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ABSTRACT
A lot of what we consider Consciousness (C) is conscious attention to short-term memo-
ries (STM). At least some STM are actively processed by highly synchronized patterns of
neuronal firings, with enough synchrony to be able to be easily measured by scalp electroen-
cephalographic recordings (EEG). Large-scale synchronous macrocolumnar EEG firings is
a top-down process developed by a statistical mechanics of neocortical interactions (SMNI),
depending on the associated magnetic vector potential A. Molecular-scale Ca2+ waves are
the affected bottom-up process that influence neuronal firings, depending on the wave mo-
mentum p. A directly influences p via the canonical momentum Π = p + qA (SI units),
where the charge of Ca2+ is q = −2e, e is the magnitude of the charge of an electron.
Calculations in both classical and quantum mechanics approaches are consistent with this
effect, and each approach yields independent testable consequences. This approach also
suggests some nanosystem-pharmaceutical applications. Results (with details given in Ap-
pendix A) give strong confirmation of the SMNI model of STM, but only weak statistical
consistency of Π = p + qA influences on scalp EEG.

1. INTRODUCTION

1.1. “Mind over matter”

“Mind Over Matter” is a stretch, but not an inaccurate, context for this project. The logic of
this metaphor is based in calculations on specific processes that have specific experimental
confirmation, and that have been demonstrated to have support for viable models to support
this study. While results presented here show only that these processes are statistically con-
sistent with current experimental and theoretical evidence, the importance of this study is to
at least demonstrate ingredients of analysis that can be considered reasonable to approach
this subject.

(1) A lot of what we consider “mind” or “Consciousness” (C) is conscious attention to
short-term memories (STM), which can develop by (a) external stimuli directly, (b) internal
long-term storage, (c) new ideas/memories developed in abstract regions of the brain, etc.

(2) It is now accepted by some neuroscientists and confirmed by some experiments
(Asher, 2012; Salazar et al., 2012), that at least some such memories in (1) are actively
processed by highly synchronized patterns of neuronal firings, with enough synchrony to
be able to be easily measured by scalp electroencephalographic recordings (EEG) during
activity of processing such patterns, e.g., P300 waves, etc. These minicolumnar currents
giving rise to measurable EEG also give rise to magnetic vector potentials A, for brevity
commonly referred to as vector potentials. The A fields have a logarithmic range insensi-
tivity and are additive over larger distances than electric E or magnetic B fields.

Only for brevity, unless otherwise stated, dependent on the context, “EEG” will refer to
either the measurement of synchronous firings large enough to measurable on the scalp, or
to the firings themselves.

(3) Previous papers (Ingber, 2011, 2012a; Ingber et al., 2014) calculate the influence of
such synchronous EEG at molecular scales of Ca2+ ionic waves, a process which is present
in the brain as well as in other organs, but particularly as astrocyte influences at synaptic
gaps, thereby affecting background synaptic activity, which in turn can be synchronized
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2 Lester Ingber

by other processes to give rise to the large-scale activity discussed in (1). The Ca2+ wave
have a duration of momentum p which is observed to be rather large, on the order of STM
duration.

(4) These papers connect the influence of (1) over (3) directly via a specific interaction,
p + qA, where q for a Ca2+ ion = −2e, where e is the magnitude of the charge of an
electron. The p + qA interaction is well established in both classical and quantum physics.

The direct p+qA influence of (1) over (3) can reasonably be discussed as a “mind over
matter” process. E.g., just thinking about thinking can give rise to this effect.

These SMNI models (Ingber, 1982, 1983) assume that STM responses to internal or
external stimuli evoke such background-noise control to maintain maximal numbers of in-
formation states as calculated and detailed in multiple previous papers (Ingber, 1984, 1985,
1994).

1.2. Scope of research

This work is not designed to be a review of research in C. Certainly C is an important com-
ponent of many disciplines, not just Science. However, within the realm of Science, there
still is a quite unscientific immediate negative reaction from many people focussed within
their particular disciplines, ranging from neuroscience to physics, to exclude the study, even
mention, of C from their own disciplines and journals. Within the realm of Science, there
are other projects that also examine specific microscopic and quantum processes that may
influence C (Clark, 2014; Hameroff & Penrose, 2013; Kouider, 2009; McFadden, 2007;
Nunez & Srinivasan, 2006a; Pereira & Furlan, 2009; Quiroga et al., 2013; Stiefel et al.,
2014), as well as neural correlates of reasonable models of C (Nacia et al., 2014; Nunez &
Srinivasan, 2010), but this work is focussed on a particular p + qA mechanism.

However, by necessity, this project requires interdisciplinary contributions from neuro-
science, physics, biomedical engineering, optimization, and similar disciplines. This work
addresses the importance of considering topics usually focussed within physics, e.g., the
vector potential A (Jackson, 1962), and of a specific interaction between Ca2+ ions and
A developed by highly synchronous neocortical EEG. The necessity of addressing multi-
ple scales of neuroscience has required a mathematical physics of multivariate nonlinear
nonequilibrium statistical mechanics to develop aggregation of these scales (Ingber, 1982,
1983). The algebra presented by this development and the stochastic nature of EEG data
has required the development of sophisticated importance-sampling algorithms like Adap-
tive Simulated Annealing (ASA) (Ingber, 1989, 1993), and other algorithms like PATHINT
(Ingber, 1994, 2000; Ingber & Nunez, 1995) to evolve the fitted probability distributions.

1.3. C and Dark C

It would be simply hubris to assume that we are even on the verge of knowing everything
about our physical and human existence, including C. Indeed, similar to current concepts
of “Dark Energy” and “Dark Matter”, it is possible there are aspects of C that we may only
be able to infer existence or possibly prove we cannot know. These latter possibilities can
be considered as belonging to a “Dark C” (DC) category, and DC should be researched
as well as C. However, here we are definitely examining C within the realm of Science,
looking for viable experimental data and viable theoretical understandings of such data.
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Calculating consciousness correlates 3

1.4. SMNI multiple-scale context of calcium waves

Although the importance of multiple scales in many physical and biological systems has
been discussed (Anastassiou et al., 2011; de Lima et al., 2015; Nunez et al., 2013), there
are not yet any experiments detailing top-down processes driving bottom-up processes such
as memory, attention, etc. For example, this is not the same as demonstrating that neu-
romodulator (Silberstein, 1995) and neuronal firing states, modify individual synaptic and
neuronal activity that can give rise to large-scale synchronous firings.

This study crosses molecular (Ca2+ ions), microscopic (synaptic and neuronal), meso-
scopic (minicolumns and macrocolumns), and macroscopic (regional scalp EEG) scales.

A statistical mechanics of neocortical interactions (SMNI) of columnar firing states has
been developed in a series of 30+ papers. SMNI has calculated properties of STM — e.g.,
capacity (auditory 7 ± 2 and visual 4 ± 2), duration, stability , primacy versus recency
rule, Hick’s law — and other properties of neocortex by scaling up to macrocolumns across
regions to fit EEG data (Ingber, 1982, 1983, 1984, 1985, 1994, 1997a, 2012a). Large EEG
databases have been used to test scaled SMNI at relatively large regional scales.

Experiments verify that coherent columnar firings contain information/memory (Liebe
et al., 2012; Salazar et al., 2012). This is independent of other candidate neural processes
that code information via synchronous firings (Kumar et al., 2010; Stanley, 2013) other
candidate processes among neurons and astrocytes (Banaclocha & Banaclocha, 2010), in-
cluding ephaptic coupling of cortical neurons (Quiroga et al., 2013) and other electromag-
netic interactions that contribute to the extracellular medium (Buzsaki et al., 2012). It is
now generally accepted that long-term memories are not only stored in individual neurons,
but also in groups of neurons and macrocolumns (Quiroga et al., 2013)

The neocortical electric current is taken directly from experimental data, not theoretical
calculations. Thus, they include much of the contribution from these other sources. SMNI
recently has included the influence of macrocolumnar EEG fields on the momentum of
Ca2+ ions (Ingber, 2011, 2012a; Ingber et al., 2014).

