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Abstract

Calculations further support the premise that large-scale synchronous firings of neurons may
affect molecular processes. The context is scalp electroencephalography (EEG) during short-
term memory (STM) tasks. The mechanism considered is Π = p + qA (SI units) coupling,
where p is the momenta of free Ca2+ waves q the charge of Ca2+ in units of the electron charge,
and A the magnetic vector potential of current I from neuronal minicolumnar firings considered
as wires, giving rise to EEG. Data has processed using multiple graphs to identify sections of
data to which spline-Laplacian transformations are applied, to fit the statistical mechanics of
neocortical interactions (SMNI) model to EEG data, sensitive to synaptic interactions subject
to modification by Ca2+ waves.
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1 Introduction to top-down premise (TDP)

This project is motivated by a top-down premise (TDP) that large-scale synchronous neural firings,
as measured by scalp electroencephalographic (EEG) recordings, may directly influence molecular
processes that are coupled to underlying synaptic processes that contribute to this synchrony (In-
gber, 2011, 2012, 2015; Ingber et al., 2014; Nunez et al., 2013).

Previous papers (Ingber, 2015; Ingber et al., 2014) have primarily been concerned with fitting
EEG data to the author’s statistical mechanics of neocortical interactions (SMNI) model (Ingber,
1982, 1983) to study top-down large-scale synchronous neuronal firings during short-term memory
(STM) tasks, also modeled by SMNI (Ingber, 1984, 1985a, 1994), on coupled bottom-up molecular
processes.

Only for brevity, unless otherwise stated, dependent on the context, “EEG” will refer to either
the measurement of synchronous firings large enough to measure on the scalp, or to the firings
themselves. The term “molecular processes” is used to signify not only the scale included, but also
the effects of Ca2+ waves on synaptic background molecular processes that ultimately drive neuronal
firings via releases of quanta of chemical transmitters, e.g., affecting molecules of phospholipid
bilayers at presynaptic neuronal membrane sites. “Top-down” refers the largest scale considered of
highly synchronous neuronal firings as measured by EEG, and “bottom-up” refers to the smallest
scale considered here of Ca2+ waves as they affect background synaptic processes that contribute
to the neuronal firings measured by EEG in the context of STM tasks.
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Free regenerative Ca2+ waves, arising from astrocyte-neuron interactions, couple to the magnetic
vector potential A produced by these collective firings. As calculated in these papers, only A, not
electric E or magnetic B fields have logarithmic insensitivity from their sources to add cumulatively
to affect the molecular processes. Calculations described here, using data processed for proper
matching to the SMNI model, give more support to TDP.

This study sheds light on the multiple scales of neocortical interactions underlying Consciousness
(C). It is now accepted by some neuroscientists and confirmed by some experiments (Asher, 2012;
Salazar et al., 2012), that at least some memories are actively processed by highly synchronized
patterns of neuronal firings as measured by scalp EEG recordings during activity of processing such
patterns, e.g., P300 waves, etc. This was always the basic premise of the SMNI model.

Without detailed experimental testable facts on the nature of C, many people consider TDP as
just conjecture on other future theories of C. As discussed in a previous paper (Ingber, 2015) there
are aspects of C that we may only be able to infer existence or possibly prove we cannot know.
These latter possibilities can be considered as belonging to a “Dark C” (DC) category, and DC
should be researched as well as C.

There are many other people that consider C as an emergent property of a complex system, and
in this context TDP is a strong indicator of multiple scales of neocortical interactions underlying
C.

There are many papers that deal directly with or give credence to advances in C that include
quantum mechanics, that have passed a sometimes volatile peer-review process in this subject in
various physics journals (Zhou et al., 2015), which has led to some critical reviews (McKemmish
et al., 2009). A current summary gives fair credit to the new ideas presented (Atmanspacher, 2015).

However, this study demonstrates how models of C can be developed faithful to experimental
data. The scientific focus on computational models that include experimental data opens these
ideas to testable hypotheses.

Results of SMNI fits to EEG data gave strong confirmation of the SMNI model of STM, and now
also give weak statistical support to a basic physical mechanism that couples highly synchronous
firings to control underlying molecular processes, the canonical momentum Π, Π = p + qA, where
p is the momenta of a Ca2+ wave, q the charge of Ca2+, q = −2e, e the magnitude of the charge
of an electron.

Previous papers have used classical physics to calculate and compare the molecular p and large-
scale q A components of Π, demonstrating that indeed they of comparable magnitudes (Ingber,
2011, 2012; Ingber et al., 2014; Nunez et al., 2013). Also, in the context of quantum mechanics, the
wave function of the Π system was calculated, and it was demonstrated that overlap with multiple
collisions during the observed long durations of typical Ca2+ waves (Ingber, 2015; Ingber et al.,
2014) support a Zeno effect (Facchi et al., 2004; Facchi and Pascazio, 2008; Giacosa and Pagliara,
2014; Kozlowski et al., 2015; Patil et al., 2015; Wu et al., 2012; Zhang et al., 2014) promoting
long coherence times. This approach also suggests some nanosystem-pharmaceutical applications
(Ingber, 2015).

