirically observed.

In the SMNI papers, the background noise BG
G′ was reasonably adjusted to center

FG , with JG = 0, but similar results could have been obtained by adjusting the
influence of the long-ranged fibers M ‡G .

Within a time scale of several seconds, the human brain can store only about 7±2
auditory chunks of information (4±2 visual chunks).

To derive this, choose empirical ranges of synaptic parameters corresponding to a
predominately excitatory case (EC), predominately inhibitory case (IC), and a
balanced case (BC) in between. For each case, also consider a ‘‘centering
mechanism’’ (EC’, IC’, BC’), whereby some synaptic parameter is internally
manipulated, e.g., some chemical neuromodulation or imposition of patterns of
firing, such that there is a maximal efficiency of matching of afferent and efferent
firings:

MG ≈ M∗G ≈ 0 .

This sets conditions on other possible minima of the static Lagrangian L.
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Centering Mechanism
The centering effect is quite easy for the neocortex to accommodate. For example,
this can be accomplished simply by readjusting the synaptic background noise
from BG

E to B′GE ,

B′GE =
V G − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

E vG
E N E

vG
E N G

for both G = E and G = I .

This is modified straightforwardly when regional influences from M ‡E are
included. In general, BG

E and BG
I (and possibly AG

E and AG
I due to actions of

neuromodulators, and JG or M ‡E constraints from long-ranged fibers) are available
to force the constant in the numerator to zero, giving an extra degree(s) of freedom
to this mechanism.

In this context, it is experimentally observed that the synaptic sensitivity of neurons
engaged in selective attention is altered, presumably by the influence of chemical
neuromodulators on postsynaptic neurons.

An important side result is to drive most probable states, i.e., small L which is
driven largely by small FG , to regions where

vG
E AG

E M E ≈ |vG
I |AG

I M I .

Since I−I efficacies typically are relatively quite small, the probability density
under the centering mechanism is strongly peaked along the line

vE
E AE

E M E ≈ |vE
I |AE

I M I .
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Applying the Centering Mechanism—“Inhibitory” State
A model of dominant inhibition describes how minicolumnar firings are suppressed
by their neighboring minicolumns. For example, the averaged effect is established
by inhibitory mesocolumns (IC) by setting AI

E = AE
I = 2AE

E = 0. 01N */N . Since
there appears to be relatively little I − I connectivity, set AI

I = 0. 0001N */N . The
background synaptic noise is taken to be BE

I = BI
E = 2BE

E = 10BI
I = 0. 002N */N .

As nonvisual minicolumns are observed to have ∼110 neurons and as there appear
to be a predominance of E over I neurons, here take N E = 80 and N I = 30. Use
N */N = 103, JG = 0 (absence of long-ranged interactions), and V G , vG

G′, and φ G
G′ as

estimated previously, i.e., V G = 10 mV, |vG
G′| = 0. 1 mV, φ G

G′ = 0. 1 mV. The
‘‘threshold factors’’ FG

IC for this IC model are then

F E
IC =

0. 5M I − 0. 25M E + 3. 0

π 1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

F I
IC =

0. 005M I − 0. 5M E − 45. 8

π 1/2(0. 001M I + 0. 1M E + 11. 2)1/2
.

F I
IC will cause efferent M I (t + ∆t) to fire for most afferent input firings, as it will

be positive for most values of MG(t) in F I
IC, which is already weighted heavily

with a term -45.8. Looking at F E
IC, it is seen that the relatively high positive

weights of afferent M I require at least moderate values of positive afferent M E to
cause firings of efferent M E , diminishing the influence of M E .

Using the centering mechanism, B′EE = 1. 38 and B′I
I = 15. 3, and FG

IC is
transformed to FG

IC′,

F E
IC′ =

0. 5M I − 0. 25M E

π 1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

F I
IC′ =

0. 005M I − 0. 5M E

π 1/2(0. 001M I + 0. 1M E + 20. 4)1/2
.
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Contours of “Inhibitory” State
Contours of the Lagrangian illustrate ‘‘valleys’’ that trap firing-states of
mesocolumns. (τ L can be as large as 103.)

No interior stable states are observed at scales of τ L ranging from 103 down to
10−2, until the “centering mechanism” is turned on.
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Applying the Centering Mechanism—“Excitatory” State
The other ‘‘extreme’’ of normal neocortical firings is a model of dominant
excitation, effected by establishing excitatory mesocolumns (EC) by using the
same parameters { BG

G′, vG
G′, φ G

G′, AI
I } as in the IC model, but setting

AE
E = 2AI

E = 2AE
I = 0. 01N */N . This yields

F E
EC =

0. 25M I − 0. 5M E − 24. 5

π 1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

F I
EC =

0. 005M I − 0. 25M E − 25. 8

π 1/2(0. 001M I + 0. 05M E + 7. 24)1/2
.

