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The Laplacian and Wave Mechanics

ABSTRACT: This paper discusses the conversion of a Lagrangian to a Laplacian from a 2010 publication
in Mathematical Biosciences (Ingber & Nunez, 2010). Another paper published in 1985 in IEEE
Transactions in Biomedical Engineering performed similar calculations (Ingber, 1985a). In treating
global mechanisms, we include myelinated axon propagation delays and periodic boundary conditions in
the cortical-white matter system, topologically close to a spherical shell. The local mechanisms are
multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical
model consisting of a stretched string with attached nonlinear springs demonstrates this idea. The string
produces standing waves analogous to large-scale coherent EEG. The attached springs are analogous to
the smaller mesoscopic columnar dynamics. A statistical mechanics of neocortical interactions (SMNI)
calculates oscillatory behavior consistent with EEG, within columns, between neighboring columns via
short-ranged non-myelinated fibers, and across cortical regions via myelinated fibers, to derive the string
equation.
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1. The Stretched String With Attached Springs

In order to distinguish theories of large-scale neocortical dynamics, we have proposed the label local
theory to indicate mathematical models of cortical or thalamo-cortical interactions for which cortico-
cortical axon propagation delays are assumed to be zero. The underlying time scales in these theories
typically originate from membrane time constants giving rise to PSP rise and decay times. Thalamo-
cortical networks are also “local” from the viewpoint of a surface electrode, which cannot distinguish
purely cortical from thalamocortical networks. Finally, these theories are "local" in the sense of being
independent of global boundary conditions dictated by the size and shape of the cortical-white matter
system. By contrast, we adopt the label global theory to indicate mathematical models in which delays in
the cortico-cortical fibers forming most of the white matter in humans provide the important underlying
time scale for the large scale EEG dynamics recorded by scalp electrodes. Periodic boundary conditions
are generally essential to global theories because the cortical-white matter system is topologically close to
a spherical shell.

While this picture of distinct local and global models grossly oversimplifies expected genuine dynamic
behaviors with substantial cross- scale interactions, it provides a convenient entry point to brain
complexity. To facilitate our discussion, Figure 1 shows a stretched string with local stiffness (the little
boxes) as a convenient dynamic metaphor (Nunez, 1995; Ingber, 1995a) The boxes might be simple linear
springs with natural frequency w, or they might represent nonlinear systems organized in a complex
nested hierarchy. The proposed metaphorical relationships to neocortex are outlined in Table I and Figure
1. String displacement is governed by the basic string equation given by the Laplacian form

Basic String Equation
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For the simple case of homogeneous linear springs attached to a homogeneous linear string of length a
and wave speed v, the normal modes of oscillation w, are given by
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In this simple limiting case, the natural oscillation frequencies are seen as having distinct local and global
contributions given by the first and second terms on the right side of the last equation, respectively. This
same dispersion relation occurs for waves in hot plasmas and transmission lines, which might form closed
loops more similar to the periodic boundary condition appropriate for neocortical standing waves. If the
springs are disconnected, only the global dynamics remains. Or, if the string tension is relaxed, only the
local dynamics remains. Next we approach the behavior of the nonlinear system described by the basic
string equation, in which local and global effects are integrated.

Fig. 1. The string-springs analog system. The small boxes might be simple linear springs or
complex structures in a nested hierarchy analogous to columnar scale brain morphology
(Ingber & Nunez, 2010).

String/Spring Neocortex/White Matter

String displacement ®P(x, 1) Any cortical field (synaptic, firing density)
String wave speed v Cortico-cortico axon speed

Spring natural frequency Simple cortico-thalamic feedback
Nonlinear stiffness wg + f[DP(x,1)] Multiple-scale nonlinear columnar effects
Relax string tension v — 0 Ignore axon delays

Disconnect boxes (springs) wy, f(®) - 0 | Ignore local dynamics

Table I. The string-springs system as a neocortical dynamic analog

2. Columnar Scales

Nature has developed structures at intermediate scales in many biological as well as in many non-
biological systems to facilitate flows of information between relatively small and large scales of activity.
Many systems possess such structures at so-called mesoscopic scales, intermediate between microscopic
and macroscopic scales, where these scales are typically defined specific to each system, and where the
mesoscopic scale typically facilitates information between the microscopic and macroscopic scales.
Typically, these mesoscopic scales have their own interesting dynamics.

