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An approach to collective aspects of the neocortical system is formulated by methods of modern
nonlinear nonequilibrium statistical mechanics. Microscopic neuronal synaptic interactions, consistent
with anatomical observations, are first spatially averaged over columnar domains. These spatially ordered
domains retain contact with the original physical synaptic parameters, are consistent with observed
columnar physiology, and are a suitable substrate for macroscopic spatial-temporal regions described by a
Lagrangian formalism. Long-ranged influences from extrinsic and inter-regional afferents drive these
short-ranged interactions, giving rise to several columnar mechanisms affecting macroscopic activity.
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1. Introduction

A theory is developed to describe neocortical activity occurring in large regions of neocortex,
involving millions to billions of neurons, transpiring for hundreds of msec. Input is a set of chemical and
electrical parameters derived from properties of microscopic synaptic interactions formulated in Sec. 2.
Analytic derivations and precise definition of these columnar domains is formulated in Sec. 3. A stochas-
tic treatment of the firings of these ordered columns permits the macroscopic development of intrinsic
regional activity formulated in Sec. 4. Numerical work that concretizes this formalism is given in Sec. 5.

A major contribution of this work is the analytic treatment of minicolumns [81]. Minicolumns are
observed to span ≈ 7 × 102 µm2. Mesocolumnar domains are defined here as the spatial extent of mini-
columns, in order to distinguish their scale from that of microscopic neurons. The calculations in Secs. 2
and 5 support observations of periodically alternating firings of columnar structures [29,32,46,47,53]. As
pictured in Fig. 1, this microscopic scale is orders of magnitude larger than the molecular scale which
enters membrane physics. Also note that "macrocolumns" spanning ≈ 7 × 105 µm2 have been defined as
another physiological entity observed in neocortex [81], but the macroscopic regions considered here are
orders of magnitude larger than these. Mesocolumnar domains are sufficiently close to the scale of micro-
scopic neurons to allow direct dependence of this theory on neuronal chemical and electrical properties.
The proper stochastic treatment of their interaction permits their development into macroscopic regions
responsible for global neocortical information processing. "Thermodynamic" entities corresponding to
the "free energy" potential, "temperature," and order parameters of these macroscopic regions are derived
by a statistical mechanics paradigm [62].

1.1. Rationale

Relative to other biological entities, the intrinsic synaptic activity of the most highly evolved mam-
malian human neocortex functions via the most degenerate and the shortest-ranged neuronal interactions
( ≈ µm). This suggests that many collective aspects of this system may be fruitfully studied similarly to
other collective systems. Collective effects, from clustering [102,103] or from statistical interactions [55],
are proposed to be mechanisms of information processing, in addition to the "hard-wiring" mechanisms
also possessed by other more ordered cortical entities [3,100].

-- Fig. 1 --

Reasonable criteria for any physical approach to neocortex should include three basic Features.
These also serve to illustrate the appropriate analogies between neocortex and other collective physical
systems.

(A) Interactions. Short-ranged neuronal interactions over time periods of several msec should be
derived from even more microscopic synaptic activities [98]. (See Fig. 1a.) Long-ranged spatial interac-
tions from specific neuronal pathways, primarily composed of the relatively low population of long exci-
tatory fibers from ipsilateral association, contralateral commissural, and thalamocortical processes must
be consistently treated. These long-ranged interactions are also important for collective activity in mam-
malian cortex [13], and they are included in this study. Longer-time, weaker and modulatory nonsynaptic
influences arising from humoral and electrotonic interactions [26,77,92] are also included, but only as
their averaged properties affect synaptic parameters.

(B) Statistics. Neurons separated by large distances, across 103 to 108 neurons, can be statistically
coupled via the short-ranged interactions in (A). (See Fig. 1c.) Order parameters must be identified, and
intrinsic fluctuations from the microscopic synaptic and neuronal systems, diffusion effects, must be
included. There are also fluctuations of the mesoscopic system due to their interactions, derived here as
gradient couplings between neighboring mesoscopic cells. These spatially ordered mesoscopic domains
respect the observed anatomy and physiology of neocortex [102,103] more than earlier theories hypothe-
sising random neural networks [39,76].

(C) Dynamics. A viable formalism must be adopted to describe the statistical time evolution of the
macroscopic nonequilibrium system over scales of 102 to 104 msec.
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Although cooperativity between distant neurons is typically quite low [2], macroscopic regions
reflect cooperative behavior, proposed here to best be understood as initiated at the mesoscopic level of
interaction. The empirical existence of collective spatial-temporal activity, embedded in a spontaneous
background orders of magnitude larger, is supported by statistical analyses of electroencephalographic
and magnetoencephalographic recordings [52,112]. Evoked potential studies [43,61,82] confirm the exis-
tence of macroscopic activity persisting for hundreds of msec [27]. Some studies suggest that much of
EEG data from electromagnetic potentials on the scalp can be explained as dynamic dipole-layered activ-
ity, driven by the relatively low population of long-ranged excitatory fibers, only somewhat mediated by
the short-ranged interactions [86,87]. Although this hypothesis probably understates the the degree to
which EEG is a measure of neocortical activity, this does imply that some EEG data may not be good
physiological correlates of much of neocortical information processing which is certainly mediated by
microscopic and mesoscopic interactions. Numerical calculations in Sec. 5 give insight into these obser-
vations.

Ultimately, coordinated studies using behavioral control, external stimulation and single neuron
analyses, in many regions of neocortex, must provide better empirical data regarding collective neural
mechanisms. For example, consistent with previous investigations, current studies [80] can not discern if
specific neuronal connections exist to explain ambient (global) visual attention, which is parallel pro-
cessed with focal attention. This present study suggests that collective columnar mechanisms should be
investigated as candidates to explain such global phenomena.

As long as collective mechanisms arising in a physical system characterized by the above three Fea-
tures are considered to be viable sources of collective neocortical phenomena, then these Features must be
correctly formulated.

1.2. Other Studies

There is a large literature dealing with neuronal mechanisms that intuits phenomenological differ-
ential equations from rates of change of average excitatory and inhibitory neuronal firings, and then pro-
ceeds to search for collective behavior, limit cycles, and oscillatory behavior [8,30,54,113-116]. Mecha-
nisms are sought to explain varied phenomena such as hysteresis in perception [114], perception and
learning [42,104], and ontogenesis of columnar formation [104,109].