The negative constants in the numerators of FG
EC enhance efferent firings for both

E and I afferent inputs. However, the increased coefficient of M E in F E
EC (e.g.,

relative to its corresponding value in F E
IC), and the fact that M E can range up to

N E = 80, readily enhance excitatory relative to inhibitory firings throughout most
of the range of M E . This is only a first approximation, and the full Lagrangian
must be used to determine the actual evolution.

Using the centering mechanism, B′EE = 10. 2 and B′I
I = 8. 62, and FG

EC is
transformed to FG

EC′,

F E
EC′ =

0. 25M I − 0. 5M E

π 1/2(0. 05M I + 0. 10M E + 17. 2)1/2
,

F I
EC′ =

0. 005M I − 0. 25M E

π 1/2(0. 001M I + 0. 05M E + 12. 4)1/2
.
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Contours of “Excitatory” State
Contours of the Lagrangian illustrate ‘‘valleys’’ that trap firing-states of
mesocolumns. (τ L can be as large as 103.)

No interior stable states are observed at scales of τ L ranging from 103 down to
10−2, until the “centering mechanism” is turned on.



Statistical Mechanics of Neocortical Interactions Lester Ingber

Applying the Centering Mechanism—“Balanced” State
Now it is natural to examine a balanced case intermediate between IC and EC,
labeled BC. This is accomplished by changing AE

E = AI
E = AE

I = 0. 005N */N .
This yields

F E
BC =

0. 25M I − 0. 25M E − 4. 50

π 1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
BC =

0. 005M I − 0. 25M E − 25. 8

π 1/2(0. 001M I + 0. 050M E + 7. 24)1/2
.

Here the constant in the numerator of F E
BC, while still negative to promote E

efferent firings, is much greater than that in F E
EC, thereby decreasing the net

excitatory activity to a more moderate level. A similar argument applies in
comparing F I

BC to F I
IC, permitting a moderate level of inhibitory firing.

Applying the centering mechanism to BC, B′EE = 0. 438 and B′I
I = 8. 62, and FG

BC is
transformed to FG

BC′,

F E
BC′ =

0. 25M I − 0. 25M E

π 1/2(0. 050M I + 0. 050M E + 7. 40)1/2
,

F I
BC′ =

0. 005M I − 0. 5M E

π 1/2(0. 001M I + 0. 050M E + 12. 4)1/2
.
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Contours of “Balanced” State

No interior stable states are observed at scales of τ L ranging from 103 down to
10−2, until the “centering mechanism” is turned on.

(a) Contours for values less than 0.04 are drawn for τ LBC. The M E axis increases
to the right, from −N E = −80 to N E = 80. The M I axis increases to the right, from
−N I = −30 to N I = 30. In each cluster, the smaller values are closer to the center.
(b) Contours for values less than 0.04 are drawn for τ LBC′.
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Modeling Visual Cortex STM
When N = 220, modeling the number of neurons per minicolumn in visual
neocortex, then only 5-6 minima are found, consistent with visual STM. These
minima are narrower, consistent with the sharpness required to store visual
patterns.
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STM Stability and Duration
The attractors of these models can be identified. Possible hysteresis and/or jumps
between local minima can be explicitly calculated within the limitations of
studying a specific attractors.

Detailed calculations identify the inner valleys of the parabolic trough with stable
short-term-memory states having durations on the order of tenths of a second.

Stability is investigated by

δ Ṁ
G≈ − N2 L,GG′δ MG′ .

Therefore, minima of the static Lagrangian L are minima of the dynamic transient
system defined by L. The time of first passage is calculated as

tvp≈π N −2

|L,GG′(<< M >>p)| L,GG′(<< M >>v)



−1/2

× exp {CNτ [L(<< M >>p) − L(<< M >>v)]} .

For τ L∼10−2, the only values found for all three cases of firing, the time of first
passage tvp is found to be several tenths of second for jumps among most minima,
up to 9. There is hysteresis for deeper valleys at 10th-11th minima of LFBC′ at the
corners of the MG plane. The hysteresis occurs in about a few minutes, which is
too long to affect the 7 ± 2 rule. This result is exponentially sensitive to N in Φ/D,
and exponentially sensitive to (N * N )1/2 in FG , the ‘‘threshold factor.’’

Use is made in later development of EEG analyses of the discovered nature of the
line of stable minima lying in a deep parabolic trough, across a wide range of cases
of extreme types of firings.
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PATHINT Calculations of STM
PATHINT is an important partner to the ASA code. ASA has made it possible to
perform fits of complex nonlinear short-time probability distributions to EEG data.
PATHINT details the evolution of the attractors of these short-time distributions,
e.g., as studied in 1984.

Now, using ASA, the parameters of the fitted SMNI distribution can be used to
determine a distribution of firings in a short initial time epoch of EEG.

