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Abstract

A series of inter-disciplinary papers suggests algorithms to add affective modulation to processing of
information defined by probability distributions fit to real data.
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1. Introduction

1.1. Description Without Equations

This paper does not contain equations.

1.2. Necessity for Affective Modulation

The necessity for affective/emotional/ethical modulation of information can be read in the Model of
Models (MOM) of a recent paper, “Quantum calcium-ion interactions with EEG” (Ingber, 2018), where it
is pointed out that “humans are ultimately responsible for structures they build.” Having an audit trail
back to primary mechanisms is an essential component of Science, and only now are some attempts being
made to better understand this in neural networks (Iten et al, 2020).

That paper (Ingber, 2018) is in the context of interactions across multiple scales of macroscopic
synchronous firing of many neuron in regions of neocortex, as measured by electroencephalographic
recordings (EEG), with quantum-scale Ca2+ ionic wav e-packets at tripartite neuron-astrocyte-neuron
junctions. This may be relevant in this context as, if the premises therein are experimentally determined
to be true, then a reasonable proof of Free Will is obtained. In the current context, if affective/emotional
states are relevant to AI, then BI may offer circumstances under which AI too may possess "Free Will" if
in fact affective modulation offers alternative choices among patterns of information.

It is readily apparent in Biological Intelligence (BI) that the role of affective/emotional influences most
often cannot be neglected. Much of Artificial Intelligence (AI) leans heavily in its model development on
BI (Ingber, 1988; Ingber, 2007; Ingber, 2008; Ingber, 2011).

1.3. ISM

The purpose of this paper is not to repeat details of published mathematics and algorithms (but referenced
here) that have been successful in several disciplines, but rather to describe how those algorithms may be
applied in the current context of affective/emotional importance to AI and how this may be explicitly fit to
real data.

1.4. Methodology

Basically, affective modulation is introduced via products of probabability distributions, basically
“simply” expanding the number of variables beyond that previously considered by ISM. The new
variables appear as multiples of some of the previous ISM variables, and coefficients to be fit to data
multiply these factors. Affective distributions contain (nonlinear, mixed) affective variables per se as well
as pattern of information. Use of Simulated Annealing (SA) to fit parameters to data is very appropriate
for such systems. The use of path-integral methods over all products of probability distributions as
functions of such variables also is very appropriate. The author has published many numerical studies
across multiple disciplines detailing the use of his Adaptive Simulated Annealing (ASA) code (Ingber,
1993), originally called Very Fast Simulated Reannealing (Ingber, 1989), and his classical-physics
PATHINT (Ingber, Fujio & Wehner, 1991; Ingber & Nunez, 1995; Ingber, Srinivasan & Nunez, 1996;
Ingber, 2000a; Ingber, 2009) and quantum-mechanical qPATHINT codes (Ingber, 2017b; Ingber, 2017a).

A core premise which has been used to fit EEG data to model of Statistical Mechanics of Neocortical
Interactions (SMNI) (Ingber, 1981; Ingber, 1982; Ingber, 1984a; Ingber, 1984b; Ingber, 1992; Ingber,
1994) is that attentional processes process patterns of info among large numbers of synchronously firing
neurons as measured by EEG (Ingber, 1991; Ingber, 1996; Ingber, 1997; Ingber, 2000b). This work since
circa 1980 has been extended since 2012 to including influences of free quantum Ca2+-ion wav e packets
generated at tripartite neuron-astrocyte-neuron junctions (Ingber, 2018; Ingber, 2019). The net result is
that Free Will may be proven to be a results of these quantum interactions. In the current context,
affective modulation can modify these actions. The author has accounts on quantum computers to further
study these processes, e.g., on Rigetti and D-Wav e systems.

As proposed in ISM for processing patterns of information, here too parameters in cost functions of
affective distributions can be simply added to SA fits of data.
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Of course, an important consideration is that similar modeling can be dones with neural nets, e.g., by
adding affective layers, or with fuzzy logic, e.g., applied to the joint set of affective contexts and patterns,
etc.

1.5. Sections

The next Section gives a description of ISM. The next Section gives a specific example of how
calculations proceed. The Conclusion follows.