A statistical mechanics of neocortical interactions (SMNI) for human neocortex has been developed,
building from synaptic interactions to minicolumnar, macrocolumnar, and regional interactions in
neocortex (Ingber, 1982; Ingber, 1983). Over a span of about 40 years, a series of about 40 SMNI papers
has been developed to model columns and regions of neocortex, spanning mm to cm of tissue. SMNI
uses tools of nonlinear nonequilibrium multivariate statistical mechanics, a subfield of statistical
mechanics dealing with Gaussian Markovian systems with time-dependent drifts and correlated
diffusions, with both drifts and diffusions nonlinear in their multiple variables.

SMNI has described columnar activity to be an effective mesoscopic scale intermediate between
macroscopic regional interactions and microscopic averaged synaptic and neuronal interactions. Such



L. Ingber - Page 3 - Lagrangian to Laplacian

treatment of neuronal activity, beyond pools of individual neurons, is based on evidence of mesoscopic
neocortical columnar anatomy as well as physiology which possess their own dynamics (Mountcastle,
1978; Buxhoeveden & Casanova, 2002). It is important to note that although columnar structure is
ubiquitous in neocortex, it is by no means uniform nor is it so simple to define across many areas of the
brain (Rakic, 2008). While SMNI has calculated phenomena like short-term memory (STM) and EEG to
validate this model, there is as yet no specific real columnar data to validate SMNI’s precise functional
form at this scale. As found in the nature of intermediate scales in many chemical and biological systems,
neuronal columnar structures display their own influences in neocortical information processing. For
example, it has been proposed that interactions between minicolumns and complex glial networks, involve
reciprocal magnetic interaction between neurons and astrocytes, influencing cerebral memory and
computation (Banaclocha, 2007; Ingber, 2009b). There is ongoing research into algorithms that
minicolumnar and macrocolumnar structures might use for neocortical information processing (Rinkus,
2010). This has included quantum effects (Ingber, 2018; Ingber, 2021). An example has been given of
the use of nano-robots to deliver drugs targeted to specific molecular sites to aid STM.

This research also points to functional forms that can produce more accurate neural networks, thereby
enhancing Artifical Intelligence (Al) by better mapping information from Biological Intelligence into Al,
e.g., neuron-astrocyte-neuron tripartite interactions (Ingber, 2022b). Another important aspect of Al
research should promote instilling affective understanding into Al systems, to better control “unintended
consequences” of Al; this will require tests for Al systems (Ingber, 2022a).

When dealing with stochastic systems, there are several useful tools available when these systems can be
described by Gaussian-Markovian probability distributions, even when they are in non-equilibrium,
multivariate, and quite nonlinear in their means and variances. SMNI has demonstrated how most likely
states described by such distributions can be calculated from the variational principle associated with
systems, i.e., as Euler-Lagrange (EL) equations directly from the SMNI Lagrangian (Noether, 1918;
Langouche et al, 1982). This Lagrangian is the argument in the exponent of the SMNI probability
distribution. The EL equations are developed from a variational principle applied to this distribution, and
they give rise to a nonlinear string model used by many neuroscientists to describe global oscillatory
activity (Ingber, 1995a).

It is obvious that the mammalian brain is complex and processes information at many scales, and it has
many interactions with sub-cortical structures. SMNI is appropriate to just a few scales and deals
primarily with cortical structures. While SMNI has included some specific regional circuitry to address
EEG calculations discussed below, details of laminar structure within minicolumns have not been
included. Such laminar circuitry is of course important to many processes and, as stated in previous
SMNI papers, it can be included by adding more variables. Some laminar structure is implicitly assumed
in phenomena dealing with electromagnetic phenomena that depend on some systematic alignment of
pyramidal neurons. Care has been taken to test SMNI at the appropriate scales, by calculating
experimentally observed phenomena, and to some readers it may be surprising that it is so reasonably
successful in these limited endeavors. The mathematics used is from a specialized area of multivariate
nonlinear nonlinear nonequilibrium statistical mechanics (Langouche et al, 1982), and SMNI was the first
physical application of these methods to the brain. In this paper, the mathematics used in all SMNI
publications is not repeated, albeit referenced, but only enough mathematics is used to deal with the topic
being presented. These EL equations are direct calculations of the nonlinear multivariate EL equations of
the SMINI Lagrangian, giving most likely states of the system. The EL equations are quite general and are
well known in physics for representing strings as well as springs, in simple as well as in complex
stochastic systems, at both classical and quantum scales. This is the focus of this paper, to show how
EEG may be conceptually viewed as a “string of springs.”