Then, PATHINT can be used to predict the evolution of the system, possibly to
predict oncoming states, e.g., epileptic seizures of patients baselined to a fitted
distribution.

Below is the evolution of model BC′ at 0.01 seconds = τ , after 100 foldings of the
path integral. In agreement with previous studies, models BC′ and BC′_VIS
support multiple stable states in the interior physical firing MG-space for time
scales of a few tenths of a second. Models EC′ and IC′ do not possess these
attributes.

PATHINT STM BC’ t=1

’BCP_001’
  0.0382
  0.0306
  0.0229
  0.0153
 0.00764
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0.025
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PATHINT Calculations of STM BC′_VIS

The interior of MG-space of model BC′_VIS is examined at 0.01 seconds = τ .

PATHINT STM BC’_VIS t=1

’BCP_VIS_001’
  0.0247
  0.0197
  0.0148
 0.00987
 0.00494

-150
-100

-50
0

50
100

150
-50

0

50

0

0.005

0.01

0.015

0.02

0.025

0.03

E
I

P

These high resolution calculations were published in 1995.
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Primacy Versus Recency Rule
SMNI also presents an explanation, or at least an upper statistical constraint, on the
primacy versus recency rule observed in serial processing.

First-learned items are recalled most error-free, and last-learned items are still
more error-free than those in the middle. I.e., the deepest minima are more likely
first accessed, while the more recent memories or newer patterns have synaptic
parameters most recently tuned or are more actively rehearsed.

Note that for visual cortex, presentation of 7±2 items would have memories
distributed among different clusters, and therefore the recency effect should not be
observed. Instead the 4±2 rule should dictate the number of presented items.
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40 Hz Models of STM
An alternate theory of STM, based on after-depolarization (ADP) at synaptic sites,
has been proposed.

Feature SMNI ADP

7 ± 2 Rule attractors of L 40 Hz subcycles

4 ± 2 Rule attractors of visual L ?

Primacy versus Recency statistics of attractors ?

Large-Scale Influences consistent with EEG ?

Duration local interactions neuromodulators

ADP proposes a “refresher” mechanism of 40 Hz to sustain memories for time
scales on the order of tenths of seconds within cycles of 5−12 Hz, even under the
influence of long-ranged regional firings and neuromodulators. SMNI PATHINT
calculations show a rapid deterioration of attractors in the absence of external
influences.

ADP and SMNI together forge a stronger theory of STM than either separately.
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ELECTROENCEPHALOGRAPHY (EEG)
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Local and Global EEG
The derived mesoscopic dispersion relations also are consistent with other global
macroscopic dispersion relations, described by long-range fibers interacting across
regions.

This SMNI model yields oscillatory solutions consistent with the alpha rhythm,
i.e., ω ≈ 102 sec−1, equivalent to ν = ω /(2π ) ≈ 16 Hz. This suggests that these
complementary local and global theories may be confluent, considered as a joint
set of dispersion relations evolving from the most likely trajectories of a joint
Lagrangian, referred to as the ‘‘equations of motion,’’ but linearly simplified in
neighborhoods of minima of the stationary Lagrangian.

These two approaches, i.e., local mesocolumnar versus global macrocolumnar, giv e
rise to important alternative conjectures:

(1) Is the EEG global resonance of primarily long-ranged cortical interactions? If
so, can relatively short-ranged local firing patterns effectively modulate this
frequency and its harmonics, to enhance their information processing across
macroscopic regions?

(2) Or, does global circuitry imply boundary conditions on collective mesoscopic
states of local firing patterns, and is the EEG a manifestation of these
collective local firings?

(3) Or, is the truth some combination of (1) and (2) above? For example, the
possibility of generating EEG rhythms from multiple mechanisms at multiple
scales of interactions, e.g., as discussed above, may account for weakly
damped oscillatory behavior in a variety of physiological conditions.

This theory has allowed the local and global approaches to complement each other
at a common level of formal analysis, i.e., yielding the same dispersion relations
derived from the ‘‘equations of motion,’’ analogous to
Σ(forces) = d(momentum)/dt describing mechanical systems.
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EEG Phenomena—Euler-Lagrange Approximation
The variational principle permits derivation of the Euler-Lagrange equations.
These equations are then linearized about a given local minima to investigate
oscillatory behavior. This calculation was first published in 1983.

Here, long ranged constraints in the form of Lagrange multipliers JG were used to
efficiently search for minima, corresponding to roots of the Euler-Lagrange
equations. This illustrates how macroscopic constraints can be imposed on the
mesoscopic and microscopic systems.