Note that this proposed quantum context of the Π interaction does not depend on any quantum
effects via internal energy levels, for which Ca2+ with atomic weight 40 likely would not support
at room temperatures (Beck, 2008).

Much of the theoretical development in this paper concerns calculations that support the in-
fluence of EEG on Ca2+ waves, and referencing experimental support of how Ca2+ waves affect
background synaptic noise. However, the actual fits to EEG data, comprising several CPU-years
of calculations on parallel-processor supercomputers, concerns the importance of the background
synaptic noise that includes functional dependence on widespread regional synchrony arising from
logarithmic insensitivity of A to distance from minicolumnar currents. This functional dependence
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is in the sole argument of the probability distribution of quanta release which directly influences
molecular processes underlying this EEG.

2 Theory

2.1 Molecular processes contributing to synaptic interactions

There are many studies on tripartite neuron-astrocyte interactions (Pereira and Furlan, 2009), and
on Ca2+ waves at tripartite sites. The short summary below is presented to set the context for SMNI
calculations of probability distributions of synaptic activity that include background contributions.

Several studies have shown that glutamate release from astrocytes through a Ca2+-dependent
mechanism can activate receptors located at the presynaptic terminals. Regenerative intercellular
calcium waves (ICWs) can travel over 100s of astrocytes, encompassing many neuronal synapses.
These ICWs are documented in the control of synaptic activity (Scemes and Giaume, 2006). Anal-
ysis of fluorescence accumulation clearly demonstrates that glutamate is released in a regenerative
manner, with subsequent cells that are involved in the calcium wave releasing additional glutamate
(Innocenti et al., 2000).

Several experiments, albeit with sometimes contradicting conclusions, support astrocyte gener-
ated [Ca2+] ([. . .] = concentration) influences on synapses (Volterra et al., 2014). They conclude
that new experimental paradigms are required to address external interferences, e.g., possible in-
terference of measurement indicators, etc., wherein [Ca2+] affect increased release probabilities at
synaptic sites, likely due to triggering release of gliotransmitters. It has been noted by other in-
vestigators that intracellular astrocyte calcium waves in situ (not the free Ca2+ waves considered
here), increases neuronal firings (Fiacco and McCarthy, 2004), and that Ca2+ waves in general may
have various influences on neuronal firings (Agulhon et al., 2008). It also has been suggested that
by simultaneously activating and deactivating neurotransmission in all of the synapses enveloped
by an astrocyte, the astrocyte calcium wave may coordinate synapses into synchronously firing
groups (Mitterauer and Kofler-Westergren, 2011).

Although the full set of mechanisms affecting [Ca2+] and the influences of Ca2+ on other mech-
anism are not yet fully understood and experimentally verified, it is clear that Ca2+ waves exist
in intercellular and in intracellular media (Ross, 2012). There are regenerative as well as non-
regenerative processes observed, both “locally” at cellular sites as well as into “expanded” regions
through which Ca2+ travel at relatively fast velocities for large distances over relatively long pe-
riods of time (Ingber, 2015; Ingber et al., 2014). Ca2+ affects spontaneous synaptic production of
glutamate, in contrast to also possibly influencing evoked production due to neuronal firings.

2.2 Statistics of synaptic interactions

The probability of a neuron firing, in the context of the previous Section, is based on the statistics
of quantal releases of chemical neurotransmissions across synaptic gaps. This probability can be
determined by a folding of two distributions, a distribution of quantal release of neurotranmitters
across a given synapse, Ψ, and a distribution over all synapses and the properties of neuron that
affect its firing or not firing, Γ (discussed in the next Section).

As calculated previously (Ingber, 1982, 1983), the interaction of neuron k (k = 1, N∗) with
neuron j across all jk synapses is defined by a distribution Ψ describing q chemical quanta with
mean efficacy

a∗jk =
1

2
A∗jk(σk + 1) +B∗jk ≈ 0.01 (1)
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with B∗jk a background spontaneous contribution, where σk = 1 if k fires; σk = −1 if k does
not fire. Synaptic efficacy is a measure of ionic permeability, and an inverse measure of electrical
impedance. As detailed previously (Ingber, 1982, 1983), efficacies A∗jk measure chemical synaptic
activity, while efficacies B∗jk measure background influences. It was shown that the final results
of folding Γ and Ψ distributions is independent of choosing Ψ to be Gaussian or Poisson (Ingber,
1982, 1983), generalizing earlier work (Shaw and Vasudevan, 1974).