3. SMNI

Neocortex has evolved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions across regions of macrocolumns. This
common architecture processes patterns of information within and among different regions, e.g., sensory,
motor, associative cortex, etc.
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As depicted in Figure 2, SMINI develops three biophysical scales of neocortical interactions: (a)—(a*)—(a’)
microscopic neurons (Sommerhoff, 1974); (b)-(b’) mesocolumnar domains (Mountcastle, 1978); (c)-(c’)
macroscopic regions. SMNI has developed conditional probability distributions at each level, aggregating
up several levels of interactions. In (a*) synaptic inter-neuronal interactions, averaged over by
mesocolumns, are phenomenologically described by the mean and variance of a distribution W (both
Poisson and Gaussian distributions were considered, giving similar results). Similarly, in (a)
intraneuronal transmissions are phenomenologically described by the mean and variance of " (a Gaussian
distribution). Mesocolumnar averaged excitatory (E) and inhibitory (/) neuronal firings M are
represented in (a’). In (b) the vertical organization of minicolumns is sketched together with their
horizontal stratification, yielding a physiological entity, the mesocolumn. In (b’) the overlap of
interacting mesocolumns at locations r and r' from times ¢ and 7+ 7 is sketched. Here 710 msec
represents typical periods of columnar firings. This reflects on typical individual neuronal refractory
periods of [l msec, during which another action potential cannot be initiated, and a relative refractory
period of J0.5—10 msec. Future research should determine which of these neuronal time scales are most
dominant at the columnar time scale taken to be 7. In (c) macroscopic regions of neocortex are depicted
as arising from many mesocolumnar domains. (c’) sketches how regions may be coupled by long—ranged
interactions.

Most of these papers have dealt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approach (Ingber, 1982; Ingber, 1983; Ingber, 1984; Ingber, 1985a;
Ingber, 1985b; Ingber & Nunez, 1990; Ingber, 1991; Ingber, 1994; Ingber & Nunez, 1995; Ingber, 1995a;
Ingber, 1995b; Ingber, 1996; Ingber, 1997; Ingber, 1998; Ingber, 2018). The SMNI modeling of local
mesocolumnar interactions, i.e., calculated to include convergence and divergence between minicolumnar
and macrocolumnar interactions, was tested on STM phenomena. The SMNI modeling of
macrocolumnar interactions across regions was tested on EEG phenomena.

T nl >0

l nl <o

Fig. 2. Illustrated are three biophysical scales of neocortical interactions: (a)-(a")-(a")
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions.
Reprinted with permission from (Ingber, 1983) by the American Physical Society.

The EEG studies in previous SMNI applications were focused on regional scales of interactions. The
STM applications were focused on columnar scales of interactions. However, this EEG study is focused
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at columnar scales, and it is relevant to stress the successes of this SMNI at this columnar scale, giving
additional support to this SMNI model in this context. A previous report considered oscillations in quasi-
linearized EL equations (Ingber, 2009a), while more recent studies consider the full nonlinear system
(Ingber, 2009b).

4. Euler-Lagrange (EL)

The EL equations are derived from the long-time conditional probability distribution of columnar firings
over all cortex, represented by M, in terms of the Action S, The path integral has a variational principle,
0L =0 which gives the EL equations for SMNI (Ingber, 1982; Ingber, 1983).

When dealing when multivariate Gaussian stochastic systems with nonlinear drifts and diffusions, it is
possible to work with three essentially mathematically equivalent representations of the same physics:
Langevin equations — coupled stochastic differential equations, a Fokker-Plank equation — a
multivariate partial differential equation, and a path-integral Lagrangian — detailing the evolution of the
short-time conditional probability distribution of the variables (Langouche ef al, 1982).

While it typically takes more numerical and algebraic expertise to deal with the path-integral Lagrangian,
there are many benefits, including intuitive numerical and algebraic tools. The Lagrangian components
and EL equations are essentially the counterpart to classical dynamics,

Lagrangian Components Giving EL. Equations

Mass = _ *L
A8 =866 = 50MG1a1)90MG Jor)
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The most-probable firing states derived from the variational principle from the path-integral Lagrangian
as the EL equations represent a reasonable average over the noise in the SMNI system. For many studies,
the noise cannot be simply disregarded, as demonstrated in other SMNI STM and EEG studies, but for the
purpose here of demonstrating the existence of multiple local oscillatory states that can be identified with
EEG frequencies, the EL equations serve very well.