0 = δ̂ LF = LF , Ġ:t − δ̂G LF

≈ − f |G| M̈
|G| + f 1

G Ṁ
G¬

− g|G|∇
2 M |G| + b|G| M

|G| + b MG¬
,

G¬ ≠ G ,

MG = MG− << MG >> ,

MG = Re MG
osc exp[−i(ξ ⋅ r − ω t)] ,

MG
osc(r, t) = ∫ d2ξ dω M̂

G
osc(ξ , ω ) exp[i(ξ ⋅ r − ω t)] ,

ωτ = ±{ − 1. 86 + 2. 38(ξ ρ)2; −1. 25i + 1. 51i(ξ ρ)2} , ξ = |ξ | .

It is calculated that

ω ∼102 sec−1 ,

which is equivalent to

ν = ω /(2π ) 16 cps (Hz) .

This is approximately within the experimentally observed ranges of the alpha and
beta frequencies.
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E-L Propagation of Information
The propagation velocity v is calculated from

v = dω /dξ ≈1 cm/sec , ξ ∼30ρ ,

which tests the NN interactions, the weakest part of this theory.

Thus, within 10−1 sec, short-ranged interactions over sev eral minicolumns of 10−1

cm may simultaneously interact with long-ranged interactions over tens of cm,
since the long-ranged interactions are speeded by myelinated fibers and have
velocities of 600−900 cm/sec. In other words, interaction among different
neocortical modalities, e.g., visual, auditory, etc., may simultaneously interact
within the same time scales, as observed.

This propagation velocity is consistent with the observed movement of attention
and with the observed movement of hallucinations across the visual field which
moves at ∼1/2 mm/sec, about 5 times as slow as v. (I.e., the observed movement is
∼ 8 msec/°, and a macrocolumn ∼ mm processes 180° of visual field.)
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Macroscopic Linearization Aids Probability Development
The fitting of the full SMNI probability distribution to EEG data was published in
1991.

Previous STM studies have detailed that the predominant physics of short-term
memory and of (short-fiber contribution) to EEG phenomena takes place in a
narrow ‘‘parabolic trough’’ in MG-space, roughly along a diagonal line. I.e., τ LM

can vary by as much as 105 from the highest peak to the lowest valley in
MG-space. Therefore, it is reasonable to assume that a single independent firing
variable might offer a crude description of this physics. Furthermore, the scalp
potential Φ can be considered to be a function of this firing variable.

In an abbreviated notation subscripting the time-dependence,

Φt− << Φ >>= Φ(M E
t , M I

t ) ≈ a(M E
t − << M E >>) + b(M I

t − << M I >>) ,

where a and b are constants of the same sign, and << Φ >> and << MG >> represent
a minima in the trough.

Laplacian techniques help to better localize sources of activity, and thereby present
data more suitable for modeling. E.g., then Φ is more directly related to columnar
firings, instead of representing the electric potential produced by such activity.

This determines an SMNI approach to study EEG under conditions of selective
attention.
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EEG Macrocolumnar Lagrangian
Again, aggregation is performed,

PΦ[Φt+∆t |Φt] = ∫ d M E
t+∆t dM I

t+∆t dM E
t dM I

t PM [M E
t+∆t , M I

t+∆t |M
E
t , M I

t ]

δ [Φt+∆t − Φ(M E
t+∆t , M I

t+∆t)]δ [Φt − Φ(M E
t , M I

t )] .

Under conditions of selective attention, within the parabolic trough along a line in
MG space, the parabolic shapes of the multiple minima, ascertained by the stability
analysis, justifies a form

PΦ = (2π σ 2dt)−1/2 exp[−(dt/2σ 2) ∫ dxLΦ] ,

LΦ =
1

2
|∂Φ/∂t |2 −

1

2
c2|∂Φ/∂x|2 −

1

2
ω 2

0 |Φ|2 − F(Φ) ,

where F(Φ) contains nonlinearities away from the trough, and where σ 2 is on the
order of N , giv en the derivation of LM above.
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EEG Variational Equation
Previous calculations of EEG phenomena showed that the (short-fiber contribution
to the) alpha frequency and the movement of attention across the visual field are
consistent with the assumption that the EEG physics is derived from an average
over the fluctuations σ of the system. I.e., this is described by the Euler-Lagrange
equations derived from the variational principle possessed by LΦ, more properly by
the ‘‘midpoint-discretized’’ LΦ, with its Riemannian terms. Hence,

0 =
∂
∂t

∂LΦ

∂(∂Φ/∂t)
+

∂
∂x

∂LΦ

∂(∂Φ/∂x)
−

∂LΦ

∂Φ
.

When expressed in the firing state variables, this leads to the same results
published in 1983.

The result for the Φ equation is:

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ ω 2
0Φ +

∂F

∂Φ
= 0 .

If the identification

∂F

∂Φ
= Φ f (Φ) ,

is made, then

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ [ω 2
0 + f (Φ)]Φ = 0 ,

is recovered, i.e., the dipole-like string equation.