2. Ideas by Statistical Mechanics

A briefing (Allen, 2004) demonstrates the breadth and depth complexity required to address real
diplomatic, information, military, economic (DIME) factors for the propagation/evolution of ideas
through defined populations. An open mind would conclude that it is possible that multiple approaches
may be required for multiple decision makers in multiple scenarios. However, it is in the interests of
multiple decision−makers to as much as possible rely on the same generic model for actual computations.
Many users would have to trust that the coded model is faithful to process their inputs.

Similar to DIME scenarios, sophisticated competitive marketing requires assessments of responses of
populations to new products.

Many large financial institutions are now trading at speeds barely limited by the speed of light. They
co−locate their servers close to exchange floors to be able to turn quotes into orders to be executed within
msecs. Clearly, trading at these speeds require automated algorithms for processing and making
decisions. These algorithms are based on “technical” information derived from price, volume and quote
(Level II) information. The next big hurdle to automated trading is to turn “fundamental” information
into technical indicators, e.g., to include new political and economic news into such algorithms.

There is a growing awareness of the importance of multiple scales in many physical and biological
systems, including neuroscience (Anastassiou et al, 2011; Nunez et al, 2013). As yet, there do not seem
to be any explicit top-down mechanisms that directly drive bottom-up processes that describe memory,
attention, etc. Of course, there are many top-down type studies demonstrating that neuromodulator
(Silberstein, 1995) and neuronal firing states, e.g., as defined by electroencephalographic (EEG)
frequencies, can modify the milieu of individual synaptic and neuronal activity, which is still consistent
with ultimate bottom-up paradigms. However, there is a logical difference between top-down milieu as
conditioned by some prior external or internal conditions, and some direct top-down processes that direct
cause bottom-up interactions specific to short-term memory (STM).

A recent study crosses molecular (Ca2+ ions), microscopic (synaptic and neuronal), mesoscopic
(minicolumns and macrocolumns), and macroscopic (regional scalp EEG) scales (Ingber, Pappalepore &
Stesiak, 2014). Calculations support the interaction between synchronous columnar firings large enough
to be measured by scalp EEG and molecular scales contributing to synaptic activity: On one hand, the
influence of macroscopic scales on molecular scales is calculated via the evolution of Ca2+ quantum wav e
functions. On the other hand, the influence of Ca2+ waves is described in the context of a statistical
mechanics model that already has been verified as calculating experimental observables, aggregating and
scaling up from synaptic activity, to columnar neuronal firings, to regional synchronous activity fit to
EEG while preserving an audit trail back to underlying synaptic interactions.

In the above context of multiple scales of neocortical interactions, it seems reasonable to propose that an
AI/robotic system that wishes to take advantage of modelling of neocortex take such multiple scales of
interaction into account in basic design.

2.1. Background

The concept of “memes” is an example of an approach to deal with DIME factors (Situngkir, 2004). The
meme approach, using a reductionist philosophy of evolution among genes, is reasonably contrasted to
approaches emphasizing the need to include relatively global influences of evolution (Thurtle, 2006).

There are multiple other alternative works being conducted world−wide that must be at least kept in mind
while developing and testing models of evolution/propagation of ideas in defined populations: A study on
a simple algebraic model of opinion formation concluded that the only final opinions are extremal ones
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(Aletti et al, 2006). A study of the influence on chaos on opinion formation, using a simple algebraic
model, concluded that contrarian opinion could persist and be crucial in close elections, albeit the authors
were careful to note that most real populations probably do not support chaos (Borghesi & Galam, 2006).
A limited review of work in social networks illustrates that there are about as many phenomena to be
explored as there are disciplines ready to apply their network models (Sen, 2006).

2.2. Statistical Mechanics of Neocortical Interactions (SMNI)

A class of AI algorithms that has not yet been developed in this context takes advantage of information
known about real neocortex. It seems appropriate to base an approach for propagation of ideas on the
only system so far demonstrated to develop and nurture ideas, i.e., the neocortical brain. A statistical
mechanical model of neocortical interactions, developed by the author and tested successfully in
describing short−term memory (STM) and electroencephalography (EEG) indicators, is the proposed
bottom−up model. Ideas by Statistical Mechanics (ISM) is a generic program to model evolution and
propagation of ideas/patterns throughout populations subjected to endogenous and exogenous interactions
(Ingber, 2006).