Comparisons with applications of these techniques to those used in other physical systems [40,41],
illustrates that the pioneering application of these appropriate formalisms to the neocortical system still
has much to offer. Much inspiration for these applications has come from work in nonequilibrium ther-
modynamics [40,41,55,60,84,106]. The statistical physics formulation of similar systems is, however,
less phenomenological and more useful for this study. Important nonlinearities are also properly treated.
This has not been true in previous studies, and they are therefore incapable of performing detailed analy-
ses and calculations as performed in Secs. 2-5. The last two subsections of Sec. 4, although not essential
for this development, rigorously compare this study to other studies.

-- Fig. 2 --

This study also distinguishes between neuronal mechanisms the neocortex uses to process informa-
tion, from the structures of information the neocortex processes. (See Fig. 2.) An Onsager-Machlup type
Lagrangian [88,89], or "potential," is derived which operates on firings of the system. The exponential of
minus the Lagrangian is a weighting factor on all possible states, filtering or transforming (patterns of)
input firings into output firings. "Information" is a concept well defined in Sec. 4, in terms of the proba-
bility eigenfunctions of electrical-chemical activity of this Lagrangian.

Another large literature dealing with information processing of neural networks, applied to percep-
tion, learning and memory, typically intuits the existence of an algebra of information-vectors isomorphic
to a linear vector space [4,6,7,17]. The details of the structures of these vectors and of their relationships
are based on the empirics of neuronal interactions and of hypothesised patterns of neuronal firings. The
experimental and theoretical value of their conclusions are generally diminished because they do not
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reasonably draw empirical support and analytic development from relatively fundamental physical inter-
actions, from Features (A), (B) or (C). In this study, the sets of eigenfunctions of the physical Lagrangian
which includes these Features are candidates for the linear vector spaces previously assumed by these
other studies.

2. Microscopic Neurons

Fig. 1a illustrates the microscopic neuronal interaction scale, on the order of several µm. Neocorti-
cal neurons typically have many dendrites that receive quanta of chemical postsynaptic stimulation from
many other neurons. The distribution of quanta transmitted across synapses takes place on the scale of
10−2 µm, as illustrated in the inset Fig. 1a*. Each quantum has thousands of molecules of chemical neuro-
transmitter that affect the chemically-gated postsynaptic membrane. Chemical transmissions in neocortex
are believed to be either excitatory (E), such as glutamic acid, or inhibitory (I ), such as γ -aminobutyric
acid. There exist many transmitters as well as other chemicals that modulate their effects, but it is
assumed that after millions of synapses between hundreds of neurons are averaged over, then it is reason-
able to ascribe a distribution Ψ with a mean and variance for E and I inter-neuronal interactions.

This same averaging procedure makes it reasonable to ascribe a distribution Γ with a mean and
variance for (E) and (I ) intra-neuronal interactions. A Gaussian Γ is taken to describe the distribution of
electrical polarizations caused by chemical quanta impinging on the postsynaptic membrane. These
polarizations give a resultant polarization at the base of the neuron, the axon (extension in Fig. 1a cut by
the double broken line). The base of the axon of a large fiber may be myelinated. However, smaller neu-
rons typically lack these distinguishing features. Experimental techniques are not yet sufficiently
advanced to attempt the explicit averaging procedure necessary to establish the means and variances of Ψ
and Γ, and their parameters in vivo. Differential attenuations of polarizations from synapses to the base of
an axon are here only phenomenologically accounted for by including these geometric and physiological
effects into Γ.

With a sufficient depolarization of ≈ 10 to 20 mV, within an absolute and relative refractory period
of ≈ 5 msec, an action potential is pulsed down the axon and its many collaterals, affecting voltage-gated
presynaptic membranes to release quanta of neurotransmitter. Not detailed here is the biophysics of mem-
branes, of thickness ≈ 5 × 10−3 µm, composed of biomolecular leaflets of phospholipid molecules
[15,95,107,108]. At present, Ψ and Γ are taken to approximate this biophysics for use in macroscopic
studies. The formalism adopted in this study is capable of using new microscopic functional depen-
dences, gleaned from other empirical or theoretical investigations, and cranking them through to obtain
similar macroscopic descriptions. Chemical independences of excitatory depolarizations and inhibitory
hyperpolarizations are well established in neocortex, and this independence is retained throughout this
study.

It should be noted that experimental studies used to infer Ψ and Γ (at neuromuscular junctions)
were made possible by deliberately reducing the number of quanta by lowering external Ca concentra-
tions [12,56]. Ψ was found to be Poisson, but in that system, where hundreds of quanta are transmitted in
vivo, Ψ may well be otherwise, for example Gaussian with independent mean and variance. Current
research suggests a binomial distribution, having a Poisson limit [50,57,90]. In neocortex, probably small
numbers of quanta are transmitted at synapses, but other effects, such as nonuniformity and nonstationar-
ity of presynaptic release sites, and nonlinear summation of postsynaptic potentials, may detract from a
simple phenomenological Poisson description [98]. This short description serves to point out possible
differences in Ψ from many sources. However, the derivation of synaptic interactions given here makes it
plausible that for reasonable neuronal parameters, the statistical folding of Ψ and Γ is essentially indepen-
dent of the functional form, not the numerical mean and variance, taken for Ψ.

The result of this analysis is to calculate the transition probability of the firing of neuron j, pσ j
,

given its interaction with its neighbors that also may fire or not fire. Eq. (2.12) gives the result as the tab-
ulated error function. Within the range where the total influences of excitatory and inhibitory firings
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match and exceed the average threshold potential of a given neuron, the probability of that neuron firing
receives its major contribution to increase from 0 towards 1. A step-function derived as tanh FG in Eq.
(3.13) is defined by the "threshold factor" F j in Eq. (2.12). The mesoscopic development discussed
below retains this sensitivity.

This is similar to the mathematical result obtained by others [67,68,96,97] who have modelled neo-
cortex after magnetic systems [18,83]. However, the following is derived more generally, and has the
neural parameters more specifically denoted with different statistical significances given to Ψ and Γ as
described above. The severe approximations made in previous studies to obtain tractable algebraic
expressions are not necessary in this study. Additionally, Features (B) and (C) are correctly developed
here.