Ca2+ is generally considered to influence synaptic interactions, e.g., in modulating ex-
citatory glutamic acid (Zorumski et al., 1996), albeit not always in neocortical interactions
(Adam-Vizi, 1992). Ca2+ waves may influence tripartite synaptic interactions of astrocytes
and neuronal synapses, in neocortex (Agulhon et al., 2008; Araque & Navarrete, 2010;
Ross, 2012) and hippocampus (Kuga et al., 2011), although this has been disputed in some
contexts (Sun et al., 2013). “Glissandi”, another tern for Ca2+ waves, influences cerebral
blood flow (Kuga et al., 2011). Various studies examine glial cells as they affect neural
information processing (Han et al., 2013; Lee et al., 2014).

Astrocytes are considered to influence glutamate (the main excitatory neurotransmitter
in neocortex) production across synaptic gaps, by taking in some glutamate released by
presynaptic neurons and converting it back into glutamate via conversion into glutamine
which can enter presynaptic neurons where it can be converted into glutamine via inter-
action with glutaminase. In the context of SMNI calculations here, GABA (the main in-
hibitory neurotransmitter in neocortex) can be produced by inhibitory neurons by also uti-
lizing glutamic acid (which when stripped of a hydrogen atom is glutamate) from astrocytes
(Patel et al., 2001; Walls et al., 2014).

The Ca2+ waves considered specifically belong to a class arising from nonlinear co-
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operative regenerative processes from internal stores, complementary to Ca2+ released
through classic endoplasmic reticulum channels and voltage-gated and ligand-gated Ca2+

transients. This class includes Ca2+ released from an inositol triphosphate receptor (IP3R),
requiring the presence of IP3, acts on the same or other IP3R to release more Ca2+ while
IP3 is still present. This requires or affects additional processes, e.g., as metabotropic glu-
tamate receptors (mGluR), muscarinic acetycholine receptors (mAChR) (Ross, 2012). A
fire-diffuse-fire model is often used to describe these waves (Coombes et al., 2004; Dawson
et al., 1999; Keener, 2006).

Columnar EEG firings develop electromagnetic fields as described by a magnetic vector
potential, referred to here as the SMNI vector potential (SMNI-VP). Early discussions of
SMNI-VP were suggested, including the “Smoking Gun” that implicates top-down inter-
actions at molecular scales (Ingber, 2011, 2012a). A previous paper outlined the approach
taken here in a classical physics context (Ingber, 2012b). Other papers have described de-
tailed interactions of SMNI-VP firing states with Ca2+ waves, in both classical (Ingber,
2011, 2012a) and quantum contexts (Ingber et al., 2014).

1.5. Review and new results

The next Section give a short review of classical and quantum considerations relevant to this
project. Note that considering both classical and quantum physics approaches demonstrates
that each approach yields independent testable consequences. The Section following that
gives a short review of the explicit inclusion of these considerations into the SMNI model,
i.e., SMNI-VP interactions with calcium waves. Much of these following two Sections
paraphrase content written by the author in a previous paper (Ingber et al., 2014), with
additional references and discussion, which is considered relevant to developing the new
context of C here.

The two Sections following these reviews, supported by details in Appendix A, give
the methodology used for these calculations, and new results from ongoing studies. Fits to
EEG data give further strong support to SMNI detailing STM. The fits are not as conclusive
for the importance of the particular A model chosen for this study.

Appendix B gives motivation for studies to pursue STM feedback via nanosystem phar-
maceutical intervention.

The final Section is the conclusion.

2. CLASSICAL AND QUANTUM CONSIDERATIONS

In classical physics, the action, which is the Lagrangian L multiplied by a time epoch ∆t,
defines a short-time conditional probability distribution P over a vector of variables x and
time t,

P [x(t)|x(t−∆t)] = N̄ exp(−L∆t) (1)

where N̄ is a normalization prefactor that may depend on time as well as the independent
variables. P evolves in time as calculated by the path integral over all variables at all in-
termediate times. In quantum physics, the Lagrangian or Hamiltonian similarly generates
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Calculating consciousness correlates 5

the evolution of the wave function ψ whose absolute square is a probability distribution.
There are equivalent Fokker-Planck partial and Langevin stochastic differential representa-
tions, but the Lagrangian formulation offers intuitive, algebraic and numerical advantages.
This includes an associated variational principle, deriving Canonical Momenta and Euler-
Lagrange equations. Powerful numerical algorithms are generally required to fit these alge-
braic models to data, such ASA (Ingber, 1989, 1993, 2012c), and to numerically calculate
numerical the propagating probability distributions, such as Monte Carlo methods or us-
ing PATHINT (Ingber, 1994, 2000; Ingber & Nunez, 1995) and PATHTREE (Ingber et al.,
2001).

2.1. Canonical momentum

The canonical momentum, Π, describes the dynamics of a moving particle with momentum
p in an electromagnetic field (Feynman, 1961; Feynman et al., 1964; Goldstein, 1980;
Semon & Taylor, 1996). In SI units,

Π = p + qA (2)

where q = −2e for Ca2+, e is the magnitude of the charge of an electron = 1.6× 10−19 C
(Coulomb), and A is the electromagnetic vector potential. (In Gaussian units Π = p +
qA/c, where c is the speed of light.) A represents three components of a 4-vector (Jackson,
1962; Semon & Taylor, 1996).

Π is used here in both quantum and classical calculations (Tollaksen et al., 2010).

2.2. Vector potential of wire

A columnar firing state is modeled as a wire/neuron with current I measured in A = Am-
peres = C/s,

A(t) =
µ

4π

∫
dr

r
I (3)

along a length z observed from a perpendicular distance r from a line of thickness r0. If
far-field retardation effects are neglected, this yields (Jackson, 1962)

A =
µ

4π
I log

(
r

r0

)
(4)

Note the insensitive log dependence on distance; this log factor is taken to be of order 1. The
oscillatory time dependence of A(t) derived from I(t) is likely influential in the dynamics
of Ca2+ waves.

The contribution to A includes many minicolumnar lines of current from 100’s to
1000’s of macrocolumns, within a region not large enough to include many convolutions,
but contributing to large synchronous bursts of EEG (Srinivasan et al., 2007). E and B,
derivatives of A with respect to r, do not possess this logarithmic insensitivity to distance,
and therefore they do not linearly accumulate strength within and across macrocolumns.

Reasonable estimates of contributions from synchronous contributions to P300 mea-
sured on the scalp give tens of thousands of macrocolumns on the order of a 100 to 100’s of
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cm2, while electric fields generated from a minicolumn may fall by half within 5-10 mm,
the range of several macrocolumns.

2.3. Effects of vector potential on momenta

The momentum p (Ingber, 2011, 2012a; Ingber et al., 2014) for a Ca2+ ion with mass
m = 6.6 × 10−26 kg, speed on the order of 50 µm/s (Bellinger, 2005) to 100 µm/s (Kuga
et al., 2011; Ross, 2012), is on the order of 10−30 kg-m/s. Molar concentrations of Ca2+

waves, comprised of tens of thousands of free ions representing about 1% of a released
set, most being buffered (Reyes & Parpura, 2009), are within a range of about 100 µm to
as much as 250 µm (Bowser & Khakh, 2007), with a duration of more than 500 ms, and
concentrations [Ca2+] ranging from 0.1-5 µM (µM = 10−3 mol/m3) (Ross, 2012).

An electric dipole moment Q is developed as |I|z where ẑ is the direction of the current
I with the dipole spread over z. Studies of small ensembles of neurons (Murakami &
Okada, 2006), give estimates of |Q| for a pyramidal neuron on the order of 1 pA-m =
10−12 A-m. Taking 104 synchronous firings in a macrocolumn, leads to a dipole moment
|Q| = 10−8 A-m. Taking z to be 102µm = 10−4 m, a couple of neocortical layers, gives
|qA| ≈ 2× 10−19 × 10−7 × 10−8/10−4 = 10−28 kg-m/s,

At larger scales (Nunez & Srinivasan, 2006b) a dipole density |P| = 0.1 µA/mm2 is
estimated. A volume of mm2 × 102µm gives |Q| = 10−9 A-m. This is smaller than
above due to cancellations at the scale of scalp EEG. The previous estimate is within a
macrocolumn, leading to |qA| = 10−29 kg-m/s.

Estimates used here for Q come from experimental data, e.g., including shielding and
material effects. When coherent activity among many macrocolumns associated with STM
(Salazar et al., 2012) is considered, |A| may be orders of magnitude larger. Since Ca2+

waves influence synaptic activity, there is direct coherence between these waves and the
activity of A.