ISM develops subsets of macrocolumnar activity of multivariate stochastic descriptions of defined
populations, with macrocolumns defined by their local parameters within specific regions and with
parameterized endogenous inter−regional and exogenous external connectivities. Parameters of subsets of
macrocolumns will be fit to patterns representing ideas. Parameters of external and inter−regional
interactions will be determined that promote or inhibit the spread of these ideas. Fitting such nonlinear
systems requires the use of sampling techniques.

The author’s approach uses guidance from his statistical mechanics of neocortical interactions (SMNI),
developed in a series of about 30 published papers from 1981−2015 (Ingber, 1983; Ingber, 1985; Ingber,
1992; Ingber, 1994; Ingber, 1995; Ingber, 1997; Ingber, 2011; Ingber, 2012b; Nunez et al, 2013; Ingber,
Pappalepore & Stesiak, 2014; Ingber, 2015). These papers also address long−standing issues of
information measured by electroencephalography (EEG) as arising from bottom−up local interactions of
clusters of thousands to tens of thousands of neurons interacting via short−ranged fibers), or top−down
influences of global interactions (mediated by long−ranged myelinated fibers). SMNI does this by
including both local and global interactions as being necessary to develop neocortical circuitry.

2.3. Sampling Tools

Computational approaches developed to process different approaches to modeling phenomena must not be
confused with the models of these phenomena. For example, the meme approach lends it self well to a
computational scheme in the spirit of genetic algorithms (GA). The cost/objective function that describes
the phenomena of course could be processed by any other sampling technique such as simulated
annealing (SA). One comparison (Ingber & Rosen, 1992) demonstrated the superiority of SA over GA on
cost/objective functions used in a GA database. That study used Very Fast Simulated Annealing (VFSR),
created by the author for military simulation studies (Ingber, 1989), which has evolved into Adaptive
Simulated Annealing (ASA) (Ingber, 1993; Ingber, 2012a). However, it is the author’s experience that the
Art and Science of sampling complex systems requires tuning expertise of the researcher as well as good
codes, and GA or SA likely would do as well on cost functions for this study.

Below, only a few topics relevant to ISM are discussed. More details are in longer papers (Ingber, 2006;
Ingber, 2007).

2.4. SMNI Applied to Artificial Intelligence

Neocortex has evolved to use minicolumns of neurons interacting via short−ranged interactions in
macrocolumns, and interacting via long−ranged interactions across regions of macrocolumns. This
common architecture processes patterns of information within and among different regions of sensory,
motor, associative cortex, etc. Therefore, the premise of this approach is that this is a good model to
describe and analyze evolution/propagation of Ideas among defined populations.

Relevant to this study is that a spatial−temporal lattice−field short−time conditional multiplicative−noise
(nonlinear in drifts and diffusions) multivariate Gaussian−Markovian probability distribution is developed
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faithful to neocortical function/physiology. Such probability distributions are a basic input into the
approach used here. The SMNI model was the first physical application of a nonlinear multivariate
calculus developed by other mathematical physicists in the late 1970’s to define a statistical mechanics of
multivariate nonlinear nonequilibrium systems (Graham, 1977; Langouche et al, 1982).

2.4.1. SMNI Tests on STM and EEG

SMNI builds from synaptic interactions to minicolumnar, macrocolumnar, and regional interactions in
neocortex. Since 1981, a series of SMNI papers has been developed model columns and regions of
neocortex, spanning mm to cm of tissue. Most of these papers have dealt explicitly with calculating
properties of STM and scalp EEG in order to test the basic formulation of this approach (Ingber, 1983;
Ingber, 1985; Ingber & Nunez, 1995).

The SMNI modeling of local mesocolumnar interactions (convergence and divergence between
minicolumnar and macrocolumnar interactions) was tested on STM phenomena. The SMNI modeling of
macrocolumnar interactions across regions was tested on EEG phenomena.