2.1. Conditional Probability

Consider 102 < N < 103 neurons, labelled by k, interacting with a given neuron j. Each neuron
may contribute many synaptic interactions to many other neurons. A neuron may have as many as 104

synaptic interactions. Within time τ n ≈ 5 msec, Ψ is the distribution of q quanta of chemical transmitter
released from neuron k to neuron j(k ≠ j) with mean a jk , where

a jk = A jk(σ k + 1)/2 + B jk ; (2.1)

A jk is the conductivity weighting transmission of polarization, dependent on k firing,

σ k =




1,

−1,

k fires,

k doesn′t fire,
(2.2)

and B jk is a background including some nonsynaptic and long-range activity. Of course, A and B are
highly complicated functions of ij. This definition of σ k permits a decomposition of a jk into two different
physical contributions.

Within the scope of the assumption that postsynaptic potential responses from numbers of presy-
naptic released quanta add algebraically, a Gaussian process is taken to represent this response for each
quantum released. Application of the central limit theorem [70] then yields, for any q quanta, a Gaussian
process Γ for imparting a potential W jk to neuron j:

Γ = (2πqφ2
jk)−1

2 exp[−(W jk − qv jk)2]/(2qφ2
jk), (2.3)

q−>0
lim Γ ≡ δ (W jk),

where the polarization v jk can be positive (excitatory E) or neg ative (inhibitory I ), and

δ (Z ) = (2π)−1
∞

−∞
∫ dQ exp(iQZ ) (2.4)

represents a well-behaved, strongly peaked distribution.

The probability S jk of developing W jk from k is

S jk =
∞

q=0
Σ ΓΨ . (2.5)

The probability S j of developing potential W j from all N neurons is

S j = ∫ . . . ∫ dW j1. . . dW jN S j1. . . S jNδ (W j −
k
ΣW jk). (2.6)

The conditional probability p+ j of neuron j firing if W j > V j , the threshold of j, is
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p+ j =
∞

V j

∫ dW j S j . (2.7)

At this stage it is possible to include the probability of not firing by defining

pσ j
=





p+ j , σ j = + 1

p− j , σ j = − 1,
(2.8a)

by replacing

V j → σ jV j , Q → σ jQ (2.8b)

in Eqs. (2.7) and (2.4).

2.2. Poisson Ψ
For a jk small, take Ψ as Poisson with mean and variance a jk :

Ψ = exp(−a jk)(a jk)q/q!. (2.9)

Eq. (2.7) yields:

pσ j
=

∞

V j

∫ dW j(2π)−1
∞

−∞
∫ dQexp(iQW j) (2.10)

× exp { −
k
Σ a jk[1 − exp(−iσ jQv jk − Q2φ2

jk /2)]} .

An extremum approximation is now valid: The main contribution to pσ j
comes from non-oscillatory con-

tributions from the second exp in Eq. (2.10), where its argument has a minimum, rendering it Gaussian.
Using

φ jk < |v jk | << V j ≤ W j , (2.11)

pσ j
may be calculated as

pσ j
= π−1

2

∞

(σ j F j√ π/2)
∫ dz exp(−z2) (2.12)

= 1
2 [1 − erf(σ j F j√ π/2)],

F j = (V j −
k
Σ a jk v jk)/[π

k ′
Σ a jk ′(v

2
jk ′ + φ2

jk ′)]
1
2 . (2.13)

"erf" is the tabulated error function, simply related to the "normal probability function" [51,70]. F j is a
"threshold factor," as pσ j

increases from 0 to 1 between ∞ > σ j F j > − ∞ sharply within the range of
F j ≈ 0.

2.3. Gaussian Ψ
The mean of a Poisson distribution of q successes is

a jk = ψ e , (2.14)

e the large number of repetitions of an "experiment," likely correlated with the number of synaptic knobs
[50,57], and ψ the small probability of success, the average probability of release of one quantum. For
large a jk , a Gaussian Ψ′ representing Ψ is defined with mean a jk and variance a jk(1 −ψ ) [70]:
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Ψ′ = [2a jk(1 −ψ )]−1
2 exp[−(q − a jk)2/(2a jk(1 −ψ ))] (2.15)

/
∞

−[a jk /(2(1−ψ )]
1
2

∫ dzexp(−z2).

Take

q
Σ →

∞

0
∫ dq (2.16)

in Eq. (2.5). Again, using Eq. (2.11), derive Eq. (2.12), but with

v2
jk ′ → (1 −ψ )v2

jk ′ . (2.17)

2.4. Arbitrary Ψ
Examination of this derivation shows that Eq. (2.12) results from the folding of Γ and Ψ, for a wide

range of reasonable Ψ peaked near q = a jk .

If

|σ j F j | < 1, (2.18)

to be validated in Sec. 3, then an asymptotic expression for Eq. (2.12) is

pσ j
≈ exp(−σ j F j)/(exp F j + exp − F j). (2.19)

This form of pσ j
exposes the linear dependence of the argument on σ j and F j . Apparently, it has not

been appreciated just how good an approximation tanh(2z/√ π) is to erf (z). Using the notation
(z, tanh / erf), precisely obtain: (0., 0. / 0.), (.01, .0113 / .0113), (.1, .1124 / .1125), (.5, .5111 / .5205), (1.,
.8105 / .8427), (2., .9783 / .9953), (2.5, .9929 / .9996), (∞, 1. / 1.). For small z obtain:

tanh(2z/√ π) = (2/√ π)(z − z3/2. 36 + z5/4. 63 − z7/8. 98 ± . . .) (2.20)

erf (z) = (2/√ π)(z − z3/3 + z5/10 − z7/42 ± . . .).

3. Mesoscopic Domains

At this stage, severe approximation in modelling would have to be, and usually is attempted. How-
ev er, advantage can be taken of empirically observed columnar structure to first attempt to analytically
scale the neuronal system into mesoscopic domains that are still relatively microscopic to the macroscopic
regions to be described [29,32,47,53,81,103,104]. For purposes of macroscopic description, the mini-
columnar structure effectively spatially averages the neuronal interactions within one to several firing
periods.

The following development: (1) reasonably includes and averages over millions of synaptic interac-
tions that exist between groups of hundreds of neurons; (2) analytically establishes the integrity of colum-
nar domains and specifies their interactions; (3) prepares the formulation of (1) and (2) to foresee their
analytic inclusion into studies of macroscopic regions.