Classical physics calculates qA from macroscopic EEG to be on the order of 10−28 kg-
m/s, while the momentum p of a Ca2+ ion is on the order of 10−30 kg-m/s (Ingber, 2011,
2012a; Ingber et al., 2014). This numerical comparison illustrates the importance of the
influence of A on p at classical scales.

An experimental test at the classical molecular scale to verify the influence of A, can
be made considering that if the current lies along ẑ, then A only has components along ẑ,
and

Π = pxx̂ + pyŷ + (pz + qAz)ẑ (5)

which alters momenta along ẑ.

2.4. Quantum calculation

The Lagrangian L can be transformed into a Hamiltonian which defines the probability
distribution in terms of the canonical energy Π2/(2m). The magnetic vector potential field
A is quite insensitive to a reasonable columnar spatial location, facilitating the momentum
representation of a Gaussian wave function. The expectation of momentum p is just the
classical value (Ingber et al., 2014).
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As developed previously (Ingber et al., 2014), the wave function of a Ca2+ wave packet
is developed from its momentum-space wave packet φ(p, t)

φ(p, 0) = (2π(∆p)2)−3/4e−(p−p0)2/(4(∆p)2)

U(p, t) = e−i((p+qA)2t)/(2m~)

φ(p, t) = φ(p, 0)U(p, t) (6)

The wave function in coordinate space, ψ(r, t) is then developed

ψ(r, t) = (2π~)−3/2

∞∫
−∞

d3pφ(p, t)eip·r/~

ψ(r, t) = α−1e−β/γ−δ

α = (2~)3/2(2π(∆p)2)3/4

(
it

2m~
− 1

4(∆p)2

)3/2

β =

(
r− qAt

m
− i~p0

2(∆p)2

)2

γ = 4

(
it~
2m

+
~2

4(∆p)2

)

δ =
p2

0

4(∆p)2
+
iq2A2t

2m~
(7)

where (∆p)2 is the variance of p in the wave packet.
During a duration of 100 ms, there is a displacement of the r coordinate in the real

part of the ψ quantum wave function of qAt/m = 1.5 × 10−2t m, on the order of 1.5 ×
10−3 m = mm, the range of a macrocolumn (Ingber et al., 2014). If ∆r can be on the
order of a synapse of a few nm (Stapp, 1993), then this spatial extent is on the order of
about µm = 104 Å(Å= Angstrom = 10−10 m). The displacement of r by the A term is
much larger than ∆r. If the uncertainty principle is close to saturation, ∆p ≥ ~(2∆r) =
1.054× 10−34/(2× 10−6) = 5× 10− 29 kg-m/s. This would make ∆p on the order of p.

There may be specific interactions between A and p within neocortex, e.g., perhaps re-
quiring explicit frequency dependence of A. For example, processing speeds of information
at quantum scales may be influenced by Ca2+ waves, e.g., via Grover’s algorithm giving
a quantum square-root versus a classical linear search (wherein the search is processed by
the wave function instead of its square, the associated probability function) (Clark, 2014;
Mukherjee & Chakrabarti, 2014), in turn influenced by A, providing a feedback loop be-
tween states of attention at regional scales and control of STM information at molecular
scales.
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2.5. Quantum coherence of calcium waves

Ca2+ waves have durations up to 500 ms (Ross, 2012). Quantum coherence times on the
order 100 ms are not yet experimentally observed in real neocortex. However, A exerts
strong quantum influences on r via its relative influence on p. Even if the p wave packet
may not survive long coherence times, there is evidence of free Ca2+ ions surviving for
hundreds of ms, and these ions will be affected by A during this time.

Arguments that quantum coherence cannot be maintained at high temperatures (Davies,
2004), may not necessarily apply to many biological systems (Aharony et al., 2012; Chin
et al., 2013; Fleming et al., 2011; Hartmann et al., 2006; Lloyd, 2011). Quantum coherence
in potassium ion channels has been proposed (Vaziri & Plenio, 2010). The cooperative
regenerative process underlying Ca2+ waves is similar to free ion passing over two bound
charges via Coulomb interactions, and this may mediate extended entanglement with free
ions (Buscemi et al., 2007, 2011).

Ca2+ waves of coherent free ions (Pereira & Furlan, 2009), may develop pulsed-
dynamical decoupling, generalizing the quantum Zeno effect (QZE) and “bang-bang” (BB)
decoupling of ions from their environment, promoting long coherence times (Facchi et al.,
2004; Facchi & Pascazio, 2008; Giacosa & Pagliara, 2014; Wu et al., 2012; Zhang et al.,
2014) as the system receives n “kicks” during time t. The QZE is described by the evolution

Un(p, t) = [Uk(n)U(p, t/n)]n (8)

The kicks Uk(n) may come from other quantum systems, e.g., other Ca2+ ions in the
same wave developed in the regenerative processes discussed previously, wherein these
processes are essentially “weak measurements” of wave packets, projecting the combined
system of new few Ca2+ ions and waves consisting of many Ca2+ ions onto new wave
packet states during each “kick”. Similar phenomena are investigated in quantum compu-
tation (Rego et al., 2009; Yu et al., 2012). These systems include distinguishable particles
which can exhibit quantum coherence and entanglement via collisions (Benedict et al.,
2012; Harshman & Singh, 2008). Other studies calculate how environment noise may lead
to extended entanglement (Zhang & Fan, 2013).

Recent work has clarified differences between continuous QZE and BB effects, the
latter typically causing a collapse/decoherence of the wave-function at each short time kick
into a sub-space of the original state, but ultimately also often greatly extending coherence
times of the basic original state (Giacosa & Pagliara, 2014; Zhang et al., 2014). However,
the elongation of coherence times in many cases is the same whether calculating using
the BB or the QZE approach. The regenerative processes Ca2+ wave processes are in
the class of BB models, wherein kicks from new individual/few ions at time tn are “weak
measurements” projecting the previous wave-packet onto a subspace of a weakly modified
wave-packet. Kicks may add to or subtract from the total number of Ca2+ ions, or add
to or subtract from the vector momentum, in the wave packet. Each projection starts a
new wave-packet at tn that starts its own evolution according to the equations described
above from the previous wave-packet φ(pn−1, tn−1) in momentum space or ψ(rn−1, tn−1)
in coordinate space, thereby prolonging the effective coherence time of the physical system
into a new wave-packet φ(pn, tn) in momentum space or ψ(rn, tn) in coordinate space.

For example, if we consider the above wave packet in momentum space, φ(p, t) is
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“kicked” from p to p+δp, and simply assume that repeated kicks of δp result in< δp >≈
0, and each kick keeps the variance ∆(p + δp)2 ≈ ∆(p)2, then the overlap integral at the
moment t of a typical kick between the new and old state is

< φ∗(p + δp, t)|φ(p, t) >= e
iκ+ρ
σ

κ = 8δp∆p2~m(qA + p0)t− 4(δp∆p2t)2

ρ = −(δp~m)2

σ = 8(∆p~m)2 (9)

where φ(p + δp, t) is the normalized wave function in p + δp momentum space. Note
that the time dependence of this overlap is only in κ which affects only the phase of the
projection.

A crude estimate is thereby obtained of the survival time A(t) and survival probability
p(t) (Facchi & Pascazio, 2008),

A(t) =< φ∗(p + δp, t)|φ(p, t) >

p(t) = |A(t)|2 (10)

As given above, qA can be on the order of 10−28, a wave packet of 1000 Ca2+ ions
can have p0 = ∆p = 10−27 kg-m/s, ~ = 1.0546 × 10 − 34 J-s (J = kg-m2/s2), and the
mass of such a Ca2+ packet is m = 6.6 × 10−23 kg. With a kick from a single Ca2+ ion,
δp = 10−30 kg-m/s. These numbers yield:

< φ∗(p + δp, t)|φ(p, t) >= ei(1.67×10−1t−1.15×10−2t2)−1.25×10−7
(11)

Even many repeated kicks do not appreciably affect the real part of φ, and these projections
do not appreciably destroy the original wave packet, giving a survival probability per kick
as p(t) ≈ exp(−2.5 × 10−7) ≈ 1 − 2.5 × 10−7. Note that both time-dependent phase
terms in the exponent are sensitive to time scales on the order of 1/10 sec, the same scales
prominent in STM and in synchronous neural firings measured by EEG. This suggests that
A effects on Ca2+ wave functions may maximize their influence on STM at frequencies
consistent with synchronous EEG during STM.