Figure 1. Illustrated are three biophysical scales of neocortical interactions: (a)−(a*)−(a’)
microscopic neurons; (b)−(b’) mesocolumnar domains; (c)−(c’) macroscopic regions (Ingber,
1983). SMNI has developed appropriate conditional probability distributions at each level,
aggregating up from the smallest levels of interactions. In (a*) synaptic inter−neuronal
interactions, averaged over by mesocolumns, are phenomenologically described by the mean
and variance of a distribution Ψ. Similarly, in (a) intraneuronal transmissions are
phenomenologically described by the mean and variance of Γ. Mesocolumnar averaged
excitatory (E) and inhibitory (I ) neuronal firings M are represented in (a’). In (b) the vertical
organization of minicolumns is sketched together with their horizontal stratification, yielding
a physiological entity, the mesocolumn. In (b’) the overlap of interacting mesocolumns at
locations r and r′ from times t and t + τ is sketched. In (c) macroscopic regions of neocortex
are depicted as arising from many mesocolumnar domains. (c’) sketches how regions may be
coupled by long−ranged interactions.

2.4.2. SMNI Description of STM

SMNI studies have detailed that maximal numbers of attractors lie within the physical firing space of both
excitatory and inhibitory minicolumnar firings, consistent with experimentally observed capacities of
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auditory and visual STM, when a “centering” mechanism is enforced by shifting background noise in
synaptic interactions, consistent with experimental observations under conditions of selective attention
(Ingber, 1985; Ingber, 1994).

These calculations were further supported by high−resolution evolution of the short−time
conditional−probability propagator using PATHINT (Ingber & Nunez, 1995). SMNI correctly calculated
the stability and duration of STM, the primacy versus recency rule, random access to memories within
tenths of a second as observed, and the observed 7 ± 2 capacity rule of auditory memory and the observed
4 ± 2 capacity rule of visual memory.

SMNI also calculates how STM patterns (e.g., from a given region or even aggregated from multiple
regions) may be encoded by dynamic modification of synaptic parameters (within experimentally
observed ranges) into long−term memory patterns (LTM) (Ingber, 1983).

2.4.3. SMNI Description of EEG

Using the power of this formal structure, sets of EEG and evoked potential data from a separate NIH
study, collected to investigate genetic predispositions to alcoholism, were fitted to an SMNI model on a
lattice of regional electrodes to extract brain “signatures” of STM (Ingber, 1997). Each electrode site was
represented by an SMNI distribution of independent stochastic macrocolumnar−scaled firing variables,
interconnected by long−ranged circuitry with delays appropriate to long−fiber communication in
neocortex. The global optimization algorithm ASA was used to perform maximum likelihood fits of
Lagrangians defined by path integrals of multivariate conditional probabilities. Canonical momenta
indicators (CMI) were thereby derived for individual’s EEG data. The CMI give better signal recognition
than the raw data, and were used to advantage as correlates of behavioral states. In−sample data was used
for training (Ingber, 1997), and out−of−sample data was used for testing these fits.

The architecture of ISM is modeled using scales similar to those used for local STM and global EEG
connectivity.

2.5. Generic Mesoscopic Neural Networks

SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) (Ingber, 1992), adding
computational power to a similar paradigm proposed for target recognition.

Figure 2. Scales of interactions among minicolumns are represented, within macrocolumns,
across macrocolumns, and across regions of macrocolumns.

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
firings, or multivariate firings. The “weights,” or coefficients of functions of firings appearing in the drifts
and diffusions, are fit to incoming data, considering the joint “effective” Lagrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function. This program of
fitting coefficients in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian
path−integral algorithm, i.e., a set of coupled Langevin rate−equations. A coarse deterministic estimate to
“predict” the evolution can be applied using the most probable path, but PATHINT has been used.
PATHINT, even when parallelized, typically can be too slow for “predicting” evolution of these systems.
However, PATHTREE is much faster.