The previous application of the variational principle was at the scale of
minicolumns and, with the aid of nearest-neighbor interactions, the spatial-
temporal Euler-Lagrange equation gav e rise to dispersion relations consistent with
STM experimental observations.

Here, the scale of interactions is at the macrocolumnar level, and spatial
interactions must be developed taking into account specific regional circuitries.
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Macroscopic Coarse-Graining
Now the issue posed previously, how to mathematically justify the intuitive coarse-
graining of Φ to get Φ†, can be approached.

In LΦ above, consider terms of the form

∫ Φ2dx = ∫ dx
∞

n
Σ

∞

m
Σ GnGm sin kn x sin km x

=
n
Σ

m
Σ GnGm ∫ dx sin kn x sin km x

= (2π /R)
n
Σ G2

n .

By similarly considering all terms in LΦ, a short-time probability distribution for
the change in node n is defined,

pn[Gn(t + ∆t)|Gn(t)] .

Note that in general the F(Φ) term in LΦ will require coupling between Gn and
Gm, n ≠ m. This defines

PΦ = p1 p2
. . . p∞ .

Now a coarse-graining can be defined that satisfies some physical and
mathematical rigor:

PΦ† = ∫ dkM+1dkM+2
. . . dk∞ p1 p2

. . . pM pM+1 pM+2
. . . p∞ .

I.e., since SMNI is developed in terms of bona fide probability distributions,
variables which are not observed can be integrated out.

The integration over the fine-grained wav e-numbers tends to smooth out the
influence of the kn’s for n > M , effectively ‘‘renormalizing’’

Gn → G†
n ,

Φ → Φ† ,

LΦ → L†
Φ .

This development shows how this probability approach to EEG specifically
addresses experimental issues at the scale of the more phenomenological dipole
model.
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Development of Macrocolumnar EEG Distribution
Advantage can be taken of the prepoint discretization, where the postpoint
MG(t + ∆t) moments are given by

m ≡< Φν − φ >= a < M E > +b < M I >= agE + bgI ,

σ 2 ≡< (Φν − φ )2 > − < Φν − φ >2= a2gEE + b2gII .

Note that the macroscopic drifts and diffusions of the Φ’s are simply linearly
related to the mesoscopic drifts and diffusions of the MG’s. For the prepoint
MG(t) firings, the same linear relationship in terms of { φ , a, b } is assumed.

The data being fit are consistent with invoking the “centering” mechanism.
Therefore, for the prepoint M E (t) firings, the nature of the parabolic trough derived
for the STM Lagrangian is taken advantage of, and

M I (t) = cM E (t) ,

where the slope c is determined for each electrode site. This permits a complete
transformation from MG variables to Φ variables.

Similarly, as appearing in the modified threshold factor FG , each regional influence
from electrode site µ acting at electrode site ν , giv en by afferent firings M ‡E , is
taken as

M ‡E
µ→ν = dν M E

µ (t − Tµ→ν ) ,

where dν are constants to be fitted at each electrode site, and Tµ→ν is the delay
time estimated for inter-electrode signal propagation, typically on the order of one
to several multiples of τ = 5 msec. In future fits, some experimentation will be
performed, taking the T ’s as parameters.

This defines the conditional probability distribution for the measured scalp
potential Φν ,

Pν [Φν (t + ∆t)|Φν (t)] =
1

(2π σ 2∆t)1/2
exp(−Lν ∆t) ,

Lν =
1

2σ 2
( Φ̇ν − m)2 .

The probability distribution for all electrodes is taken to be the product of all these
distributions:

P =
ν
Π Pν ,

L =
ν
Σ Lν .
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Development of EEG Dipole Distribution

The model SMNI, derived for P[MG(t + ∆t)|MG(t)], is for a macrocolumnar-
av eraged minicolumn; hence it is expected to be a reasonable approximation to
represent a macrocolumn, scaled to its contribution to Φν . Hence L is used to
represent this macroscopic regional Lagrangian, scaled from its mesoscopic
mesocolumnar counterpart L.

However, the expression for Pν uses the dipole assumption to also use this
expression to represent several to many macrocolumns present in a region under an
electrode: A macrocolumn has a spatial extent of about a millimeter. Often most
data represents a resolution more on the order of up to several centimeters, many
macrocolumns.

A scaling is tentatively assumed, to use the expression for the macrocolumnar
distribution for the electrode distribution, and see if the fits are consistent with this
scaling. One argument in favor of this procedure is that it is generally
acknowledged that only a small fraction of firings, those that fire coherently, are
responsible for the observed activity being recorded.

The results obtained here seem to confirm that this approximation is in fact quite
reasonable.
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Key Indicators of EEG Correlates to Brain States
The SMNI probability distribution can be used directly to model EEG data, instead
of using just the variational equations. Some important features not previously
considered in this field that were used the 1991 were:

• Intra-Electrode Coherency is determined by the standard deviations of
excitatory and inhibitory firings under a given electrode as calculated using
SMNI. Once the SMNI parameters are fit, then these firings are calculated as
transformations on the EEG data, as described in terms of the SMNI derived
probability distributions. This is primarily a measure of coherent columnar
activity.