Models still must consider interactions of Ca2+ ions in the wave packet with its imme-
diate surroundings. Any degree of quantum coherence among ions in Ca2+ waves can only
be resolved by experiment, but as yet there is no such evidence.
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3. SMNI-VP INTERACTIONS WITH CALCIUM WAVES

3.1. SMNI dipoles

SMNI develops a dipole model for collective minicolumnar oscillatory currents, flowing
in ensembles of axons (Ingber & Nunez, 2010). The vector potentials produced by these
dipoles survive far from the axons (Feynman et al., 1964; Giuliani, 2010), and this leads to
effects at the molecular scale.

Approaches other than SMNI also describe dendritic presynaptic activity as inducing
large scale EEG (Nunez, 1981), or axonal firings directly affecting astrocyte processes
(McFadden, 2007). SMNI specifically models electromagnetic fields in collective axonal
firings, which directly applies to columnar STM phenomena in SMNI calculations.

3.2. SMNI Lagrangian

SMNI develops time-dependent and nonlinear multivariate drifts and diffusions. This was
calculated in the mid-point (Stratonovich or Feynman) representation, and all Riemannian
contributions were calculated and numerically estimated for neocortex, as the nonlinear
multivariate diffusions present a curved space (Ingber, 1982, 1983). Derivations of the
mathematical physics are in texts (Langouche et al., 1982) and compact derivations have
been given in several papers (Ingber, 1991).

EEG data is fit to SMNI, using data collected at several centers in the United States,
sponsored by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) project.
that the author made public in 1997 (Ingber, 1997b; Zhang et al., 1997a,b, 1995), This
project examines the influence of A on the B synaptic parameters in the SMNI Lagrangian
L (given below), using sensitive canonical momenta indicators (CMI) derived from the
N -dimensional L to develop graphical results (Ingber, 1996, 1997a, 1998; Ingber & Mon-
descu, 2001; Ingber et al., 2014). The CMI are a natural method of combining N first
moments and N(N + 1)/2 second moments (with their correlations) into N indicators to
fit to data. They are derived from the SMNI Lagrangian Euler-Lagrange equations

Mass = gGG′ =
∂2L

∂(∂MG/∂t)∂(∂MG′/∂t)

Momentum = ΠG =
∂L

∂(∂MG/∂t)

Force =
∂L

∂MG

F−ma = 0 : δL = 0 =
∂L

∂MG
− ∂

∂t

∂L

∂(∂MG/∂t)
(12)

where G = {E, I} is the index representing columnar-averaged chemically-independent
excitatory (E) and inhibitory (I) induced synaptic polarizations. The SMNI CMI are the
ΠG above, not to be confused with the canonical momenta Π at the scale of Ca2+ waves
(which also can be derived from different Lagrangians at those scales).



i
i

“lingber” — 2015/4/5 — 0:30 — page 11 — #12 i
i

i
i

i
i

Calculating consciousness correlates 11

3.3. Coupling calcium waves with SMNI Lagrangian

There are studies that take quite different and complementary approaches to that considered
here. Some studies have examined influences of Ca2+ on large-scale EEG (Kudela et al.,
2009). For example, time dependence of Ca2+ wave momenta should be examined, e.g., as
calculated with rate-equations (Li & Rinzel, 1994) as a Hodgkin-Huxley model (Hodgkin &
Huxley, 1952), including contributions from astrocytes (Bezzi et al., 2004; Larter & Craig,
2005; Lavrentovich & Hemkin, (2008).

Eventually, the functional form of these dynamics should be established by quantum
molecular models fit to data — a major task even in a semi-classical setting (Miller, 2006;
Nyman, 2014; Wong, 2014; Yang et al., 2006), but for now at least their parameterized
influences can be included.

In the prepoint (Ito) representation the SMNI Lagrangian L is

L =
∑
G,G′

(2N)−1(ṀG − gG)gGG′(Ṁ
G′ − gG′)/(2Nτ)− V ′

gG = −τ−1(MG +NG tanhFG)

gGG
′

= (gGG′)
−1 = δG

′
G τ
−1NGsech2FG

g = det(gGG′) (13)

where MG′ and NG′ in FG are afferent macrocolumnar firings scaled to efferent mini-
columnar firings by N/N∗ ≈ 10−3, and N∗ is the number of neurons in a macrocolumn,
about 105. τ is usually considered to be on the order of 5-10 msec. The threshold factor
FG is derived as

FG =
∑
G′

νG + ν‡E
′(

(π/2)[(vGG′)
2 + (φGG′)

2](δG + δ‡E′)
)1/2

νG = V G − aGG′vGG′NG′ − 1

2
AGG′v

G
G′M

G′

ν‡E
′

= −a‡EE′ v
E
E′N

‡E′ − 1

2
A‡EE′ v

E
E′M

‡E′

δG = aGG′N
G′ +

1

2
AGG′M

G′

δ‡E
′

= a‡EE′N
‡E′ +

1

2
A‡EE′M

‡E′

aGG′ =
1

2
AGG′ +BG

G′ , a
‡E
E′ =

1

2
A‡EE′ +B‡EE′ (14)

where {AGG′ , BG
G′ , A

‡E
E′ , B

‡E
E′ }, A

G
G′ is the columnar-averaged direct synaptic efficacy, BG

G′

is the columnar-averaged background-noise contribution to synaptic efficacy. AGG′ and BG
G′
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have been scaled by N ∗ /N ≈ 103 to keep FG invariant. Other values taken are consistent
with experimental data, e.g., V G = 10 mV, vGG′ = 0.1 mV, φGG′ = 0.031/2 mV. In this study
Ca2+ wave activity affects the A and B synaptic parameters, while the A EEG fields affect
the Ca2+ waves.

Ca2+ ions regulate synaptic interactions (Manita et al., 2011). In SMNI, the Ca2+

affect the columnar-averaged synaptic parameters, and a “centering mechanism” (CM) is
used to model changes in background synaptic activity which develop multiple columnar
minima representing collective firing states, by adjusting BG

G′ to center the numerator of
the firing threshold function FG about MG = 0, bringing in a maximal number of minima,
similar to changes in synaptic background observed during selective attention (Briggs et al.,
2013; Mountcastle et al., 1981). It has been observed that changes in [Ca2+] appear to
influence release of glutamate and postsynaptic firing (Sharma & Vijayaraghavan, 2003). It
is reasonable to consider that Ca2+ waves from tripartite interactions contribute to the B’s.

The CM models changes in background synaptic activity which develop multiple
columnar minima representing collective firing states. Since the SMNI columnar distri-
bution has a functional form similar to firing distributions of individual neurons, SMNI
properly includes effects of a vector potential.

These CM minima lie along a line in a trough inM space,AEEM
E−AEI M I ≈ 0, where

it is noted that in F I I − I connectivity is observed to be small relative to other pairings, so
that (AIEM

E −AIIM I) typically is small only for small ME .

3.4. Experimental verification

The momenta of Ca2+ ions are influenced during EEG events like N100 and P300 poten-
tials, with latencies on the order of 100 ms and 300 ms, resp., common in selective attention
tasks (Srinivasan et al., 2007). Previous SMNI fits to EEG data (Ingber, 1997a, 1998), were
used as a template for this study. In recent work, the influence of Ca2+ waves is tested by
parameterizing B synaptic parameters to be dependent on Ca2+ wave activity. Parameters
are fit/trained to a portion of the EEG data, the in-sample set. These trained parameters are
tested in out-of-sample EEG data.

The background parameters are modeled as a Taylor expansion in |A|,

BG
G′ → BG

G′ + |A|B′GG′ + . . . , B‡EE′ → B‡EE′ + |A|B′‡EE′ + . . . (15)

The electric potential Φ is experimentally measured by EEG, not A, but both are due to
the same currents I. Therefore, A is linearly proportional to Φ with a simple scaling fac-
tor included as a parameter in fits to data. Additional parameterization of BG

G′ and B‡EE′
modify previous work. To handle the otherwise recursive calculation of |A| multiplying
B′GG′ and B′‡EE′ , |A| is calculated as a multiple of means/drifts of L over epochs defined by
the experimental data. The data used for this study, is spaced about 3.6 ms (< τ ) between
150-400 ms after presentation of stimuli (Ingber, 1997a, 1998).