For example, if Ψ is Poisson,

Ψ = exp(−a∗jk)(a∗jk)q/q! (2)

This Ψ is essentially the probability discussed in papers referenced in the previous Section, due to
triggering release of gliotransmitters, which may be influenced by Ca2+ waves arising from neuron-
astrocyte tripartite interactions. B∗jk is the variable that will be considered a function of A below,
i.e., the TDP mechanism detailing how top-down activity measured by EEG during STM tasks
may influence molecular Ca2+ waves. E.g., Ca2+ waves can control glutumate production which
can control the distribution of q quanta released at synaptic gaps. This is consistent with Ca2+

waves from astrocytes as contributing a diffuse control of neuronal firings via B∗jk, rather than the
more direct control of A∗jk due to presynaptic firings.

2.3 Scale to neuronal firing

A Gaussian distribution Γ describes the average intra-neuronal distribution of electrical polarization
across the various neurons in a minicolumn,

Γ = (2πqφ2
jk)
−1/2 exp[−(Wjk − qvjk)2]/(2qφ2

jk),

lim
q→0

Γ ≡ δ(Wjk), (3)

where parameters in Γ are specified below.
Using the probability of developing potential Wjk from k,

Sjk =

∞∑
q=0

ΓΨ (4)

and the probability Sj of developing Wjk from all afferent neurons

Sj =

∫
. . .

∫
dWj1 . . . dWjN∗Sj1 . . . SjN∗δ

(
Wj −

∑
k

Wjk

)
(5)

the derived probability for neuron j to fire, given its interaction with k = 1, . . . , N∗ neurons is
(Ingber, 1982, 1983)

pσj =

∞∫
Vj

dWjSj ' exp(−σjFj)/[expFj + exp(−Fj)]

Fj =

Vj −
∑
k

a∗jkvjk(
(π/2)

∑
k′
a∗jk′(v

2
jk′ + φ2

jk′)

)1/2
(6)

Note the dependence of Fj on synaptic parameters which will be discussed again below.
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2.4 Scale to mesocolumnar neuronal interactions

Mesocolumns are defined as the dynamics of divergence from minicolumnar processes, and conver-
gence to regional and macrocolumnar processes. Statistical mechanics of neocortical interactions
(SMNI) was developed to explicitly model these dynamics (Ingber, 1982, 1983). The math requires
a nonlinear stochastic calculus, first formulated within the context of gravity by many authors
(Cheng, 1972), and subsequently generalized to other classical physics systems by many other au-
thors (Langouche et al., 1982). At this stage SMNI is a zero-fit-parameter theory, in that all
parameters are picked from within experimentally determined ranges. However, three basic models
were then developed with slight adjustments of the parameters (Ingber, 1984), changing the firing
component of the columnar-averaged efficacies Ajk within experimental ranges as discussed below.

Using this theory as a guide, discoveries were made that indeed modeled various aspects of
neocortical interactions, e.g., properties of STM −− e.g., capacity (auditory 7 ± 2 and visual
4±2), duration, stability , primacy versus recency rule, Hick’s law, nearest-neighbor minicolumnar
interactions within macrocolumns calculating rotation of images, etc (Ingber, 1982, 1983, 1984,
1985a, 1994). SMNI was also scaled to include mesocolumns across neocortical regions to fit EEG
data, as it used here as well (Ingber, 1997a, 2012).

The resulting mathematics is used here for SMNI modeling of EEG data, further generalized
to include possible interactions with Ca2+ molecular processes. Using G = {E, I} to represent
independent excitatory E and inhibitory I processes, in the prepoint (Ito) representation the SMNI
Lagrangian L is

L =
∑
G,G′

(2N)−1(ṀG − gG)gGG′(Ṁ
G′ − gG′)/(2Nτ)− V ′

gG = −τ−1(MG +NG tanhFG)

gGG
′

= (gGG′)
−1 = δG

′
G τ
−1NGsech2FG

g = det(gGG′) (7)

where NG = {NE = 160, N I = 60} was chosen for visual neocortex, {NE = 80, N I = 30} was
chosen for all other neocortical regions, MG′ and NG′ in FG are afferent macrocolumnar firings
scaled to efferent minicolumnar firings by N/N∗ ≈ 10−3, and N∗ is the number of neurons in a
macrocolumn, about 105. τ is usually considered to be on the order of 5-10 ms; this is further
discussed below in the Section below on coarse-graining EEG data.

Moving averages of several epochs of gG are used as slower drifts as described below in the data
Section.

The threshold factor FG is derived as

FG =
∑
G′

νG + ν‡E
′(

(π/2)[(vGG′)
2 + (φGG′)

2](δG + δ‡E′)
)1/2

νG = V G − aGG′vGG′NG′ − 1

2
AGG′v

G
G′M

G′

ν‡E
′

= −a‡EE′ v
E
E′N

‡E′ − 1

2
A‡EE′ v

E
E′M

‡E′
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δG = aGG′N
G′ +

1

2
AGG′M

G′

δ‡E
′

= a‡EE′N
‡E′ +

1

2
A‡EE′M

‡E′

aGG′ =
1

2
AGG′ +BG

G′ , a
‡E
E′ =

1

2
A‡EE′ +B‡EE′ (8)

where {AGG′ , BG
G′ , A

‡E
E′ , B

‡E
E′ }, A

G
G′ is the columnar-averaged direct synaptic efficacy, BG

G′ is the
columnar-averaged background-noise contribution to synaptic efficacy. AGG′ and BG

G′ have been
scaled by N ∗ /N ≈ 103 to keep FG invariant. Other values taken are consistent with experimental
data, e.g., V G = 10 mV, vGG′ = 0.1 mV, φGG′ = 0.031/2 mV. The “‡” parameters arise from regional
interactions across many macrocolumns.