• Inter-Electrode Circuitry is determined by the fraction of available long-
ranged fibers under one electrode which actively contribute to activity under
another electrode, within the resolution of time given in the data (which is
typically greater than or equal to the relative refractory time of most neurons,
about 5−10 msec). This is primarily a measure of inter-regional
activity/circuitry. Realistic delays can be modeled and fit to data.

The electrical potential of each electrode, labeled by G, is represented by its
dipole-like nature, MG(t), which is influenced by its underlying columnar activity
as well as its interactions with other electrodes, MG′, G ≠ G′. This can be
expressed as:

Ṁ
G = gG + ĝG

i η i ,

gG = −τ −1(MG + N G tanh FG) ,

ĝG
i = (N G /τ )1/2sechFG ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N ‡E′ +

1

2
A‡E

E′ M ‡E′))) 1/2
.

The equivalent Lagrangian is used for the actual fits.
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Pilot Study—EEG Correlates to Behavioral States
In a 1991 paper, sets of EEG data were obtained from subjects while they were
reacting to pattern-matching “odd-ball”-type tasks requiring varying states of
selective attention taxing their short-term memory. Based on psychiatric and
family-history evaluations, 49 subjects were classified into two groups, 25 possibly
having high-risk and 24 possibly having low-risk genetic propensities to
alcoholism.

Although MG were permitted to roam throughout their physical ranges of
±N E = ±80 and ±N I = ±30 (in the nonvisual neocortex, true for all these regions),
their observed effective regional-averaged firing states were observed to obey the
centering mechanism. I.e., this numerical result is consistent with the assumption
that the most likely firing states are centered about the region MG ≈ 0 ≈ M∗E in
FG .

Fitted parameters were used to calculate equivalent columnar firing states and time
delays between regions. No statistical differences were observed between the total
group, the high-risk group, and the low-risk group.
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Lessons Learned
The previous study used data collected under the assumptions that:
• there is a genetic predisposition to alcoholism, and
• that this predisposition could be correlated to EEG activity.

These assumptions were negated by the SMNI study: E.g., there were no statistical
differences in intra-electrode coherencies or in inter-electrode circuitry, or in any
other parameter, between the two groups. Especially in light of other studies, it
seems that if such a predisposition exists, it is a multifactorial issue that requires a
very large subject population to resolve the many parameters, more than was
available for this EEG study.

A later 1997 study including more details of stochastic distributions had more
success.
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CANONICAL MOMENTA INDICATORS (CMI) — EEG



Statistical Mechanics of Neocortical Interactions Lester Ingber

Canonical Momenta Indicators (CMI)
Some 1996 papers illustrated how canonical momenta derived from fitted nonlinear
stochastic processes, using ASA to fit models to S&P 500 data, can be useful
indicators of nonequilibrium behavior of financial markets.

“Momentum” = ΠG =
∂L

∂(∂MG /∂t )

Tr aining Phase

These techniques are quite generic, and can be applied to the SMNI model. In a
1997 paper, a giv en SMNI model is fit to EEG data, e.g., as performed in 1991.
This develops a zeroth order guess for SMNI parameters for a given subject’s
training data. Next, ASA is used recursively to seek parameterized predictor rules,
e.g., modeled according to guidelines used by clinicians. The parameterized
predictor rules form an outer ASA shell, while regularly fine-tuning the SMNI
inner-shell parameters within a moving window (one of the outer-shell
parameters). The outer-shell cost function is defined as some measure of
successful predictions of upcoming EEG events.

Testing Phase

In the testing phase, the outer-shell parameters fit in the training phase are used in
out-of-sample data. Again, the process of regularly fine-tuning the inner-shell of
SMNI parameters is used in this phase.

Utility

These momenta indicators should be considered as supplemental to other clinical
indicators. This is how they are being used in financial trading systems. In the
context of other invariant measures, the CMI transform covariantly under
Riemannian transformations, but are more sensitive measures of neocortical
activity than other invariants such as the energy density, effectively the square of
the CMI, or the information which also effectively is in terms of the square of the
CMI (essentially integrals over quantities proportional to the energy times a factor
of an exponential including the energy as an argument). Neither the energy or the
information give details of the components as do the CMI. EEG is measuring a
quite oscillatory system and the relative signs of such activity are quite important.
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SMNI CMI of Genetic Predisposition to Alcoholism
Each set of results is presented with 6 figures, labeled as [{alcoholic|control},
{stimulus 1|match|no-match}, subject, {potential|momenta}], abbreviated to
{a|c}_{1|m|n}_subject.{pot|mom} where match or no-match was performed for
stimulus 2 after 3.2 sec of a presentation of stimulus 1. Data includes 10 trials of
69 epochs each between 150 and 400 msec after presentation. For each subjects
run, after fitting 28 parameters with ASA, epoch by epoch averages are developed
of the raw data and of the multivariate SMNI canonical momenta. There are fits
and CMI calculations using data sets from 10 control and 10 alcoholic subjects for
each of the 3 paradigms. For some subjects there also are out-of-sample CMI
calculations. All stimuli were presented for 300 msec. Note that the subject
number also includes the {alcoholic|control} tag, but this tag was added just to aid
sorting of files (as there are contribution from co2 and co3 subjects). Each figure
contains graphs superimposed for 6 electrode sites (out of 64 in the data) which
have been modeled by SMNI using the circuitry:

Site Contributions From Time Delays (3.906 msec)
F3
F4
T7 F3 1
T7 T8 1
T8 F4 1
T8 T7 1
P7 T7 1
P7 P8 1
P7 F3 2
P8 T8 1
P8 P7 1
P8 F4 2

The SMNI CMI give more signal to noise presentation than the raw data,
especially for the significant matching tasks between the control and the alcoholic
groups. The CMI can be processed further as is the raw data, and also used to
calculate “energy” and “information/entropy” densities.
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Data vs SMNI CMI for Alcoholic Group — S2 Match
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Data vs SMNI CMI for Control Group — S2 Match
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CHAOS IN EEG?
What if EEG has chaotic mechanisms that overshadow the above stochastic
considerations? The real issue is whether the scatter in data can be distinguished
between being due to noise or chaos.

The SMNI-derived probability distributions can be used to help determine if chaos
is a viable mechanism in EEG. The probability distribution itself is a mathematical
measure to which tests can be applied to determine the existence of other nonlinear
mechanisms.

The path integral has been used to compare long-time correlations in data to
predictions of models, while calculating their sensitivity, e.g., of second moments,
to initial conditions. This also helps to compare alternative models, previously
having their short-time probability distributions fit to data, with respect to their
predictive power over long time scales.

Similar to serious work undertaken in several fields, the impulse to identify
‘‘chaos’’ in a complex system often has been premature. It is not supported by the
facts, tentative as they are because of sparse data. Similar caution should be
exercised regarding neocortical interactions.
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Duffing EEG Analog — Chaos in Noise
A study of chaos in a model of EEG was cast into a Duffing analog.

ẍ = f (x, t) ,

f = −α ẋ − ω 2
0 x + B cos t .

This can be recast as

ẋ = y ,

ẏ = f (x, t) ,

f = −α y − ω 2
0 x + B cos t .

Note that this is equivalent to a 3-dimensional autonomous set of equations, e.g.,
replacing cos t by cos z, defining ż = β , and taking β to be some constant.

We studied a model embedding this deterministic Duffing system in moderate
noise, e.g., as exists in such models as SMNI. Independent Gaussian-Markovian
(“white”) noise is added to both ẋ and ẏ, η j

i , where the variables are represented by
i = {x, y} and the noise terms are represented by j = {1, 2},

ẋ = y + ĝ1
xη1 ,

ẏ = f (x, t) + ĝ2
yη2 ,

< η j(t) >η= 0 ,

< η j(t), η j′(t′) >η= δ jj′δ (t − t′) .

In this study, we take moderate noise and simply set ĝ j
i = 1. 0δ j

i .

The equivalent short-time conditional probability distribution P, in terms of its
Lagrangian L, corresponding to these Langevin rate-equations is

P[x, y; t + ∆t |x, y, t] =
1

(2π ∆t)( ̂ g11 ĝ22)2
exp(−L∆t) ,

L =
( ẋ − y)2

2( ̂ g11)2
+

( ẏ − f )2

2( ̂ g22)2
.
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Duffing EEG Analog — Preliminary Indications
No differences were seen in the stochastic system, comparing regions of Duffing
parameters that give rise to chaotic and non-chaotic solutions. More calculations
must be performed for longer durations to draw more definitive conclusions.

Path Integral Evolution of Non-Chaotic Stochastic Duffing Oscillator

’t=15’
 0.00423
 0.00339
 0.00254
 0.00169

0.000847

-25 -20 -15 -10 -5 0 5 10 15 20 -25
-20

-15
-10

-5
0

5
10

15
20

0

0.001

0.002

0.003

0.004

0.005

0.006

X ->

Y ->

P

Path Integral Evolution of Chaotic Stochastic Duffing Oscillator

’t=15’
 0.00425
  0.0034

 0.00255
  0.0017

 0.00085

-25 -20 -15 -10 -5 0 5 10 15 20 -25
-20

-15
-10

-5
0

5
10

15
20

0

0.001

0.002

0.003

0.004

0.005

0.006

X ->

Y ->

P



Statistical Mechanics of Neocortical Interactions Lester Ingber

SMNI CORRELATES OF REACTION TIMES
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Hick’s Law
SMNI has given detailed descriptions of short-term memory (STM) phenomena
and some aspects of evoked potential EEG.