Since the data fit is within the duration of P300 EEG waves, the inclusion of the time-
dependentB′ terms, i.e., including |A|, requires a “dynamic centering mechanism” (DCM),
i.e., re-calculating CM during each epoch in the EEG data, to model continued access to
maximum memory states. Future studies will simulate/test the contribution of other models
of Ca2+ waves developed via tripartite synaptic interactions.
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There can be a trade-off in having the background noise increase in the simple Taylor
expansion model above: While lower noise generally leads to sharper narrower peaks of
multiple STM states, higher noise especially from E connections within and among macro-
columns can increase the main difference in FG numerators between the threshold voltage
for columnar firing and the other efficacy terms.

Experiments at the classical molecular scale can consider that if the current lies along
ẑ, then A only has components along ẑ, and

Π = pxx̂ + pyŷ + (pz + qAz)ẑ (16)

This classical physics prediction considers the large value of |qA|, arising from many mini-
columns during periods of large synchronous columnar firings, relative to |p| of each ion
in the A field, e.g., such that direct interactions qA · p/m, arising from canonical kinetic
energy (p + qA)2/(2m), is on the order of p2/(2m). The context of the quantum physics
calculations above is similar, even within short coherence times, since the bias of A is
present at the early times of the formation of wave packets.

This methodology of using EEG data is useful as a future testbed to possibly discern
among neocortical models of synaptic activity that include detailed molecular processes. It
has been pointed out in the Results Section that this testbed should be used on new EEG
data.

This methodology also may be useful with imaging data collected under different ex-
perimental paradigms and different imaging techniques (Ingber, 2009). For example, some
studies strongly suggest circuitry among brain regions influential in cognitive-emotional
interactions (Pessoa, 2013). If good quality imaging data during STM also included tests
under different emotive states, then this premise could be similarly measured.

4. METHODOLOGY OF COMPUTATIONS

4.1. Cost functions fit to data

SMNI cost functions are defined by minus the log of the product of conditional probabilities
over all epochs considered for a given run, i.e., minus the log of the “effective action”
which is the sum over L∆t plus the normalization prefactor which includes the log of
the determinant of the metric which is the inverse covariance matrix. This maximizes the
probability fit to the data for a given model. Typically, for this system, the normalization
prefactor contributes over half of the total cost function, but since it has a log insensitivity
to changes in variables and parameters, the Lagrangian L is most influential to the fit.

These SMNI cost functions are fit to data from 10 control and 10 alcoholic subjects,
each set containing data from 6 electrode sites (selected from 64 in the original data set)
with 10 trials of 69 epochs between 150 and 400 msec after presentation of 3 paradigms
{stimulus 1, match, no-match} (Ingber, 1997a). Parameters include connectivity and time
delays to model information flow among these electrodes (Ingber, 1997a, 1998). Each set
of results is labeled as [{alcoholic | control}, {stimulus 1 | match | no-match}, subject,
{potential | momenta}], where match or no-match was performed for stimulus 2 after 3.2
sec of a presentation of stimulus 1 (Zhang et al., 1997a,b, 1995). Data used for most of this
study includes 10 subjects, 10 trials per subject, per paradigm per Test/Train.
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This is sparse data. Because of this, two independent research co-authors examined all
raw data and CMI graphical results to see which patterns best represented the data (Ingber
et al., 2014). They did a very detailed analysis of all the input and output data, for all
paradigms, which was included in the supplemental material with that paper, and which also
can be retrieved from the http://ingber.com/smni14_eeg_ca_supp.pdf file. They concluded
that the A model marginally best represented the data in most cases. However, just looking
at CMI graphs generated from ASA fits to EEG data with the A SMNI model versus the
no-A SMNI model were not very conclusive.

Given the relatively subjective nature of examining graphs (as is often the case with
human patients/subjects in clinical settings), future progress should depend more on sta-
tistical measurements, albeit the use of statistical evidence using models fit to data also
often verges on subjective choices and applications of models, even accepting verification
within 5 standard deviations (Franklin, 2013, 2014; The-CMS-Collaboration, 2014). In
many disciplines, a theory of physical phenomena is tested by fitting data to derived models
at multiple scales or fitting different data to derived models (Ingber, 1968).

In this context, results can be summarized by the first four moments of the data distri-
bution of n points, in terms of the

{STAT} = {mean, standard-deviation, skewness, kurtosis}
The conventions used give skewness as the third moment about the mean, and kurtosis as the
fourth moment about the mean, with deviations from 0 of the skewness measuring asymme-
try and deviations of 3 from the kurtosis measuring deviations from Gaussian distributions
(Perlman & Horan, 1986). All STATs below have been simply truncated to 3 significant
figures for presentation purposes. Fitted cost functions for this system typically typically
fall between 10 and 20, while unfitted cost functions have values of at least several hundred,
reflecting that SMNI models STM processes as taking place in a trough of multiple minima
embedded in a “sea of noise”.

In addition to considering the overall STATs of Train and Test sets, another important
set of STATs is how well the models do on Test sets of data per classification/paradigm, i.e.,
in terms of how much the same cost function calculated with the Test sets varies from the
fitted cost function of the Train sets. This could be important for clinical applications.

The CM for the no-A model and the DCM at each epoch for the A model modify the
background noise parameter independently. Also, a parameter b′ ranging between {0, 1}
multiplies B′ terms in the A model, and this typically fell between 1/3 and 1/2 in ASA fits,
yielding a possible total background noise consistent with the no-A.

4.2. ASA optimization

The use of ASA for optimizing fitting EEG to 28 parameters of the regional SMNI model
were similar to those used previously (Ingber et al., 2014). However, for these recent cal-
culations, the ASA_FUZZY Option was used (Ingber, 2012c), which kept the cost temper-
ature at more reasonable scales throughout the runs. This did not make any difference in
the final fits, as tested using the previous as well as the current calculations, but it did give
more confidence in the ASA process for this system.
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4.3. Computer resources

Computations used Message Passing Interface (MPI) to parallelize code that fits EEG data
to a model that includes the dynamic influence of a p + qA interaction on background
synaptic activity, embedded in a Statistical Mechanics of Neocortical Interactions (SMNI)
coded model, to assess the viability of EEG activity influencing this interaction (Gibson,
2014; Ingber et al., 2014; Zverina, 2014). This now provides a testbed for future models
of such interactions. Each parallel job constitutes a set of 120 runs taking about 6-9 hrs
real-time CPU, equivalent to over a CPU-month, which includes 60 no-A model and 60 A
model runs, each with Train runs with 4 million generated states and subsequent Test runs.
Train runs were done with 10 million generated states to be sure of getting the best final
results.

Results presented in Appendix A represent a sampling of about two CPU-years of cal-
culations on two XSEDE.org (Towns et al., 2014) platforms: Trestles is a cluster of 324
compute nodes; each compute node contains four sockets, each with a 8-core 2.4 GHz
AMD Magny-Cours processor, for a total of 32 cores per node and 10,368 total cores for the
system, yielding a theoretical memory bandwidth of 171 GB/s and a theoretical peak per-
formance of 100 TFlop/s (1 TF = 1012 FLoating-point Operations Per Second). Stampede
is a 10 PFLOPS (1 PF = 1015 FLoating-point Operations Per Second) Dell Linux Cluster
based on 6400+ Dell PowerEdge server nodes, each outfitted with 2 Intel Xeon E5 (Sandy
Bridge) processors and an Intel Xeon Phi Coprocessor (MIC Architecture); the aggregate
peak performance of the Xeon E5 processors is 2+PF, while the Xeon Phi processors deliver
an additional aggregate peak performance of 7+PF. Each platform has additional features
built into the platform.

4.4. Discussion of results

Appendix A makes it clear that using the simple Taylor expansion for B′ or A′ efficacies
will give about the same results, i.e., many STATs for these variations of the A model are
statistically similar, even though some {a, c} and {1, m, n} runs do better than others with
variations in the A model.

New models, based on other neuroscience modeling research, need to be tested. This
SMNI model will be a testbed for future models of tripartite synaptic interactions of astro-
cytes and neuronal synapses, that directly lead to other functional models of the influence
of EEG-developed A on background synaptic activity.

Consideration also must be given to the SMNI model’s dependence on the A and B
efficacies. Each set of efficacies, albeit the B’s are modified by the CM or DCM, are
sufficiently nonlinear that they can represent a different model of the data. The DCM,
modifying the B’s at each epoch, can represent a string of such models, e.g., for varying
degrees of fits at different stages of P300 present in EEG. Since the no-A and A models
are within the same statistical ranges, some additional functional dependence of the A
model on Ca2+-wave influences may be required to better describe these multiple scales of
interaction.