The neocortex has ≈ 5 × 1010 neurons distributed rather uniformly over ≈ 5 × 108 minicolumns.
(The visual cortex has double this density.) Within these minicolumns, a "vertical" structure is defined
perpendicular to six highly convoluted laminae of total thickness ≈ 2. 5 × 103 µm, principally by the effer-
ent pyramidal cells. They exhibit vertical apical bundling of their dendrites in the upper laminae, and
some of their recurrent axonal collaterals also ascend to upper laminae. A number of other fusiform,
Martinotti, and stellate cells (granule cells in sensory cortex and basket cells in motor cortex) also
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contribute to this vertical organization. In general, laminae I to IV are afferent and laminae V and VI are
efferent [3].

However, "horizontal" dendritic basal arborizations (tree-like structures) of the pyramidal cells, tan-
gential to the laminae, horizontal axonal collaterals of the pyramidal cells, and horizontal processes of
stellate, Martinotti, and neonatal horizontal cells, all impart horizontal stratification to columnar interac-
tions. Therefore, although the columnar concept has anatomical and physiological support, the mini-
columnar boundaries are not so clearly defined [27]. This stratification and other long-ranged afferent
input to groups of minicolumns define a physiological unit that encompasses a mesocolumn, consisting of
one to perhaps several minicolumns.

This study formalizes these circumstances by defining a mesocolumn with extent > 102 µm, as an
intermediate integral physiological unit encompassing one to several minicolumns. (See Fig. 1b.)
Dynamic nearest-neighbor interactions between mesocolumns are analytically defined by their overlap-
ping neuronal interactions, in accordance with the observed horizontal columnar stratifications outlined
above. (See Fig. 1b’.) This approach permits future analytic modifications, as differences between inter-
and intra-minicolumnar interactions and circuitries become experimentally clarified.

The resulting picture of columnar interactions is relatively simpler than a mass of neurons, but not
so simple to the point of uselessness. A collection of average excitatory and inhibitory neuronal firings,
as depicted in Fig. 1a’, now define a continuum of mesocolumnar firings. A zero order binomial distribu-
tion is easily intuited: Let G denote E or I firings. A column of N G neurons can have a total firing of
NnG , where nG is the fraction firing, ranging by 2’s between −N G ≤ NnG ≤ N G . (Count firing as +1, non-
firing as -1.) For convenience, assume NnG > 0, which arises from NnG firings plus 1

2 (N G − NnG) can-
celling pairs of firings and non-firings. This gives a total of 1

2 (N G − NnG) + NnG = 1
2 (N G + NnG) firings

and N G − 1
2 (N G + NnG) non-firings. The degeneracy factor, as a function of the firing rate NnG , is the

number of ways N G neurons can produce a given firing pattern. The final answer is the binomial distribu-
tion, Eq. (3.12). Note that the binomial coefficient is unity for states of all firing or all non-firing, and

peaks as N G!/[(N G /2)!]2 ≈ 2NG+1
2 (πN G)−1

2 for NnG = 0. In the range NnG ≈ 0, there is maximal degener-
acy of information encoded by mesocolumnar firings. This argument analytically articulates the meaning
of "neuronal degeneracy" and also of the ubiquitous, often ambiguous "average neuron." However, rea-
sonable properties of mesocolumns, not of average neurons, are developed here for macroscopic study.

The properly calculated distribution contains nearest-neighbor mesocolumnar interactions
expressed as derivative correction terms. Eq. (3.20) verifies that in macroscopic activity, where meso-
columnar (patterns of) firing vary smoothly over neighboring mesocolumns, it is consistent to approxi-
mate mesocolumnar interactions by including only second-order gradient correction terms. Sec. 4 calcu-
lates macroscopic states of mesocolumnar firings, which are subject to these constraints of Eq. (3.20).
Excitatory and inhibitory sensitivity to the neuronal parameters survives, similar to the sensitivity encoun-
tered by single neurons.

In this manner, microscopic degrees of freedom of many types of neurons (many of which are only
crudely classified by the above definitions), synapses, neurotransmitters, cellular architecture, and cir-
cuitries, may be practically weighted and averaged for macroscopic considerations.

3.1. Mesocolumns

Define a mesocolumn as a domain with N neurons, with stochastic memory τ ≈ one to several τ n.
Denote by indices E and I two chemically and anatomically independent firing fields; G denotes either
field.

For this study do not consider dynamic synaptic modifications, which typically take place as a
result of one to many epochs of macroscopic temporal activity effecting such plastic changes [42]. There-
fore, take as independent of space-time:

|v jk |, φ jk → vG , φG (3.1)
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V j , A jk , B jk → V G , AG , BG

1
2 AG + BG = aG .

The greater importance of I synapses (circuitry, proximity to soma) increases effective inhibitory v jk and
a jk . Take

k
Σ v jk A jk ≈ vG AG(N E − N I ), N = N E + N I . (3.2)

Write pσ j
as the response of neuron j to its surrounding mesocolumn, represented by

FG
j = β G(γ G − α GM/ j)/(1 + α G M j)

1
2 , (3.3a)

M/ j = (M E
j − M I

j ) = (
k,E
Σ σ k −

k,I
Σσ k) , MG

j = NmG
j ,

M j = (M E
j + M I

j ) , − N G ≤ MG
j ≤ N G ,

where the six mesoscopic parameters are defined by:

α G = AG /(2NaG) << 1  (3.3b)

β G = [NaG(1 + (φG /vG)2)−1π−1]
1
2 < N

1
2

γ G = V G /(aG vG N ) − (N E − N I )/N .

Typically [39],

m/ G
j < ±10−1 (3.4)

making pσ j
sensitive to FG

j ≈ 0 for small variations of M/ j about small γ G . |FG
j | < π/2 permits the asymp-

totic approximation in Sec. 2.

For future studies in Secs. 4 and 5, it is useful to perform the valid expansion:

(1 + α G M j)
−1

2 ≈ 1 − α G M j /2 + 3(α G M j)
2/8 − + . . . (3.5)

Note that Eq. (3.3) may be generalized to include additional E − I structure without affecting the
following development. For example,

α GM/ j , α G M j →
G′
Σα GG′ MG′

j ,
G′
Σα ′GG′ MG′

j . (3.6)

3.2. Nearest-Neighbor (NN) Interactions

Define NnG(r), a mesocolumn centered at the 2-dimensional point r, as the mesocolumnar average
of σ j , as in Eq. (3.3). (See Figs. 1b-b’.) Derive the conditional probability p(NnG |MG) for the firing
transition to mesocolumn NnG(r) after time τ , from all contributing mesocolumns NmG(r ′) associated
with neurons σ k . MG represents contributions from both M E and M I in FG

j :

G
Π p(NnG |MG) =

σ j=±1
Σ δ (

j,E
Σ σ j − NnE )δ (

j,I
Σσ j − NnI )

N

j
Π pσ j

. (3.7)

For r = r ′, the result of the mesoscopic averaging of independent E and I fields is easily intuited, as
explained above: The contribution of N G av eraged ±1 firings to establish a firing NnG has degeneracy
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N G

1
2 (NnG + N G)




, − N G ≤ NnG ≤ N G . (3.8a)

A binomial distribution of NnG is therefore anticipated, weighted by the averaged firing probability, with

{ FG
j } → { typical FG} (3.8b)

from Eq. (2.19). However, the following analysis also permits NN interactions to be calculated.