Note that the mesoscopic threshold funcion FG has similar functional dependencies on neuronal
parameters as the individual threshold function Fj . This provides an audit trail back to neuronal
parameters when FG is used in further scaling to regional dynamics to fit scalp EEG data.

2.4.1 Centering Mechanism (CM)

As mentioned above, three basic models were developed with slight adjustments of the parameters
(Ingber, 1984), changing the firing component of the columnar-averaged efficacies AGG′ within ex-
perimental ranges, which modify FG threshold factors to yield (a) case EC, dominant excitation
subsequent firings in the conditional probability, or (b) case IC, inhibitory subsequent firings, or
(c) case BC, balanced between EC and IC. Furthermore, a Centering Mechanism (CM) on case
BC yields case BC′ wherein the numerator of FG only has terms proportional to ME′ , M I′ and
M ‡E

′
, i.e., zeroing other constant terms by resetting the background parameters BG

G′ , still within
experimental ranges. This has the net effect of bringing in a maximum number of minima into the
physical firing MG-space. The minima of the numerator then defines a major parabolic trough,

AEEM
E −AEI M I = 0 (9)

about which other SMNI nonlinearities bring in multiple minima calculated to be consistent with
STM phenomena. In this recent project (Ingber, 2015; Ingber et al., 2014), a Dynamic CM (DCM)
model is used as well, wherein the BG

G′ are reset every few epochs of τ .

2.5 Scale to regions

Large EEG databases have been used to test scaled SMNI at relatively large regional scales (Ingber,
1997a, 1998). as well as in this project (Ingber, 2015; Ingber et al., 2014). The above Lagrangian
L is used across regions, interacting via myelinated fibers represented by M ‡E

′
firings.

The context for SMNI describing EEG was developed using the Euler-Lagrange (EL) equations
derived from the variational principle associated with SMNI Lagrangians at different scales, giving
rise to basic dynamic variables

Mass = gGG′ =
∂2L

∂(∂MG/∂t)∂(∂MG′/∂t)

Momentum = ΠG =
∂L

∂(∂MG/∂t)
,
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Force =
∂L

∂MG

F−ma = 0 : δL = 0 =
∂L

∂MG
− ∂

∂t

∂L

∂(∂MG/∂t)
(10)

The momenta ΠG define Canonical Momenta Indicators (CMI) which were used to advantage in
previous SMNI papers fitting EEG (Ingber, 1997a, 1998; Ingber et al., 2014), giving superior graphs
for analysis to those generated from raw electric potentials Φ. The EL equations are identified with
F−ma = 0. This was summarized in a recent paper (Nunez et al., 2013), detailing EL equations
at three scales:

2.5.1 Columnar EL

Macrocolumnar nearest-neighbor minicolumnar interactions were calculated to include spatial dif-
fusion terms in the Lagrangian defining the conditional probability distribution of mesocolumnar
firings. The EL equations were derived from this distribution. Linearization of the space-time EL
equations permits the development of stability analyses and dispersion relations in frequency-wave-
number space (Ingber, 1982, 1983, 1985b), leading to wave propagation velocities of interactions
over several minicolumns, consistent with experiments. This calculation first linearizes the EL, then
takes Fourier transforms in space and time variables. A calculation supports observed rotation of
images in STM. The earliest studies simply used a driving force JGM

G in the Lagrangian to model
long-ranged interactions among fibers (Ingber, 1982, 1983).

2.5.2 Strings EL

The Lagrangian defining the conditional probability distribution of mesocolumnar firings was trans-
formed to a conditional probability distribution of changes in measured EEG electric potentials.
The EL equations were derived from this distribution. This calculation considered one firing vari-
able along the parabolic trough, discussed above, of attractor states being proportional to Φ, the
EEG electric potential (Ingber and Nunez, 1990). There exist regions in neocortical parameter
space such that the nonlinear string model often used to model EEG is recovered as this EL equa-
tion. In this recent study reported here, spline-Laplacian transformations on the Φ are considered
proportional to the firing variables at each electrode site.