The Lagrangian and associated EL equations have been developed at SMNI columnar scales, as well as
for regional scalp EEG activity by scaling up from the SMNI columnar scales as outlined below.

4.1. Strings

The nonlinear string model was derived using the EL equation for the electric potential ® measured by
EEG, considering one firing variable along the parabolic trough of attractor states being proportional to ®
(Ingber & Nunez, 1990).

Since only one variable, the electric potential is being measured, is reasonable to assume that a single
independent firing variable might offer a crude description of this physics. Furthermore, the scalp
potential ® can be considered to be a function of this firing variable. (Here, “potential” refers to the
electric potential, not any potential term in the SMNI Lagrangian.)

Probabilities
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In an abbreviated notation sub-scripting the time-dependence,
D,— < ®>=DdME, M) = a(MF- < ME >)+b(M!- < M' >) 4)

where a and b are constants, and << ® > and << MY > represent typical minima in the trough. In the
context of fitting data to the dynamic variables, there are three effective constants, {a, b, ¢},

®, - p=aMF +bM! ®)

Scaling
We scale and aggregate the mesoscopic columnar probability distributions, P, over this columnar firing
space to obtain the macroscopic conditional probability distribution over the scalp-potential space:

Po[®] = J’ aMmEam’ PIME, M115[® - ' (ME, M) (6)

Euler-Lagrange Equations
The EL equation includes variation across the spatial extent, x, of columns in regions,
0 0L d oL oL
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The result is
R *P oF
L hyp- =0 (8)
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The determinant prefactor g defined above also contains nonlinear details affecting the state of the
system. Since g is often a small number, distortion of the scale of L is avoided by normalizing g/g,
where g is simply g evaluated at M~ = MAE =M =0.

Recovering Basic String Equation

If there exist regions in neocortical parameter space such that we can identify B/a = -2, yla = a)(z), 1.€e.,
as explicitly calculated using the CM and as derived in previous SMNI EEG papers,

1 oF
55 = OS(®) ©)

then we recover the nonlinear string model.

4.2. Springs

For a given column in terms of the probability description given above, the above EL equations are
represented as

) o
dt 0OME/dt) OME
9 oL oL

=0 (10)

ot 00M'/or) oM!

To investigate dynamics of multivariate stochastic nonlinear systems, such as neocortex presents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear diffusions in particular are typically washed out.

Previous SMNI EEG studies had demonstrated that simple linearized dispersion relations derived from
the EL equations support the local generation of frequencies observed experimentally as well as deriving
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diffusive propagation velocities of information across minicolumns consistent with other experimental
studies. The earliest studies simply used a driving force J; M in the Lagrangian to model long-ranged
interactions among fibers (Ingber, 1982; Ingber, 1983). Subsequent studies considered regional
interactions driving localized columnar activity within these regions (Ingber, 1996; Ingber, 1997; Ingber,
1998).

A recent set of calculations examined these columnar EL equations to see if EEG oscillatory behavior
could be supported at just this columnar scale, i.e., within a single column. At first, the EL equations
were quasi-linearized, by extracting coefficients of M and dM/dt. The nonlinear coefficients were
presented as graphs over all firing states (Ingber, 2009a). This exercise demonstrated that a spring-type
model of oscillations was plausible. Then a more detailed study was performed, developing over two
million lines of C code from the algebra generated by an algebraic tool, Maxima, to see what range of
oscillatory behavior could be considered as optimal solutions satisfying the EL equations (Ingber, 2009b).
The answer was affirmative, in that ranges of wr = 1 were supported, implying that oscillatory solutions
might be sustainable just due to columnar dynamics at that scale. Below, the full probability distribution
is evolved with such oscillatory states, confirming this is true.

To understand the nature of the EL equations, it is useful to view the probability space over which most
likely states exist (Ingber & Nunez, 1995).

5. Numerical Details

In 1985 the author published a paper (Ingber, 1985a) on “EEG Dispersion Relations” using the linearized
Euler-Lagrange equations to derive a dispersion relation giving numerical details of the frequencies
calculated by SMNI, yielding frequencies close to the “alpha” rhythm.

At time this author was not aware that the EEG community had or had already a “wave equation” used to
describe EEG. Nevertheless, the tools described here were used as described.