Calculate Eq. (3.7):

p(NnG |MG) = (2π)−1
∞

−∞
∫ dQG exp(iNnGQG)

NG

j
Π CG

j , (3.9)

CG
j { FG

j [MG(r + ε )]} = cosh(FG
j + iQG)sechFG

j , r + ε = r ′ .

Expand CG
j about NnG(r), using directional derivatives D1,2

ε̂ ,

CG
j ≈ [1 + |ε |D1

ε̂ + 1
2 |ε |2 D2

ε̂ ]CG(r), (3.10)

ε̂ = ε /|ε | = (r ′ − r)/|r ′ − r | ,

retaining only first and second order derivatives of M and M/ . Obtain

p(NnG |MG) = (2π)−1 ∫ dQG exp(iNnGQG)[cosh(FG + iQG)sechFG]NG
(3.11)

×
NG

j
Π(1 + dFG

j1K1 + dFG
j2K2),

K1 = sinh(iQG)sech(FG + iQG)sechFG ,

K2 = − 2K1 tanh FG ,

where dFG
j1 and dFG

j2 are calculated below.

To zero order, neglect K1 and K2 terms, express coshNG
as a sum of exponentials, binomial-expand,

do ∫ dQG , and obtain

p0(NnG |MG) = (1 + f G)−NG 

N G

λ G


( f G)λ G

, (3.12)

f G = exp(−2FG), λ G = [[ 1
2 (NnG + N G)]],

where λ G is the greatest integer in the double brackets on RHS. This is the anticipated binomial distribu-
tion with mean

< λ G >0 = N G exp(−FG)/[(exp(FG) + exp(−FG)], (3.13)

< NnG >0 = − N G tanh FG ,

and variance

< λ G λ G′ >0 − < λ G >0< λ G′ >0 = 1⁄4δ G
G′ N

Gsech2FG . (3.14)

Compare Eq. (3.13) with Eq. (2.19). Thus nG and mG are defined as mesocolumnar averaged neurons,



Statistical Mechanics of Neocortical ... -11- Lester Ingber

with their anticipated zero order statistical firing weights. Eq. (3.13) explicitly demonstrates how sensi-
tive < NnG >0 is to changes in sign of the threshold factor FG in the step-function tanh FG :
tanh(±∞) = ±1, tanh(±1) = ±. 76, tanh(0) = 0. As expected, in the absence of interactions, setting BG = 0
and with NmG = − N G , then < NnG >0 = − N G ; no firing occurs. As NmG ≥ γ G /α G , so < NnG >0 ≥ 0
maintains < NnG >0 > − N G for all NmG , and thus BG may be taken to simulate nonsynaptic influences
on NnG . Other long-ranged synaptic influences are included in Sec. 5.

To define NN interactions, calculate the differential terms in Eq. (3.11):

NG

j
Π(1 + dFG

j1K1 + dFG
j2K2) ≈ [1 +

NG

j
Σ(dFG

j1K1 + dFG
j2K2)] (3.15)

≡ 1 + dFG
1 K1 + dFG

2 K2 ,

defining dFG
1 and dFG

2 . This is validated by Eq. (3.20) below. To calculate dFG
1 and dFG

2 , define
ρ < 102 µm as the spatial extent of a mesocolumn. ρ is fixed by the value of N .

j
Σ → N G ρ−2

x+1
2 ρ

x−1
2 ρ
∫ dx′

y+1
2 ρ

y−1
2 ρ
∫ dy′, (x, y) = r. (3.16)

Obtain:

dFG
1 = 1. 24N G(ρ2/24)α G(1 + α G M)−1

2 (3.17)

×{ − 1
2 FG(1 + α G M)−1

2 (∇ 2 M) − β G(∇ 2M/ )

+α G(1 + α G M)−1(∇ M) ⋅ [β G(∇ M/ ) + 3⁄4FG(1 + α G M)−1
2 (∇ M)]}

dFG
2 = 0. 513N G(ρ2/24)(α G)2(1 + α G M)−1[β G(∇ M/ ) + 1

2 FG(1 + α G M)−1
2 (∇ M)]2 .

Calculate K1 and K2 using the same procedures giving Eq. (3.12). The conditional probability for aver-
age mesocolumns MG → NnG within τ , including NN, is:

p(NnG |MG) = [p0 + dFG
1 p1 + dFG

2 p2], (3.18)

p1(NnG |MG) = (1 + f G)−NG−1

N G − 1

λ G


( f G)λ G

[ f G(1 − δNnG ,NG ) − (1 − δNnG ,−NG )]

≈ − tanh FG p0(NnG |MG),

p2(NnG |MG) = − 2p1 tanh FG .

This can be rewritten as:

p(NnG |MG) = (1 + dFG)p0(NnG |MG), (3.19)

dFG = − tanh FG(dFG
1 − 2dFG

2 tanh FG).

The sign and magnitude of contributions to dFG can vary from repulsive to attractive interactions,
depending on the values of the mesocolumnar parameters and the MG firings as they influence FG .
(Strict averaging of (∇ M E ) ⋅ (∇ M I ) over independent E and I firings gives zero contribution. However,
these terms are carried along here to demonstrate how anisotropic mesocolumnar interactions might be
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studied.)

Consistency of the above scheme requires a definition of this long-wav elength scale. The condi-
tions placed on Eq. (3.17) for Eqs. (3.15) and (3.18) to be valid are evaluated to be essentially

1 > (ρ∇ MG)2/(24N ), (3.20)

which is consistent with this macroscopic development. Calculations in Sec. 5 confirm the consistency of
this derivation of inter-columnar interactions with empirical observations.