2.5.3 Springs EL

Macrocolumnar nearest-neighbor minicolumnar interactions were calculated to include spatial dif-
fusion terms in the Lagrangian defining the conditional probability distribution of mesocolumnar
firings. The EL equations were derived from this distribution. Some SMNI studies included in
calculations regional interactions driving localized columnar activity within these regions (Ingber,
1997a, 1998), instead of the crude model using a driving force JGM

G in the Lagrangian as described
above. This extension of the above EL equations describes EEG oscillatory behavior supported at
these columnar scales across regions (Ingber, 2009; Ingber and Nunez, 2010), which is a model of
coupled oscillatory springs across macrocolumns and regions, supported within the string-model
envelope described above.
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2.6 Influence of qA on p

2.6.1 Classical physics of Π

Previous papers have modeled minicolumns as wires which support neuronal firings, due largely
from large neocortical excitatory pyramidal cells in layer V (of six), giving rise to currents which
give rise to electric potentials measured as scalp EEG (Ingber, 2011, 2012; Nunez et al., 2013).
This gives rise to a magnetic vector potential

A =
µ

4π
I log

(
r

r0

)
(11)

which has an insensitive log dependence on distance. In the brain, µ ≈ µ0, where µ0 is the
magnetic permeability in vacuum = 4π10−7 H/m (Henry/meter), where Henry has units of kg-
m-C−2, which is the conversion factor from electrical to mechanical variables. For oscillatory
waves, the magnetic field B = ∇×A and the electric field E = ic

ω∇×∇×A do not have this log
dependence on distance. The magnitude of the current is taken from experimental data on dipole
moments Q = |I|z where ẑ is the direction of the current I with the dipole spread over z. Q ranges
from 1 pA-m = 10−12 A-m for a pyramidal neuron (Murakami and Okada, 2006), to 10−9 A-m for
larger neocortical mass (Nunez and Srinivasan, 2006). These currents give rise to qA on the order
of 10−28 kg-m/s. p from one Ca2+ ion in a wave is typically on the order of 10−30 kg-m/s, and this
can be multiplied by the number of ions in a wave, e.g., 100’s to 1000’s.

2.6.2 Quantum physics of Π

Previous papers also have detailed quantum calculations of the wave function of Ca2+ waves in the
presence of A (Ingber, 2015; Ingber et al., 2014). The wave function in coordinate space, ψ(r, t) is

ψ(r, t) = (2πh̄)−3/2

∞∫
−∞

d3pφ(p, t)eip·r/h̄

ψ(r, t) = α−1e−β/γ−δ

α = (2h̄)3/2(2π(∆p)2)3/4

(
it

2mh̄
− 1

4(∆p)2

)3/2

β =

(
r− qAt

m
− ih̄p0

2(∆p)2

)2

γ = 4

(
ith̄

2m
+

h̄2

4(∆p)2

)

δ =
p2

0

4(∆p)2
+
iq2A2t

2mh̄
(12)

where (∆p)2 is the variance of p in the wave packet, and various properties were calculated and
shown to be reasonable in this neocortical context.

If we consider the above wave packet in momentum space, φ(p, t) being “kicked” from p to
p + δp, and simply assume that random repeated kicks of δp result in < δp >≈ 0, and each kick
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keeps the variance ∆(p+ δp)2 ≈ ∆(p)2, then the overlap integral at the moment t of a typical kick
between the new and old state is

< φ∗(p + δp, t)|φ(p, t) >= e
iκ+ρ
σ

κ = 8δp∆p2h̄m(qA + p0)t− 4(δp∆p2t)2

ρ = −(δph̄m)2

σ = 8(∆ph̄m)2 (13)

where φ(p + δp, t) is the normalized wave function in p + δp momentum space. A crude estimate
is obtained of the survival time A(t) and survival probability p(t) (Facchi and Pascazio, 2008),

A(t) =< φ∗(p + δp, t)|φ(p, t) >

p(t) = |A(t)|2 (14)

These numbers yield:

< φ∗(p + δp, t)|φ(p, t) >= ei(1.67×10−1t−1.15×10−2t2)−1.25×10−7
(15)

Even many repeated kicks do not appreciably affect the real part of φ, and these projections
do not appreciably destroy the original wave packet, giving a survival probability per kick as
p(t) ≈ exp(−2.5× 10−7) ≈ 1− 2.5× 10−7. Both time-dependent phase terms in the exponent are
sensitive to time scales on the order of 1/10 s, scales prominent in STM and in synchronous neural
firings measured by EEG. This suggests that A effects on Ca2+ wave functions may maximize
their influence on STM at frequencies consistent with synchronous EEG during STM by some
mechanisms not yet determined.

2.6.3 PATHTREE

A sub-project under the current XSEDE.org grant is developing a complex-number version of
PATHTREE, an algorithm developed by the author for path integration of financial options (Ingber
et al., 2001), also being developed to run on parallel processors under OpenMP. PATHTREE can
be used to develop the wave-function above, adding “shocks” to the wave packet to investigate
the duration of the wave-packet due to a Zeno/bang-bang effect. This is similar to the use of
PATHTREE to include dividends on the underlying asset in financial options. PATHINT is another
code developed by the author for path integration used in several disciplines, including the SMNI
project (Ingber and Nunez, 1995), but PATHTREE is much faster than PATHINT.