As stated in that Abstract

An approach is explicitly formulated to blend a local with a global theory to investigate
oscillatory neocortical firings, to determine the source and the information-processing nature
of the alpha rhythm. The basis of this optimism is founded on a statistical mechanical theory
of neocortical interactions which has had success in numerically detailing properties of short-
term-memory (STM) capacity at the mesoscopic scales of columnar interactions, and which
is consistent with other theory deriving similar dispersion relations at the macroscopic scales
of electroencephalographic (EEG) and magnetoencephalographic (MEG) activity.

The details are given in Appendix A of (Ingber, 1985a).

Euler-Lagrange Variational Equations. The Euler-Lagrange variational equations associated with Lg
leads to a set of 12 coupled first-order differential equations, with coefficients nonlinear in M , in the 12
variables {M©, MG, MG, OMC,0*MC} in (r;t) space. In the neighborhood of extrema << Me> | Ly
can be expanded as a Ginzburg-Landau polynomial. To investigate first-order linear oscillatory states,
only powers up to 2 in each variable are kept, and from this the variational principle leads to a relatively
simple set of coupled linear differential equations with constant coefficients:

0=0Ly =Ly, —b6Lr (11)
:‘Jf|c|M|G| HEMT =~ g M+ b MM+ b M G2 G

.G .. G
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MY =M"-<M >>’fE‘_f1=Jf
These equations are then Fourier transformed and the resulting dispersion relation is examined to

determine for which values of the synaptic parameters and of ¢, the conjugate variable to r, can
oscillatory states, w(¢§), persist. E.g., solutions are sought of the form
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M =Re M§, exp[~i(£ O — wt)] (12)

M (r, 1) :I d*§dw M(();sc({’ w) expli(é T — wr)]

For instance, a typical example is specified by: extrinsic sources J; = -2.63 and J, =4.94, N* =125,
N =25 vS=10mV, Af =1.75, A’ =1.25, B¢ =0.25, and v’ = ¢° =0.1 mV. The global minima is
at M" =25 and M' = 5. This set of conditions yields (dispersive) dispersion relations

wr =+{ —1.86 +2.38(&p)*; —1.25i + 1.51i(¢ p)*} (13)

where & = |&|. The propagation velocity defined by dw/d¢ is Ol cm/sec, taking typical wave-numbers &
to correspond to macrocolumnar distances [B0Op. Calculated frequencies w are on the order of EEG
frequencies 10> sec™'. These mesoscopic propagation velocities permit processing over several
minicolumns (10™" cm, simultaneous with processing of mesoscopic interactions over tens of cm via
association fibers with propagation velocities (15600—900 cm/sec. Le., both can occur within C107 sec.

6. Summary and Conclusion

We have suggested that dynamic behavior in neocortex is due to some combination of global and local
processes with important top-down and bottom-up interactions across spatial scales, a typical feature of
many if not most complex physical, biological, social, financial, and other systems. We have focused on
electroencephalography (EEG) because EEG provides most of the existing data on the relationship
between ms scale neocortical dynamics and brain state. Although EEG recorded from the human scalp
provides data at very large spatial scales (several cm), it is closely correlated with many distinct kinds of
cognitive processing.

A purely global EEG model stresses myelinated axon propagation delays and periodic boundary
conditions in the cortical-white matter system. As this system is topologically close to a spherical shell,
standing waves are predicted with fundamental frequency in the typical EEG range near 10 Hz. In sharp
contrast to the purely global model, the proposed local mechanisms are multiscale interactions between
cortical columns via short-ranged non-myelinated fibers. A statistical mechanics of neocortical
interactions (SMNI) predicts oscillatory behavior within columns, between neighboring columns and via
short-ranged non-myelinated fibers. The columnar dynamics, based partly on membrane time constants,
also predicts frequencies in the range of EEG.

We generally expect both local and global processes to influence EEG at all scales, including the large
scale scalp data. Thus, SMNI also includes interactions across cortical regions via myelinated fibers
effecting coupling the local and global models. The combined local-global dynamics is demonstrated with
an analog mechanical system consisting of a stretch string (producing standing waves) with attached
nonlinear springs representing columnar dynamics. SMNI is able to derive a string equation consistent
with the global EEG model. We conclude that the string-spring system provides an excellent analog with
several general features that parallel multiscale interactions in genuine neocortex.

In this context, we have derived a Laplacian from a variational principle applied to the Lagrangian. Thus,
the EEG Laplacian for wave propagation is derived from the SMNI Lagrangian.
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