AI, ISM, Affective Modulation - 7 -  L. Ingber

2.6. Architecture for Selected ISM Model

The primary objective is to deliver a computer model that contains the following features: (1) A
multivariable space will be defined to accommodate populations. (2) A cost function over the population
variables in (1) will be defined to explicitly define a pattern that can be identified as an Idea. A very
important issue is for this project is to develop cost functions, not only how to fit or process them. (3)
Subsets of the population will be used to fit parameters — e.g, coefficients of variables, connectivities to
patterns, etc. — to an Idea, using the cost function in (2). (4) Connectivity of the population in (3) will be
made to the rest of the population. Investigations will be made to determine what endogenous
connectivity is required to stop or promote the propagation of the Idea into other regions of the
population. (5) External forces, e.g., acting only on specific regions of the population, will be introduced,
to determine how these exogenous forces may stop or promote the propagation of an Idea.

2.6.1. Multiple Scales of SMNI Interactions

A model has been developed to calculate and experimentally test the coupling of molecular scales of Ca2+

wave dynamics with A fields developed at macroscopic regional scales measured by coherent neuronal
firing activity measured by scalp EEG (Ingber, Pappalepore & Stesiak, 2014). The author has been PI of
six 2013-2018 computer grants that made this work possible, under the National Science Foundation
Extreme Science and Engineering Discovery Environment (XSEDE.org). The current project is under a
new XSEDE grant started 4 February 2019.

For sev eral decades biological and biophysical research into neocortical information processing has
explained neocortical interactions as specific bottom-up molecular and smaller-scale processes
(Rabinovich et al, 2006). It is clear that most molecular approaches consider it inevitable that their
approaches at molecular and possibly even quantum scales will yet prove to be causal explanations of
relatively macroscopic phenomena.

This recent study crosses molecular, microscopic (synaptic and neuronal), mesoscopic (minicolumns and
macrocolumns), and macroscopic regional scales. Over the past three decades, with regard to STM and
LTM phenomena, which themselves are likely components of other phenomena like attention and
consciousness, the SMNI approach has yielded specific details of STM not present in molecular
approaches (Ingber, 2012b). The SMNI calculations detail information processing capable of neocortex
using patterns of columnar firings, e.g., as observed in scalp EEG (Salazar et al, 2012), which give rise to
a SMNI vector potential A that influences the molecular Ca2+ momentum p, and thereby synaptic
interactions. Explicit Lagrangians have been given, serving as cost/objective functions that can be fit to
EEG data using ASA, as similarly performed in previous SMNI papers (Ingber, 1997; Ingber, 1998).

Considerations in both classical and quantum physics predict a predominance of Ca2+ waves in directions
closely aligned to the direction perpendicular to neocortical laminae (A is in the same direction as the
current flow, typically across laminae, albeit they are convoluted), especially during strong collective EEG
(e.g., strong enough to be measured on the scalp, such as during selective attention tasks). Since the
spatial scales of Ca2+ wave and macro-EEG are quite disparate, an experimenter would have to be able to
correlate both scales in time scales on the order of tens of milliseconds.

The basic premise of this study is robust against much theoretical modeling, as experimental data is used
wherever possible for both Ca2+ ions and for large-scale electromagnetic activity. The theoretical
construct of the canonical momentum Π = p + qA is firmly entrenched in classical and quantum
mechanics. Calculations demonstrate that macroscopic EEG A can be quite influential on the momentum
p of Ca2+ ions, at scales of both classical and quantum physics.

A single Ca2+ ion can have a momentum appreciably altered in the presence of macrocolumnar EEG
firings, and this effect is magnified when many ions in a wav e are similarly affected. Therefore, large-
scale top-down neocortical processing giving rise to measurable scalp EEG can directly influence
molecular-scale bottom-up processes. This suggests that, instead of the common assumption that Ca2+

waves contribute to neuronal activity, they may in fact at times be caused by the influence of A of larger-
scale EEG. The SMNI model supports a mechanism wherein the p + qA interaction at tripartite synapses,
via a dynamic centering mechanism (DCM) to control background synaptic activity, acts to maintain STM
during states of selective attention. Such a top-down effect awaits forensic in vivo experimental
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verification, requiring appreciating the necessity and due diligence of including true multiple-scale
interactions across orders of magnitude in the complex

2.7. Application of SMNI Model

The approach is to develop subsets of Ideas/macrocolumnar activity of multivariate stochastic descriptions
of defined populations (of a reasonable but small population samples, e.g., of 100−1000), with
macrocolumns defined by their local parameters within specific regions (larger samples of populations)
and with parameterized long−ranged inter−regional and external connectivities. Parameters of a given
subset of macrocolumns will be fit using ASA to patterns representing Ideas, akin to acquiring
hard−wired long−term memory (LTM) patterns. Parameters of external and inter−regional interactions
will be determined that promote or inhibit the spread of these Ideas, by determining the degree of fits and
overlaps of probability distributions relative to the seeded macrocolumns.