3 Data

3.1 Previous data

Previous papers in this project used EEG data given to the author circa 1997 (Ingber, 1997b; Zhang
et al., 1997a,b, 1995). This data was used in other projects (Ingber, 1997a, 1998), as well as in
previous calculations in this project (Ingber, 2015; Ingber et al., 2014).
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The first use of the data in this project led to examination of multiple graphs to determine
differences between no-A and A models (Ingber et al., 2014). This was inconclusive, but leaning to
better results with the A model. A second attempt using this data (Ingber, 2015) used statistical
measures on the cost functions using the Lagrangian L

{STAT} = {mean, standard-deviation, skewness, kurtosis}

applied to each model among the three paradigms presented to each subject, according to whether
the subject was classified as {a = alcoholic, c = control (non-alcoholic)}, and according to paradigm
{1 = single stimulus, m = attempt to match second stimulus to first, n = no second stimulus
matched first}. This also was inconclusive, but leaning to better results with the A model. Fur-
ther examination showed that several trials had cost functions much larger than the rest, which
reasonably could be considered severe outliers skewing results. Rather than “cherry-picking” runs
in the data, the decision was made to look for more recent data.

3.2 Choice of data

New data was sought that would satisfy the conditions of the SMNI model, e.g., scalp EEG during
STM task, among a reasonable number of subjects, each with a reasonable number or runs that
could be divided into Training and Testing sets. A dataset was found with 245 runs across 12
subjects with thousands of epochs per run (Citi et al., 2010; Goldberger et al., 2000). which was
downloaded from the

http://physionet.nlm.nih.gov/pn4/erpbci

site, which also contains the useful link

http://www.biosemi.com/download/Cap coords all.xls

that was used for spline-Laplacian transformations described below.
The data used was collected during P300 event-related potentials (ERP), in the context of tasks

designed to measure changes in shape of the ERP across attentional tasks to non-targets and single
and multiple targets via a Donchin speller algorithm. This speller chooses targets from a matrix
of 36 characters that the subject must input. Multiple presentations aid in reducing noise of the
measured ERP. The authors give rigorous proof and calculations to support the superiority of their
Donchin speller algorithm over previous experimental setups (Citi et al., 2010).

3.3 Conversion to text files

The data is in European Data Format (EDF) format which contains a lot of information not directly
used in this project where simple ascii data is used by fast C codes to process long optimization
sessions. A very useful code was found in the site

http://www.teuniz.net/edf2ascii/

3.4 Spline-Laplacian transformation

Arguments have been made, based on a wave-equation analysis of EEG, that Laplacian transformed
data are better than the original raw scalp electric potential to represent localized source currents
giving rise to EEG (Srinivasan et al., 2006).

Ramesh Srinivasan gave me part of his Matlab code on
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http://ssltool.sourceforge.net

for spline-Laplacian scalp transformations. We then worked together to get this section of code to
run under Octave, available from

http://www.gnu.org/software/octave/

using the xls file referenced above which contains coordinates of the scalp EEG electrode sites. This
smaller code is available at no charge from this author, but any use should reference the ssltool site
above.

A typical two-dimensional Laplacian is the weighted difference between four nearest-neighbor
points and a central point. Spline fits are smooth-fitting algorithms to a set of discrete points. Here,
a spline first fits all (64) sites on the (semi-)circular scalp, generating piecewise smooth curves, so
there is actually input from all points before the Laplacian is taken. Smoothing data points before
taking derivatives, e.g., expanding the number of points used to calculate the Laplacian (Lynch,
1992), is a good counter-measure to introducing noise whenever derivative operations are used on
noisy data, as would occur if numerical Laplacians were used. In this case the spline fits develop an
analytical function with smooth Laplacians. The Laplacian permits a better localization of sources,
since there is a general diffusion of electric potential especially due to the scalp and skull. There
is dependence on the spline fits to accomplish a lot but still remaining faithful to the data, e.g.,
properly representing distant regions of cortex included at each region-site, but studies support this
approach as better than others (Srinivasan et al., 2006).

After conversion to text files, each run had a data file of about 70,000 lines, each representing
about 0.5 ms. Using Octave, the spline-Laplacian transformation was applied across 64 columns
representing electrode sites for each of these lines of data across all 245 runs.

When applied to P300 data here, the spline-Laplacian transformed data were similar, but more
tightly grouped, than the original scalp electric potential data.

3.5 Coarse-graining time resolution

The SMNI model is bast on time resolutions refractory period of τ ≈ 5 ms is taken to lie between
an absolute refractory period of ≈ 1 ms, during which another action potential cannot be initiated,
and a relative refractory period of ≈ 0.5 − −10 ms. Therefore this data was then coarse-grained
with a moving average of 4 epochs, with about 17,500 lines representing time resolutions of about
2 ms. The use of a narrow moving average to reduce noise was used effectively in copula risk
management of financial markets, as discussed in a generalized approach to applications of SMNI
(Ingber, 2007), as originally reported in the finance literature (Litterman and Winkelmann, 1998).
This method worked better in these contexts than more sophisticated algorithms developed using
random matrices (Laloux et al., 1999).