4. Macroscopic Regions

The prototypical diffusion system describes Brownian motion wherein the stochastic memory of the
macroscopic system depends only on the immediate past history of the system one specified unit of time
previous, and in a linearly functional manner [40,41,84]. Here, the G-space diffusion is expressed by a
nonlinear dependence on this past firing state, and the stochastic memory must be carefully defined.
Real-space diffusion is represented by the gradient couplings. These fluctuations are physically important
for various excitations and possible critical behavior of second order phase transitions between ordered
and disordered states [45,101,117]. It should be noted that some investigators have been unwilling to
accept the analogy between equilibrium and nonequilibrium long-ranged order as arising from sponta-
neous symmetry breaking. However, recent research demonstrates that this analogy is indeed often
appropriate [99].

Figs. 1c and 1c’ illustrate how the mesocolumnar structure of Sec. 3 is a substrate for activity per-
sisting for hundreds of msec over a spatial region containing Λ ≈ 5 × 105 mesocolumns, spanning ≈ 10−2

of a total cortical area of 4 × 1011 µm2. Extended regional activity is possible, whereby conglomerates of
10 to 30 regions may interact [81].

Sec. 3 has calculated the mesocolumnar conditional probability that a given mesocolumn will fire,
given its direct interactions with other mesocolumns just previously firing. Thus a transition rate from
one state of mesocolumnar firing to another state just afterwards is obtained. A string, or path of these
conditional probabilities connects the mesocolumnar firings at one time to the firing at any time after-
wards. Many paths may link the same initial and final state. In this way the long-time conditional proba-
bility of all possible mesocolumnar firings at any giv en time is obtained. A Lagrangian is thereby derived
which explicitly describes the time evolution of the neocortical region in terms of its initial distribution of
firings, and expressed in terms of its mesoscopic order parameters which retain a functional form derived
from microscopic neuronal interactions. (See Fig. 2.) A major benefit derived from this formalism is a
variational principle that permits extrema equations to be developed.

This Lagrangian can be expanded into a simple fourth order polynomial of powers of the meso-
columnar firings, yielding a generalized Ginzburg-Landau (GL) expression [41]. At the present stage of
development of statistical mechanics, for many purposes this simple form is a practical necessity to con-
tinue future studies. It is shown here that this expansion is valid for the neocortical system. This also
makes it possible to draw analogies to the "orienting field" and "temperature" of other collective systems.
Insofar as GL expressions can also be derived from Ising-type systems, albeit with much approximation
[117], then with analytic hindsight some analogies may yet be correctly drawn between neocortical and
magnetic systems [18]. Typically, in Ising-type systems, intuited GL models have predicted and
described collective systems quite well, so that GL theory there is aptly considered a good physical
approach. Neocortical studies have not yet achieved such a wealth of data or formalism, and so the exis-
tence of a GL expression as derived here is nontrivial. Conversely, similar analytic development of a GL
expression from relatively microscopic principles is a luxury afforded to only a few physical systems.

4.1. Mesocolumnar Short-Time Propagator

To first order in dF , the distribution p of Eq. (3.18) can be defined in terms of variables that facili-
tate this development. For large N G and N G FG , this binomial distribution is asymptotically Gaussian
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[70].

p(NnG |MG) = (2πτ g′GG)
1
2 exp(−Nτ LG), (4.1)

LG = N−1[(NnG − MG)/τ − g′G]2/(2g′GG),

g′G = −τ −1[MG + N G(1 + dFG) tanh FG],

g′GG = τ −1 N G(1 + dFG)sech2FG .

Define time epochs t in units of τ , in terms of integer s ≥ 0, from an initial time t0:

ts = sτ + t0 . (4.2)

For the large time epochs to be considered, a continuum differential time scale is defined by dt ≤τ .
Within τ , consistent with this long-time development and consistent with the previous mesocolumnar
av eraging of neuronal interactions, define

LG = N−1(ṀG − g′G)2/(2g′GG), (4.3)

τ ṀG = τ dMG /dt = NnG − MG .

Then the Markovian mesocolumnar short-time propagator, the conditional probability p, is dev eloped for
short times θ ≈ τ relative to any fixed time t:

p[M(t + θ ), t + θ ] = (2πθ)−1 ∫ dM(t) g′(t)
1
2 (4.4)

× exp { − N S[M(t + θ ), M(t)]} p[M(t), t],

dM = dM E dM I ,

g′ = (det g′)−1 = (g′EE g′ II )−1 ,

and S is defined by requiring that the system evolve by the principle of maximal probability:

S = min
t+θ

t
∫ dt ′ L[Ṁ(t ′), M(t ′)], (4.5)

L = LE + LI .

For small θ , relative to the long times considered, with N >> 1, contributions to p at t + θ are heavily
weighted within

|∆MG | = |MG(t + θ ) − MG(t)| < θ
1
2 , (4.6)

and therefore the quadratic Ṁ terms in L must be carefully developed.

4.2. Regional Short-Time Propagator

Define the Λ-dimensional vector M̃s at time ts:

M̃s = { Mν
s = Ms(r

ν ); ν = 1, . . . , Λ} , (4.7)

Mν
s = { MGν

s ; G = E, I } .

For macroscopic space-time considerations, mesoscopic ρ and τ scales are measured by dr and dt. In the
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continuum limits of r and t:

MGν
s → MG(r, t), ṀGν

s → dMG /dt, (4.8)

(MG,ν +1 − MGν )/(rν +1 − rν ) → ∇ r MG .

The previous development of mesocolumnar interactions via NN derivative couplings permits the regional
short-time propagator p̃ to be developed in terms of the Lagrangian L [28]:

p̃(M̃) = (2πθ)−Λ/2 ∫ d M̃ g′Λ/2 exp[−N S̃(M̃)] p̃(M̃), (4.9a)

S̃ = min
t+θ

t
∫ dt ′L[Ṁ(t ′), M(t ′)],

L = ΛΩ−1 ∫ d2r L ,

where Ω is the area of the region considered, and

ΛΩ−1 ∫ d2r = ΛΩ−1 ∫ dxdy =
ρ→0

Λ→∞
lim

Λ

ν =1
Σ . (4.9b)

The Euler-Lagrange (EL) equations, giving the extrema << MG >>, are obtained from δ S̃ = 0 [11].
The Einstein convention is used to designate summation over repeated indices, and the following notation
for derivatives is used:

(. . .):z = d(. . .)/dz, z = { x, y} , (4.10)

(. . .),G = ∂(. . .)/∂MG , (. . .),Ġ = ∂(. . .)/∂(dMG /dt),

(. . .),G:z
= ∂(. . .)/∂(dMG /dz),

(. . .),∇ G = x̂∂(. . .)/∂(dMG /dx) + ŷ∂(. . .)/∂(dMG /dy).