Differences between the A model and no-A model are very much smaller that the
differences noted when CM and DCM are turned off completely, giving strong confirmation
of SMNI describing STM with CM and DCM mechanisms.
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5. CONCLUSION

An SMNI model has been developed to calculate coupling of molecular scales of Ca2+

wave dynamics with A fields developed at macroscopic regional scales measured by co-
herent neuronal firing activity measured by scalp EEG, during tests of STM. This requires
crossing molecular, microscopic (synaptic and neuronal), mesoscopic (minicolumns and
macrocolumns), and macroscopic regional scales.

Over the past three decades, the SMNI approach has yielded specific details of STM and
LTM phenomena, likely components of other phenomena like attention and C, not present
in molecular approaches (Ingber, 2012a).

More recently, SMNI calculations detail information processing of patterns of columnar
firings, e.g., as observed in scalp EEG (Salazar et al., 2012), in terms of an SMNI vector
potential A that influences molecular Ca2+ momentum p, in turn influencing synaptic in-
teractions. Explicit Lagrangians serve as cost/objective functions that are fit to EEG data
(Ingber et al., 2014).

Considerations of both classical and quantum physics give predictions of the influence
of A on the momenta of Ca2+ waves during STM processing as measured by scalp EEG.
Since the spatial scales of Ca2+ wave and macro-EEG are quite disparate, an experiment
would have to be able to correlate both scales in time scales on the order of tens of millisec-
onds.

This study is robust against much theoretical modeling, as experimental data is used
wherever possible. The theoretical construct of the canonical momentum Π = p + qA is
firmly entrenched in classical and quantum mechanics.

The SMNI model supports a process of p+qA interaction at tripartite synapses, via the
DCM to control background synaptic activity, which acts to maintain STM during states of
selective attention. Results of fits to EEG data presented here only demonstrate that fits to
an A model are within reasonable statistical ranges of fits to a no-A model. While these
fits are not conclusive for the importance of the A model, this study presents a testing
methodology and code to further test the p + qA interaction with future better EEG data.

However, other fits reported in Appendix A do demonstrate the importance of the CM
for the no-A model and the importance of the DCM for the A model, giving further support
to SMNI detailing STM.

This study likely sheds some light on the multiple scales of neocortical interactions un-
derlying C, and how models can be developed faithful to experimental data. The scientific
focus on computational models that include experimental data opens these ideas to testable
hypotheses. This approach also suggests some nanosystem-pharmaceutical applications.
Results give strong confirmation of the SMNI model of STM, but only weak statistical
consistency of Π = p + qA influences on scalp EEG.
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APPENDICES

A. RESULTS

A..1. Previous constraints

An early constraint in the previous paper (Ingber et al., 2014) was that the B′ terms not
exceed the value of any of the initialized B terms, and that only excitatory presynaptic
connections could contribute to B′ terms, i.e., added to terms B‡EE′ as well as to BG

E′ , G =
{E, I}. (In BG

G′ terms, presynaptic contributions from neurons indexed with G′ subscript,
affect postsynaptic neuron indexed with G superscript.)

Using these previous constraints, the STAT of the Train set no-A model was
{no-A, Train} = {12.6, 1.25, -0.118, 2.61}

while the STAT of the Train set A model was
{A, Train} = {13.7, 1.39, -0.444, 2.60}

The STAT of Test-Train (STAT of differenced cost functions) for the no-A model was
{no-A, Test-Train} = {0.770, 1.07, 1.38, 4.60}

while the STAT of Test-Train for the A model was
{A, Test-Train} = {1.00, 1.90, 3.24, 16.8}

The data can be drilled down further. For example, each model can be assessed among
the three paradigms presented to each subject, according to whether the subject was classi-
fied as {a = alcoholic, c = control (non-alcoholic)}, and according to paradigm {1 = single
stimulus, m = attempt to match second stimulus to first, n = no second stimulus matched
first}.

STATs for model no-A for Test-Train data are:
{no-A, Test-Train, a, 1} = {0.967, 1.34, 0.937, 2.43}
{no-A, Test-Train, a, m} = {1.20, 1.50, 1.01, 2.49}

{no-A, Test-Train, a, n} = {0.712, 1.01, 0.515, 1.65}
{no-A, Test-Train, c, 1} = {0.763, 1.08, 1.28, 4.06}
{no-A, Test-Train, c, m} = {0.936, 1.25, 1.30, 3.89}

{no-A, Test-Train, c, n} = {0.613, 0.883, 0.869, 2.54}
STATs for model A for Test-Train data are:

{A, Test-Train, a, 1} = {1.04, 1.55, 0.947, 2.26}
{A, Test-Train, a, m} = {1.36, 1.53, 0.508, 1.37}
{A, Test-Train, a, n} = {2.17, 3.79, 1.47, 3.89}

{A, Test-Train, c, 1} = {0.644, 1.18, 1.73, 5.29}
{A, Test-Train, c, m} = {0.889, 1.28, 1.03, 2.84}
{A, Test-Train, c, n} = {1.47, 2.79, 2.45, 8.85}
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A..2. Selection of connections

As mentioned previously, Ca2+ is generally considered to influence synaptic interactions
by modulating excitatory glutamic acid (Zorumski et al., 1996).

Instead of focusing on net presynaptic excitatory models (Ingber et al., 2014), for all
remaining runs reported here, models set contributions fromB′ only from excitatory postsy-
naptic connections (which could be influenced directly by tripartite glutamic acid enhance-
ments), i.e., added to terms B‡EE′ as well as to BE

G′ , G
′ = {E′, I ′}, and that each B′ term not

exceed the value of its associated initialized B term. This approach includes contributions
to postsynaptic sites from both excitatory and inhibitory presynaptic interactions, consid-
ering the discussion in the Introduction that both GABA and glutamate may be influenced
by presynaptic processes involving glutamine in astrocytes, i.e., with opposite contributions
from A influences on excitatory versus inhibitory postsynaptic sites.

{A, Train} = {13.7, 1.56, -0.495, 2.95}
{A, Test-Train} = {1.16, 1.95, 2.13, 7.01}

{A, Test-Train, a, 1} = {1.26, 1.97, 1.15, 2.82}
{A, Test-Train, a, m} = {2.04, 2.65, 1.29, 3.54}
{A, Test-Train, a, n} = {1.01, 2.06, 1.96, 5.56}

{A, Test-Train, c, 1} = {0.845, 1.48, 1.96, 6.37}
{A, Test-Train, c, m} = {1.58, 2.44, 1.70, 4.82}
{A, Test-Train, c, n} = {1.07, 1.82, 1.95, 5.84}

giving similar Train and Test cost functions for the A model as from the previous study.
The results for the no-A model are the same as immediately above.

Results also were obtained modifying the ceiling constraint on B′, e.g., reducing the
initialized B parameters by a ceiling C, and constraining the additional B′ parameters to
not exceed (1− 1/C)B, thereby keeping the maximum noise available to the A model the
same as for the no-A model. Similar results were obtained using C = 2:

{A, Train} = {13.8, 1.00, -0.420, 2.70}
{A, Test-Train} = {1.38, 2.19, 2.74, 11.2}

{A, Test-Train, a, 1} = {1.68, 2.10, 1.26, 3.50}
{A, Test-Train, a, m} = {1.81, 3.40, 2.03, 5.85}
{A, Test-Train, a, n} = {1.26, 1.80, 1.29, 3.67}
{A, Test-Train, c, 1} = {1.39, 1.73, 1.54, 5.12}
{A, Test-Train, c, m} = {1.34, 2.44, 3.24, 13.3}
{A, Test-Train, c, n} = {1.42, 2.44, 2.16, 7.28}

The results for the no-A model are the same as immediately above.

A..3. Modification of firing efficacies

The influence of Ca2+ on modulating excitatory glutamic acid, was tested differently, to
see if there was any large-scale influence on the AGG′ contribution to efficacies. The BG

G′

contribution to efficacies was still modified with the DCM, but the Taylor-expansion A
model was applied to theA’s, leading toA′ terms with parameterized coefficients a′ ranging
between {0, 1}. Similar to tests with B′, the constraint was that each A′ term not exceed
the value of its associated initialized A term.