3.6 Cumulative graphs select time window

All 245 runs across all epochs were placed on one graph. Consistent with the experimental design,
this showed several regions of cumulative high amplitudes during which STM tasks were performed
by the 12 subjects. A region of continuous high amplitude was chosen of 2561 lines representing
times from 17 to 22 secs.

3.7 Cumulative graphs select electrode sites

For each of 64 electrode sites, cumulative graphs over all 245 runs for all subjects {s01 ... s12} were
examined to select sites with obvious strong signals. The four sites {05-F3, 37-AFz, 40-F4, 48-Cz}
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(a) electric potential (b) spline-Laplacian

Figure 1: Cumulative data over 20 subjects from EEG electrode site 05-F3 is displayed verus the
time section 17-22 seconds after initial presentation: (a) Raw electric potential data. (b) Averaged
spline-Laplacian data.

showed similar strong signals with two main peaks and one main valley. Other sites had varying
degrees of much larger spreads of scattered data. Fig. 1 is an example comparison from electrode
site 05-F3, using cumulative data over 20 subjects, each with 20+ runs, displaying a graph of the
electric potential data measured at one electrode across all subjects across all runs, versus a graph
of the moving-averaged (discussed above) spline-Laplacian data. The reduction of noise is due to
the moving average and spline algorithms, and the general shape change is due to the Laplacian
algorithm applied to the entire set of 64 electrodes.

3.8 All graphs

A supplemental file contains graphs relevant to these calculations,

https://www.ingber.com/smni16 large-scale molecular EEGgraphs.pdf

The first three pages are a pdf rendering of the 64-channel page in

http://www.biosemi.com/download/Cap coords all.xls

The pdf file contains are two sets of graphs, side by side, the raw potentials and the spline-
Laplacian transformed potentials:

3.8.1 Raw potential

This set of 64 graphs contains all 245 runs from all 12 subjects of raw electric potential data for
each electrode site, within the time ranges discussed in this paper.
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3.8.2 Spline-Laplacian

This set of 64 graphs contains all 245 runs from all 12 subjects of spline-Laplacian moving-averaged
transformed data for each electrode site, within the time ranges discussed in this paper.

4 Fitting theory To data

4.1 Towards a zero-fit-parameter model

In keeping more strictly with the SMNI zero-fit-parameter philosophy, fits to data minimize the
number of parameters to more strongly test theory. Here, parameters are just the strength of
regional connections. Simple functional contributions of data (spline-Laplacian transformations
of scalp electric potential) dependence, drift-dependent as discussed below, to BG

G′ background
were taken to be 1/2 of the no-A model. No additional parameters are considered necessary to
make the strong point that DCM is a better fit to the data than CM, both of which are better
than no CM. Therefore, there also are no parameters scaling electric potentials to mesocolumnar
firings as in previous papers, but rather the data was used to determine scales as discussed below.
This was done in the context of using spline-Laplacian transformations, to more strictly enforce
the correspondence between the transformed data and the mesocolumnar firings, which may be
electrode as well as subject dependent (due to difference in skull/scalp properties, etc.).

4.2 Refine data

Instead of scaling columnar firings with parameters, for each subject, for all runs using the chosen
section of spline-Laplacian data, the maximum and minimum values of data were used to scale
maximum and minimum firing, ±NE within each region, i.e., in each region, each spline-Laplacian
data point sl was scaled to firing states by the factor Msl,

sl > 0 : Msl = min[NE , sl ∗NE/(max[max(sl), |min(sl)|])]

sl < 0 : Msl = max[−NE , sl ∗NE/(max[max(sl), |min(sl)|])] (16)

4.3 A contribution to synaptic background

The waves depend on aggregates of their Π = p + qA dynamics. E.g., this can be modeled as a
Taylor expansion in |A|,

BG
G′ → BG

G′ + AB′GG′ , B
‡E
E′ = B‡EE′ + AB′‡EE′ (17)

For the A model, only for B′EG′ was added with a factor of the SMNI drift. The contribution of the
product AB′GG′ is taken to be a drift factor multiplied by a factor of BG

G′ . The drift for each region
is not calculated from any trend of the data, but from the SMNI nonlinear drift gG, as a moving
average over the last 3 epochs representing about 6 ms. The moving-averaged drift numerically fell
between -0.5 and 0.5.

4.4 Summary of proportionalities

In summary,
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MG ∝ I

EEG ∝ I

A ∝ I

B′EG′ ∝ [Ca2+]

[Ca2+] ∝ A (18)

where the last proportionality applies to the influence of A on free [Ca2+] at synapses via Π =
p + qA.

4.5 ASA

The author’s Adaptive Simulated Annealing (ASA) code (Ingber, 1993) is used for all optimization
to fit SMNI parameters to EEG data.