The EL equations are:

δ L = 0, (4.11)

δG L = L,G −∇ ⋅ L,∇ G −L,Ġ:t = 0,

∇ ⋅ L,∇ G = L,G:z:z

= (L,G:z
,G′ )MG′

:z + (L,G:z
,G′:z )MG′

:zz

L,Ġ:t = (L,Ġ ,G′ )ṀG′ + (L,Ġ ,Ġ′ )M̈G′ .

This exhibits the extremum condition as a set of 12 first-order differential equations in the 12 variables
{ MG , ṀG , M̈G , MG

:z , MG
:zz} in r − t = (x, y, t) space, with coefficients nonlinear in MG .

To facilitate further development, consistent with previous approximations, expand L to first order
in dF , dropping third and higher order terms, such as ṀdF , and integrate terms in MG

:zz by parts to yield
quadratic terms in in MG

:z . In this first study, drop the boundary terms. Obtain (before integrating by
parts):
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L = T − V ′ , V ′ = − (2Nτ )−1gG′G gG(gG + 2MG /τ )dFG , (4.12)

(. . .)∇ 2 MG → − (∇ . . .) ⋅ (∇ MG) = − (. . .),G′ MG′
:z MG

:z ,

where gG and gGG′ are defined by setting the dF terms in g′G and g′GG′ to zero, and gGG′ ≡ (gGG′)−1.

4.3. Regional Long-Time Propagator

With p̃ properly defined by this space-time mesh, a path-integral formulation for the regional long-
time propagator P̃ at time t = (u + 1)θ + t0 is developed:

P̃[M̃(t)] d M̃(t) = ∫ . . . ∫ DM̃ exp(−N
t

t0

∫ dt ′L), (4.13)

P̃[M̃(t0)] = δ (M̃ − M̃0),

DM̃ =
u+1

s=1
Π

Λ

ν
Π

E,I

G
Π(2πθ)−1

2 (gν
s )

1⁄4dMGν
s .

Note that even for Nτ L ≈ 1, N
t

t0

∫ dt ′ L is very large for macroscopically large time (t − t0) and size Λ,

demonstrating how extrema of L define peaked maximum probability states. Eq. (4.13) contains the
dynamics of macroscopic causal irreversibility, whereby P̃ is an unstable fixed point about which devia-
tions from the extremum are greatly amplified [21].

4.4. Information, Potential, and Long-Ranged Interactions

With reference to a steady state P(M̃), when it exists, an analytic definition of the information gain
ϒ̂ in state P̃′(M̃) is defined by [38,41]

ϒ̂[P̃′] = ∫ . . . ∫ DM̃ P̃′ ln(P̃′/P). (4.14)

Although ϒ̂ is well defined and useful for discussing macroscopic neocortical activity, it may not be as
useful for all applications. Certainly many important local changes of information effected by the neocor-
tical system are a function of the microscopic degrees of freedom already averaged over for the purposes
of this study. Howev er, it should also be noted that the path integral in Eq. (4.13) represents an enormous
number of spatial-temporal degrees of freedom of the mesoscopic system.

The minimization of ϒ̂ with respect to P̃′, with M̃ constrained to its (possibly multi-valued) mean
trajectory < M̃ > ′, is formalized by the use of Lagrange parameters JG . This results in the Legendre
transform of ln P̃ [33], and is equivalent to the generating functional ϒdefined in the presence of extrinsic
sources JG [1,35,38]. These sources specify firing constraints imposed on a given region of mesocolumns
from long-ranged extrinsic or inter-regional afferents, e.g. from ipsilateral association, contralateral com-
missural, and thalamocortical processes.

ϒ̂(min { P̃[< M̃ >J ]} ) = ϒ[< M̃ >J ] (4.15a)

= − ln P̃(J) + ∫ dt ∫ d2r < M̃
G >J JG ,

where P̃(J) is calculated by replacing L by LJ :

LJ = L + MG JG /(2Nτ ). (4.15b)

If J is distributed, then DJ measures effects on LJ . A Hamiltonian representation, including JG ṀG

interactions, is also readily derived [1]. This may be useful for describing long-ranged constraints that
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directly affect rates of change of columnar firings.

ϒJ=0 is a proper potential, with free-energy like properties, having a true minimum about
(< M̃ >J − << M̃ >>), where << M̃ >> is the extremum of L obtained by maximizing P̃(M̃) [5]. Its lowest
order approximate ϒ(0) gives the mean field approximation:

ϒ(0) = S̃(< M̃ >). (4.16)

In the context of an additional internal energy term, energy/(kB × temperature), where kB is the
Boltzmann constant, −Nϒ(0) contributes entropy/kB to the "free energy" expression. If the internal energy
is proportional to MG , up to a constant absorbed by the normalization of P̃[J], then the JG term contribu-
tion to NϒJ may be considered to include the temperature-dependent energy term. Of course, these ther-
modynamic correlations to the statistical mechanical results derived here are essentially mnemonic aids.
For example, the "entropy" is a function of the mesoscopic parameters, which ultimately are functions of
microscopic chemical reactions, which have temperature-dependent reaction rates.

Define uniform MG as static, r-space averaged MG :

Ṁ
G

= 0 = (∇ MG)2 . (4.17)

Then extrema << M >> can be simply calculated as

∂L/∂MG = 0. (4.18)

The potential surface ϒ(0), mapped out over M E − M I coordinates, provides a useful picture of the neo-
cortical system.

As seen from Eq. (4.1), T , defined in Eq. (4.12) as the dF-independent part of L, is scale-indepen-
dent of N . Therefore, the small scale of the neocortical system, about which the system fluctuates, is
derived to be N−1, the inverse of the number of neurons in a mesocolumn. This is interpreted as the effec-
tive "temperature" or inherent noise of the GL system. The sharpness of the tanh FG step-function contri-

bution to the mean firing is sensitive to a factor of N
1
2 in β G in FG . Additionally, the strength of coupling

between mesocolumns scales as N 3/2. Thus the neuronal size of mesocolumns directly affects the breadth
and depth of the information processing capability of neocortex. It is interesting to note that human visual
cortex, which may be assumed to require the finest tuning in neocortex, is unique in having twice the
number of neurons per minicolumn than other regions of neocortex [81].