The results with the Taylor-expanded A model applied to A′ was about the same as the
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application to B′:
{A, Train} = {13.6, 1.42, 0.0599, 2.45}

{A, Test-Train} = {1.20, 2.74, 5.39, 36.8}
{A, Test-Train, a, 1} = {0.860, 1.50, 1.28, 3.32}
{A, Test-Train, a, m} = {2.54, 6.15, 2.24, 6.48}

{A, Test-Train, a, n} = {0.781, 1.38, 0.803, 1.91}
{A, Test-Train, c, 1} = {0.846, 1.28, 1.20, 3.61}
{A, Test-Train, c, m} = {1.94, 4.41, 3.39, 14.0}

{A, Test-Train, c, n} = {0.816, 1.17, 0.949, 2.45}
The results for the no-A model are the same as immediately above.

The results with the Taylor-expanded A model applied to both A′ and B′, using just
one parameter/coefficient for both sets, was also about the same:

{A, Train} = {13.6, 1.35, -0.244, 3.23}
{A, Test-Train} = {1.23, 3.32, 5.85, 40.9}

{A, Test-Train, a, 1} = {1.22, 1.69, 0.668, 2.10}
{A, Test-Train, a, m} = {3.29, 7.58, 2.19, 6.31}
{A, Test-Train, a, n} = {0.954, 1.18, 1.54, 4.41}
{A, Test-Train, c, 1} = {0.775, 1.31, 1.39, 4.52}
{A, Test-Train, c, m} = {1.79, 5.45, 3.65, 15.4}
{A, Test-Train, c, n} = {1.13, 1.52, 1.55, 4.56}

The results for the no-A model are the same as immediately above.

A..4. Smoothing drifts

The drifts have been calculated at each epoch based on gG terms in the Lagrangian. This
can cause some volatility affecting fits, and a remedy borrowed from regularizing covari-
ance matrices is to simply perform short-term averaging (Litterman & Winkelmann, 1998).
Therefore, the drifts were averaged over the last few epochs, e.g., over the last 4 epochs
reported here.

Applying the Taylor-expanded A model to just A′ terms gave:
{A, Train} = {13.5, 1.16, -0.0447, 2.18}

{A, Test-Train} = {1.17, 2.03, 3.27, 16.7}
{A, Test-Train, a, 1} = {2.45, 4.00, 1.44, 3.91}
{A, Test-Train, a, m} = {1.43, 1.98, 1.61, 4.63}
{A, Test-Train, a, n} = {1.18, 1.47, 0.592, 1.80}
{A, Test-Train, c, 1} = {1.37, 2.99, 2.57, 9.38}
{A, Test-Train, c, m} = {1.07, 1.49, 2.36, 9.36}
{A, Test-Train, c, n} = {1.08, 1.25, 0.751, 2.48}

The new results for the no-A model are:
{no-A, Train} = {12.6, 1.18, -0.0169, 2.47}

{no-A, Test-Train} = {1.03, 2.02, 3.19, 13.8}
{no-A, Test-Train, a, 1} = {1.35, 2.53, 1.85, 5.26}
{no-A, Test-Train, a, m} = {1.85, 3.38, 1.91, 5.38}
{no-A, Test-Train, a, n} = {0.833, 1.28, 1.48, 4.09}
{no-A, Test-Train, c, 1} = {0.896, 1.84, 3.01, 12.1}
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{no-A, Test-Train, c, m} = {1.49, 2.79, 2.31, 7.55}
{no-A, Test-Train, c, n} = {0.724, 1.08, 1.65, 5.16}

Applying the Taylor-expanded A model to just B′ terms gave:
{A, Train} = {13.6, 1.26, -0.0319, 2.29}

{A, Test-Train} = {0.802, 1.23, 1.49, 5.04}
{A, Test-Train, a, 1} = {0.503, 0.965, 0.405, 1.46}
{A, Test-Train, a, m} = {1.44, 1.57, 0.742, 1.93}

{A, Test-Train, a, n} = {0.653, 0.939, 0.0899, 1.62}
{A, Test-Train, c, 1} = {0.380, 0.761, 0.643, 2.47}
{A, Test-Train, c, m} = {1.44, 1.70, 0.716, 2.03}

{A, Test-Train, c, n} = {0.579, 0.751, 0.377, 2.33}
The results for the no-A model are the same as immediately above.

A..5. Permitting subtraction as well as addition to efficacies

An argument could be made that the influence of Ca2+ waves is to decrease rather than to
increase the efficacies. An example with averaging over drifts for the past 10 epochs and
permitting the b′ coefficient of B′ terms to be negative as well as positive barely confirms
this. The fitted coefficient indeed is negative in most cases:

{A, Train} = {13.3, 1.16, -0.258, 2.65}
{A, Test-Train} = {1.05, 1.82, 2.63, 11.1}

{A, Test-Train, a, 1} = {0.554, 0.956, 1.07, 3.00}
{A, Test-Train, a, m} = {1.27, 2.18, 1.81, 5.23}
{A, Test-Train, a, n} = {1.07, 1.51, 0.802, 1.91}

{A, Test-Train, c, 1} = {0.489, 0.821, 0.922, 3.51}
{A, Test-Train, c, m} = {0.978, 1.65, 2.44, 9.58}
{A, Test-Train, c, n} = {1.68, 2.48, 1.75, 5.76}

The results for the no-A model are the same as immediately above.
Averaging over drifts for the past 10 epochs and permitting the a′ coefficient ofA′ terms

to be negative as well as positive does not fit as well:
{A, Train} = {14.0, 1.60, -0.0973, 3.63}

{A, Test-Train} = {1.05, 1.42, 1.73, 6.24}
{A, Test-Train, a, 1} = {1.19, 1.35, 0.776, 2.59}
{A, Test-Train, a, m} = {1.77, 2.22, 1.02, 2.74}
{A, Test-Train, a, n} = {0.861, 1.54, 1.51, 4.16}
{A, Test-Train, c, 1} = {0.838, 1.08, 1.38, 4.84}
{A, Test-Train, c, m} = {1.45, 1.73, 1.40, 4.79}
{A, Test-Train, c, n} = {0.871, 1.37, 1.62, 4.77}

The results for the no-A model are the same as immediately above.
Permitting both the a′ coefficient of A′ terms and the b′ coefficient of B′ terms to be

negative as well as positive (using a′ = b′) gives fits between the two:
{A, Train} = {13.6, 1.32, -0.954, 4.51}

{A, Test-Train} = {1.37, 2.61, 3.61, 19.4}
{A, Test-Train, a, 1} = {2.18, 3.10, 0.720, 1.75}
{A, Test-Train, a, m} = {2.58, 5.04, 1.99, 5.68}
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{A, Test-Train, a, n} = {0.537, 1.24, 1.68, 4.93}
{A, Test-Train, c, 1} = {1.32, 2.33, 1.70, 4.67}
{A, Test-Train, c, m} = {1.97, 3.60, 3.17, 12.9}
{A, Test-Train, c, n} = {0.831, 1.42, 1.55, 4.62}

The results for the no-A model are the same as immediately above.

A..6. More epochs in data

While most runs used 42 epochs with offset at epoch 38, each 3.9 ms, to capture a major part
of P300, some runs were done using the the middle segment of all 255 epochs comprising
the 1 sec of data/run, i.e., using the middle 87 epochs (the first two epochs do not include
some regions due to time delays). These runs took twice as long. Permitting both the a′

coefficient of A′ terms and the b′ coefficient of B′ terms to be negative as well as positive
give results:

{A, Train} = {14.1, 1.07, -0.276, 2.53}
{A, Test-Train} = {4.04, 15.9, 6.91, 51.5}

{A, Test-Train, a, 1} = {1.36, 2.31, 1.03, 2.61}
{A, Test-Train, a, m} = {15.0, 38.2, 2.20, 6.35}
{A, Test-Train, a, n} = {3.87, 4.81, 0.718, 1.78}
{A, Test-Train, c, 1} = {0.971, 1.79, 1.56, 4.92}
{A, Test-Train, c, m} = {8.30, 27.2, 3.70, 15.6}
{A, Test-Train, c, n} = {2.85, 3.66, 1.46, 3.99}

The new results for the no-A model are:
{no-A, Train} = {13.0, 1.14, -0.381, 2.90}