The main ASA OPTIONS that were turned on to tune the optimization were:

ASA FUZZY
QUENCH PARAMETERS with OPTIONS→User Quench Param Scale [] = 1.75
QUENCH COST with OPTIONS→User Quench Cost Scale = 2
ASA QUEUE with OPTIONS→Queue Size = 5
OPTIONS→Limit Generated = 3000000

The QUENCH OPTIONS were set to get good convergence to minima, tested with longer runs
without the QUENCHing within 1,000,000 generated states.

The simplex code, contained in the asa usr.c file of the ASA code, was run after ASA, permitting
up to 5000 additional generated states. No better solutions were obtained within max-min bounds
of parameters.

Runs were performed on The Extreme Science and Engineering Discovery Environment plat-
forms, as described at XSEDE.org. XSEDE clock time running 24 nodes under MPI, i.e., inde-
pendent runs for each of 12 subjects, each subject run with A model and no-A model, was 37 h
on Stampede (Texas Advanced Computing Center (TACC) Dell PowerEdge C8220 Cluster with
Intel Xeon Phi coprocessors) = 888 CPU h per run, or 48 h on Gordon (San Diego Supercomputer
Center (SDSC) Appro with 8-core, 2.6-GHz Intel Sandy Bridge processors) = 1152 CPU h per run.

4.6 Compare testing with training

For each of the 12 subjects, it was possible to find 10 Training runs and 10 Testing runs. Comparison
with switched runs for Training and Testing reveals some subjects with modest outlier runs; i.e.,
if they were consistent across runs, then their Training cost functions should be less than their
Testing cost functions. The Table below presents the results. As can be seen, the A model clearly
outperformed the no-A model. Note that cost functions with an |A| model are much worse than
either the A model or the no-A model. Runs with different signs on the drift and on the absolute
value of the drift also gave much higher cost functions than the A model.
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Table 1: Column 1 is the subject number; the other columns are cost functions. Columns 2 and
3 are no-A model’s Training (TR0) and Testing (TE0). Columns 4 and 5 are A model’s Training
(TRA)and Testing (TEA). Columns 4 and 5 are no-A model’s Training (TRs0) and Testing (TEs0),
with switched runs. Columns 6 and 7 are A model’s Training (TRsA)and Testing (TEsA), with
switched runs. Columns 8 and 9 are |A| model’s Training (TR|A|) and Testing (TE|A|).

Sub TR0 TE0 TRA TEA TRs0 TEs0 TRsA TEsA TR|A| TE|A|
s01 85.61 121.4 62.08 97.31 120.3 86.85 96.62 62.90 98.17 132.3
s02 70.66 51.27 52.90 36.56 51.02 70.81 36.45 53.05 96.92 79.31
s03 61.26 79.58 43.12 55.63 78.96 61.43 55.24 43.22 83.74 104.5
s04 52.25 64.12 34.46 46.58 63.49 53.06 45.98 35.00 70.77 83.36
s05 67.20 72.22 47.29 51.44 71.30 67.78 51.14 47.64 85.52 88.36
s06 84.46 69.44 64.89 45.17 68.88 84.58 44.72 64.98 96.90 82.72
s07 68.60 78.62 49.67 56.87 78.37 68.76 56.77 49.76 87.00 95.64
s08 47.09 44.16 34.23 34.89 43.46 47.89 34.76 34.57 72.11 68.90
s09 47.52 25.22 39.19 16.47 24.96 48.06 16.29 39.74 85.37 66.76
s10 53.10 33.33 40.35 22.51 33.10 53.81 22.39 40.75 75.93 66.75
s11 43.91 51.15 33.21 37.64 50.93 44.38 37.52 33.50 70.90 87.31
s12 45.71 45.20 30.99 31.58 44.85 46.07 31.45 31.15 65.15 70.59

5 Conclusion

An SMNI model has been developed to calculate coupling of molecular scales of Ca2+ wave dynamics
with A fields developed at macroscopic regional scales measured by coherene neuronal firing activity
measured by scalp EEG during STM tasks. This requires crossing molecular, microscopic (synaptic
and neuronal), mesoscopic (minicolumns and macrocolumns), and macroscopic regional scales.

Considerations of both classical and quantum physics give predictions of the influence of A on
the momenta of Ca2+ waves during STM processing as measured by scalp EEG. Since the spatial
scales of Ca2+ wave and macro-EEG are quite disparate, an experiment would have to be able to
correlate both scales in time scales on the order of tens of milliseconds.

This study is robust against much theoretical modeling, as experimental data is used wherever
possible. The theoretical construct of the canonical momentum Π = p + qA is firmly entrenched
in classical and quantum mechanics.

Previous calculations appeared to suffer from severe outliers in the EEG data used to fit the
SMNI models. Therefore new data was sought and after a selection was made, care was taken to
select sections of data appropriate to the SMNI model, e.g., during P300 task, moving averages
consistent with SMNI time scales, etc. New fits indeed show that the A is a much better fit to the
data than the no-A model.
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