That is, the same Ideas/patterns may be represented in other than the seeded macrocolumns by local
confluence of macrocolumnar and long−ranged firings, akin to STM, or by different hard−wired
parameter LTM sets that can support the same local firings in other regions (possible in nonlinear
systems). SMNI also calculates how STM can be dynamically encoded into LTM (Ingber, 1983).

Small populations in regions will be sampled to determine if the propagated Idea(s) exists in its pattern
space where it did exist prior to its interactions with the seeded population. SMNI derives nonlinear
functions as arguments of probability distributions, leading to multiple STM, e.g., 7 ± 2 for auditory
memory capacity. Some investigation will be made into nonlinear functional forms other than those
derived for SMNI, e.g., to have capacities of tens or hundreds of patterns for ISM.

3. Specific Application

An example of a specific application of the above to affective modulation of information processing
follows. This project project is under a new XSEDE grant started 4 February 2019.

(A) The SMNI Lagrangian used to study EEG is fit to attentional alpha data. P300 data is common in
emotion databases (Zheng & Lu, 2015; Zheng, Liu et al, 2019). This stage uses the same approach as
previous studies, e.g., including quantum Ca wav es (Ingber, 2018).

(B) A parameterized modulating distribution is used to fit emotional beta and gamma data as an affective
filter (B) over (A), using (A) parameters and fitting (B) parameters. This fit may use differential entropy,
and may include data from alpha frequencies for negative emotions (Zheng & Lu, 2015; Zheng, Liu et al,
2019), albeit fitting the Lagrangian is sufficient to calculate differential entropy afterwards for
comparisons to previous studies.

Differential entropy is straightforwardly calculated in terms of the distribution defined by the Lagrangian
used for the affective modulation, multiplied by the logarithm of this distribution. The fitted Lagrangian
(B) may be numerically integrated using PATHINT, but this likely is not required to fit short-time data.

Laplacian preprocessing of EEG data likely not necessary anymore, since SMNI has long-ranged and
short-ranged neural connectivity. This then requires parameterized short- and long-ranged connections,
and the data determines strengths. Note that six electrodes {FT7, FT8, T7, T8, TP7, TP8} are likely
sufficient for this study (Zheng, Liu et al, 2019).

Most likely this project will borrow some aspects of Multiplicative Recurrent Neural Network (MRNN)
(Sussillo et al, 2016) to deal with known issues of changing contexts during recording of data which have
plagued many previous studies, including some SMNI studies (Ingber, 2016; Ingber, 2018). For example,
this may simply use ASA importance-sampling for a given subject’s initial data, then use the modified
simplex code (Nelder & Mead, 1964; Barabino et al, 1980) that comes with ASA to update additional
data from future sessions but confined to narrow ranges of final parameters from the initial ASA fits.

4. Conclusion

It seems appropriate to base an approach for propagation of generic ideas on the only system so far
demonstrated to develop and nurture ideas, i.e., the neocortical brain. A statistical mechanical model of
neocortical interactions, developed by the author and tested successfully in describing short−term memory
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and EEG indicators, Ideas by Statistical Mechanics (ISM) (Ingber, 2006; Ingber, 2007) is the proposed
model. ISM develops subsets of macrocolumnar activity of multivariate stochastic descriptions of defined
populations, with macrocolumns defined by their local parameters within specific regions and with
parameterized endogenous inter−regional and exogenous external connectivities. Tools of financial risk
management, developed to process correlated multivariate systems with differing non−Gaussian
distributions using modern copula analysis, importance−sampled using ASA, will enable bona fide
correlations and uncertainties of success and failure to be calculated.
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