{no-A, Test-Train} = {4.00, 14.1, 4.95, 28.7}
{no-A, Test-Train, a, 1} = {0.977, 1.25, 0.231, 1.48}
{no-A, Test-Train, a, m} = {13.8, 30.3, 1.79, 4.80}
{no-A, Test-Train, a, n} = {1.81, 2.21, 0.860, 2.34}

{no-A, Test-Train, c, 1} = {0.835, 1.19, 0.676, 2.08}
{no-A, Test-Train, c, m} = {7.42, 21.8, 3.13, 12.0}
{no-A, Test-Train, c, n} = {3.74, 10.9, 3.68, 15.5}

The few extremely large Test-Train entries are due to non-typical trials among the set of 10
trials in the data of some of the Test sets, giving non-typically large cost functions using the
parameters of the associated Train set; the Train trials were typical relative to other results
presented here. For example, while a cost function of 20, averaged over 10 trials, was quite
high in this set of runs, Test trials for subject 378, A1_a_m_co2a0000378.ruy, gave several
enormous cost functions as high as 135.717, and subject 365, A0_a_m_co2a0000365.ruy,
had a Test cost function of 50.920 (rux are Train runs, and ruy are Test runs). This might be
due to some subjects during some runs not “paying attention” to the prescribed tasks. This
points out the need to use this current testbed on new EEG data.

Except for two cost functions noted below, all other cost functions reported
here did not exceed the low 30’s. The data is included in graphs in the
http://ingber.com/smni14_eeg_ca_supp.pdf file mentioned above (Ingber et al., 2014).

Some runs were performed using the full 255 epochs, requiring a factor of almost 7 per
run of running time, gave similar results. Permitting both the a′ coefficient of A′ terms and
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the b′ coefficient of B′ terms to be negative as well as positive give: results:
{A, Train} = {14.9, 1.10, -0.400, 2.91}

{A, Test-Train} = {1.08, 3.28, 5.68, 39.2}
{A, Test-Train, a, 1} = {0.334, 1.05, 0.818, 2.23}
{A, Test-Train, a, m} = {0.717, 1.41, 1.50, 4.14}
{A, Test-Train, a, n} = {3.26, 7.56, 2.00, 5.63}

{A, Test-Train, c, 1} = {0.686, 1.24, 0.323, 1.92}
{A, Test-Train, c, m} = {0.690, 1.22, 1.43, 4.49}
{A, Test-Train, c, n} = {1.88, 5.42, 3.35, 13.6}

The new results for the no-A model are:
{no-A, Train} = {13.3, 1.17, -0.341, 2.73}

{no-A, Test-Train} = {1.85, 9.51, 7.22, 54.7}
{no-A, Test-Train, a, 1} = {0.614, 1.23, 0.685, 1.97}
{no-A, Test-Train, a, m} = {7.73, 23.2, 2.26, 6.54}
{no-A, Test-Train, a, n} = {0.851, 1.49, 1.79, 5.14}

{no-A, Test-Train, c, 1} = {0.529, 0.978, 0.808, 2.99}
{no-A, Test-Train, c, m} = {4.27, 16.4, 3.80, 16.1}
{no-A, Test-Train, c, n} = {0.765, 1.31, 1.83, 5.73}

Using more epochs including data in the tails of P300 which may account for the A
model not faring as well as with data approximately constrained to the rise of the P300
peak. Using the full 1 sec of data in the 255-epoch runs smooths averages out some of the
non-typical entries noted in the 87-epoch runs that contain the non-typical spikes in the Test
data. For example, Test run A0_a_m_co2a0000378.ruy gave a cost function of 87.814 and
A1_a_n_co2a0000369.ruy gave a cost function of 38.307; examination of trials within these
runs show some anomalies. However, runs or trials within runs were not cherry-picked for
inclusion or exclusion.

A..7. No CM or DCM

When CM is turned off for the no-A model and DCM is turned off for the A model, the
results for the case corresponding to permitting both the a′ coefficient of A′ terms and the
b′ coefficient of B′ terms to be negative as well as positive (using a′ = b′), are much worse
than the previous results. The new results for the no-A model are:

{no-A, Train} = {20.3, 1.06, -0.0305, 2.35}
{no-A, Test-Train} = {1.09, 1.76, 3.80, 22.9}

{no-A, Test-Train, a, 1} = {1.24, 1.57, 0.941, 2.40}
{no-A, Test-Train, a, m} = {2.03, 3.51, 2.07, 5.97}
{no-A, Test-Train, a, n} = {1.05, 1.20, 0.591, 2.61}
{no-A, Test-Train, c, 1} = {0.856, 1.32, 1.13, 3.96}
{no-A, Test-Train, c, m} = {1.53, 2.59, 3.01, 12.2}

{no-A, Test-Train, c, n} = {0.898, 0.943, 0.889, 4.15}
For the A model, with drift contributions from B′ only from excitatory postsynaptic

connections added to terms B‡EE′ as well as to BE
G′ , the results are:

{A, Train} = {20.8, 0.815, 0.0597, 2.75}
{A, Test-Train} = {0.758, 1.40, 4.02, 24.2}
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{A, Test-Train, a, 1} = {0.888, 1.12, 0.820, 2.14}
{A, Test-Train, a, m} = {1.45, 2.84, 2.09, 6.01}

{A, Test-Train, a, n} = {0.613, 0.804, 0.126, 1.63}
{A, Test-Train, c, 1} = {0.529, 0.938, 1.39, 4.05}
{A, Test-Train, c, m} = {1.16, 2.07, 3.05, 12.1}

{A, Test-Train, c, n} = {0.579, 0.784, 0.589, 2.49}
The much smaller cost functions of CM and DCM models, which includes the negative

argument of exponential functions of conditional probability distributions, is partially due to
smaller Lagrangians with multiple local minima (corresponding to states of STM) centered
about MG = M ‡E = 0 firing states. The linear trough relation, AEEM

E − AEI M I ≈ 0,
is kept to retain the proportionality of both ME and M I to the Φ EEG, but when the CM
or DCM is not active the Lagrangian is large and uniform in MG space anyway (Ingber,
1984). That this Lagrangian is consistent with these fits gives a fairly conclusive result that
the CM and DCM are important to model this EEG data.

B. STM FEEDBACK VIA NANOSYSTEM PHARMACEUTI-
CAL INTERVENTION

Biological systems often present complex multivariable processes, such as those underlying
production of Ca2+ waves (Ross, 2012). There are opportunities for interactive human
inclusion of additional processes as well.

The context of using large-scale noninvasive records to study molecular processes that
interact with the large-scale activity, suggests possible engineering tools that might be used
for real-time clinical testing and feedback, e.g., during pharmaceutical intervention.

For example, to highlight the importance of such research, there is the potential of
carrying pharmaceutical products in nanosystems that could affect unbuffered Ca2+ waves
in neocortex, e.g., by sensing momentum in that media. A Ca2+-wave momentum-sensor
could act like a piezoelectric crystal (Alivisatos et al., 2013; Wang, 2012). At the onset of
a Ca2+ wave (which afterwards may persist for 100’s of ms), there is sudden change of
momentum in the environment, giving rise to a force on any object in its path, equal to this
change in momentum divided by this onset time. Consider a momentum on the order of
10−30 kg-m/s for a typical Ca2+ ion. For a Ca2+ wave packet of 1000 ions with an onset
time of 1 ms, this is estimated to be on the order of 10−24 N (1 N≡ 1 Newton = 1 kg-m/s2).
The nanosystem could be attracted to this site, depositing chemicals/drugs that interact with
the regenerative Ca2+-wave process. Even if the receptor area of the nanosystem could
be as small as 1 nm2 (close to the resolution of scanning confocal electron microscopy
(SCEM)), this would require it to have an extreme pressure sensitivity of 10−6 Pa (1 Pa =
1 pascal = 1 N/m2).

The nanosystem could be switched on/off at a regional/columnar level by having sensi-
tivity to local electric/magnetic fields. Such piezoelectric nanosystems can affect the back-
ground/noise efficacies (Chance, 2007) at synaptic gaps via control of Ca2+ waves, which
affects the nonlinear states of highly synchronous firings which carry many STM processes,
which in turn affect the influence of of Ca2+ waves via the vector potential A, etc.

This project thereby offers a noninvasive real-time approach to control feedback at
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multiple scales among piezoelectric nanosystems, Ca2+ waves, and higher information-
processing levels of STM.
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