A natural extension of these applications is to examine the relationship between
STM and reaction time (RT). Hick’s Law (observation) states

RT ∝n ln n

where n is the number of items present in STM.

Given the audit trail back to averaged neuronal variables and that SMNI affords a
unified description of STM, EEG and RT, there is motivation to pursue RT as a
non-invasive diagnostic tool.
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Time of First Passage Estimate of RT
The RT necessary to “visit” the states under control during the span of STM can be
calculated as the mean time of “first passage” between multiple states of this
distribution, in terms of the probability P as an outer integral ∫ dt (sum) over
refraction times of synaptic interactions during STM time t, and an inner integral

∫ dM (sum) taken over the mesocolumnar firing states M ,

RT = R − ∫ dt t ∫ dM
dP

dt
,

where R is the time for preprocessing stimuli, on the order of tenths of a second.

Within tenths of a second, the conditional probability of visiting one state from
another P, can be well approximated by a short-time probability distribution
expressed in terms of the Lagrangian L as

P =
1

√ 2π dtg
exp(−Ldt) ,

where g is the determinant of the covariance matrix of the distribution P in the
space of columnar firings.
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Calculation of Hick’s Law
This expression for RT can be approximately rewritten as

RT ≈ R + K ∫ dt ∫ dM P ln P ,

where K is a constant when the Lagrangian is approximately constant over the time
scales observed. Since the peaks of the most likely M states of P are to a very
good approximation well-separated Gaussian peaks, these states by be treated as
independent entities under the integral. This last expression is essentially the
“information” content weighted by the time during which processing of
information is observed. The calculation of the heights of peaks corresponding to
most likely states includes the combinatoric factors of their possible columnar
manifestations as well as the dynamics of synaptic and columnar interactions. In
the approximation that we only consider the combinatorics of items of STM as
contributing to most likely states measured by P, i.e., that P measures the
frequency of occurrences of all possible combinations of these items, we obtain
Hick’s Law, the observed linear relationship of RT versus STM information
storage.

For example, when the bits of information are measured by the probability P being
the frequency of accessing a given number of items in STM, the bits of information
in 2, 4 and 8 states are given as approximately multiples of ln 2 of items, i.e., ln 2,
2 ln 2  and 3 ln 2, resp. (The limit of taking the logarithm of all combinations of
independent items yields a constant times the sum over pi ln pi , where pi is the
frequency of occurrence of item i.)
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SMNI FEATURES
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Increasing Signal to Noise/Audit Trail to Sources
Logical and Testable Development Across Multiple Scales

SMNI is a logical, nonlinear, stochastic development of aggregating neuronal and
synaptic interactions to larger and larger scales. Paradigms and metaphors from
other disciplines do not substitute for logical SMNI development.

Validity Across Multiple Scales

The SMNI theoretical model has independent validity in describing EEG
dispersion relations, systematics of short-term memory, velocities of propagation
of information across neocortical fields, recency versus primacy effects, etc. Fits
of such models to data should do better in extracting signal from noise than ad hoc
phenomenological models.

Use of ASA and PATHINT on Nonlinear Stochastic Systems

ASA enables the fitting of quite arbitrary nonlinear stochastic models to such data
as presented by EEG systems. Once fitted, PATHINT, or a newer algorithm
PATHTREE, can evolve the system, testing long-time correlations between the
model(s) and the data, as well as serving to predict events.

Inclusion of Short-Range and Long-Range Interactions

SMNI proposes that models to be fitted to data include models of activity under
each electrode, e.g., due to short-ranged neuronal fibers, as well as models of
activity across electrodes, e.g., due to long-ranged fibers.

Riemannian Invariants

Yet to explore are the ramifications of using the derived (not hypothesized)
Riemannian metric induced by multivariate Fokker-Plank-type systems. This
seems to form a natural invariant measure of information, that could/should be
used to explore flows of information between neocortical regions.

Renormalization of Attenuated Frequencies

The SMNI approach shows how to “renormalize” the spatial activity to get a model
that more closely matches the experimental situation, wherein there is attenuation
of ranges of wav e numbers.

MNN Real-Time Processing and Audit Trail to Finer Scales

The MNN parallel algorithm may offer real-time processing of nonlinear modeling
and fitting of EEG data for clinical use. Regional EEG data can be interpreted as
mechanisms occurring at the minicolumnar scales.

Recursive ASA Optimization of Momenta Indicators + Clinical Rules

Similar to codes developed for financial systems, recursive ASA optimizations of
inner-shell SMNI indicators and outer-shell clinical guides should improve
predictions of and decisions on clinical observations.