Effects of fluctuations begin to appear in the next order of the N−1 cumulant expansion of ϒ [5,14].
An important quantity is the space-time correlation function Φ:

ΦGG′(r − r ′; t − t ′) = < MG(r, t)MG′(r ′, t ′) > − < MG(r, t) >< MG′(r ′, t ′) >  (4.19)

= δ 2(ln P̃[J])/δ JGδ JG′
J=0
|

= [δ 2ϒ/δ < MG >J δ < MG′ >J ]−1

J=0
| ,

where the last equality holds for all J . Weak fluctuations may also be treated by WKB-type expansions of
P̃ in orders of N−1. In regions of second order phase transitions, long-ranged and long-time correlations
in Φ can appear in the macroscopic limit [69]. Typically, these are the object of renormalization group
(RG) studies.

4.5. Ginzburg-Landau (GL) Lagrangian

To facilitate further study of the long-time macroscopic propagator defined by Eqs. (4.12) and
(4.13), put τ −2gν

s from DM̃ into L, defining an effective Le:
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Le = L + (Nτ )−1 ln(τ g−1
2 ) ≈ [1 + O(N−1 ln N )]L . (4.20)

Expand all functions in Le to order (∇ MG)2 and in powers of MG . This is permitted by Eqs. (2.18) and
(3.5). A generalized GL Lagrangian density in "flat" MG-space is obtained from Le (or similarly from L)
of the form

LGL =
i,i′
Σ

j, j′
Σ

k,k ′
Σ bii′ jj′kk ′ (4.21)

×(MG)k(MG′)k ′(∇ MG) j(∇ MG′) j′(ṀG)i(ṀG′)i′ , MG = MG− << MG >> ,

where the b’s are the expansion coefficients, expressed in terms of α G , β G , andγ G of Eq. (3.3). Empirical
values of these parameters ensure that the most important contributions come from small values of k and
k ′. Typically, only terms up to the quadratic power in mixed derivative and static terms, and up to the
quartic power in solely static MG terms, are kept in this expansion.

4.6. Differential Propagator — Reduction to Other Studies

This subsection is not essential to the development of Secs. 4 and 5. However, comparison of this
formulation to other analytic treatments of cortex is made straightforwardly by examining the differential
equations satisfied by p̃[M̃(t + θ )] in Eq. (4.9). The EL equations derived by the principle of maximum
probability, Eq. (4.5), are used to express ∆MG = MG(t + θ ) − MG(t) as a power series in ∆MG , which
become the variables of integration. Only terms quadratic in ∆MG are kept in S̃. All other terms, as well
as g and p̃[M̃(t)] are expanded in a power series in ∆MG . To order θ and to second order in derivatives
in p̃ with respect to MG , an expansion up to order (MG)6 is required [16,65]. The resulting integrals are
simply moments of Gaussian distributions. In terms of the "drift" HG and the "diffusion" gGG′ (in G-
space):

˙̃p = Ω−1 ∫ d2r[(−HG + 1
2 (gGG′),G′ −NV ] ,  (4.22)

p̃[M̃(t0)] = δ (M̃ − M̃0),

HG = gG + 1
2 g−1

2 (g
1
2 gGG′),G′

V = V ′ − ( 1
2 gG

;G + R/6)/N

gG
;G = gG ,G +ΓF

JF gG = g−1
2 (g

1
2 gG),G

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L),

gGG′ = (gGG′)−1 ,

R = gJL RJL = gJL gFK RFJKL ,

RFJKL = 1
2 (gFK ,JL −gJK ,FL −gFL ,JK +gJL ,FK )

+gMN (ΓM
FK ΓN

JL − ΓM
FLΓN

JK ).

In the literature, this calculation is done in the opposite order. That is, starting with the differential
equation, typically the Fokker-Planck equation (V = 0), the short-time propagator is derived and further
developed for long times [21-25,34-38,63-66]. Then the terms 1

2 gG
;G + R/6 must be added to L in order

that p̃ satisfy the original differential equation. (This study has taken Eqs. (4.1) and (4.3) to define an
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explicit non-covariant L.) Care must be taken with the time discretization employed [63]. Some investi-
gators also use other constraints, such as developing a WKB approximation, instead of the principle of
maximum probability, yielding a contribution to V of R/12 instead of R/6 [38]. R/8 is obtained using
other principles that include fully stochastic paths at arbitrarily short time intervals [23-25]. In this study,
the biophysics dictates the appropriate discretization and probability constraints. The magnitude of this
contribution, calculated in Sec.5, confirms that neocortex is the first system investigated in which this
term has measurable physical consequences [24].

All these calculations are facilitated by noting that the system is defined in a Riemannian geometry
with metric tensor gGG′ and and a contravariant (upper indices) and covariant (lower indices) tensor alge-
bra. ΓF

JK is the affine connection, R the Riemann curvature scalar, RJL the Ricci tensor, and RFJKL the
Riemann-Christofell tensor [110]:

RFJKL ZF = ZJ ;LK − ZJ ;KL , (4.23)

Z an arbitrary covariant vector. Numerical calculations described in Sec. 5 demonstrate that R and gG
;G

for neocortex are non-negligible contributions to the differential propagator. With gGG′ diagonal for neo-
cortex,

R = g−1(gEE ,II +gII ,EE ) (4.24)

− 1
2 g−2{ gII [gEE ,E gII ,E +(gEE ,I )2] + gEE [gII ,I gEE ,I +(gII ,E )2]} .

In this system, a nonzero interaction potential exists from nonlinear gGG and dF contributions, and
a Schroedinger-type equation (with ih/ → N−1, where h/ is Planck’s constant) is derived instead of a
Fokker-Planck equation. Other studies using phenomenological Fokker-Planck equations for neocortex,
or an equivalent set of Langevin rate equations [64,111], do not properly include these nonlinear contribu-
tions. If this objection is arbitrarily disregarded; if functions ĝG

j spanning both microscopic and meso-
scopic systems can be defined such that gGG′ = ĝG

j ĝG′
j ; and if functions η j are taken to represent micro-

scopic Gaussian white noise; then a Langevin representation of Eq. (4.22) is also possible:

ṀG = gG + ĝG
j η j , (4.25)

< η j(t) >η = 0,

< η j(t)η j′(t ′) >η = δ jj′δ (t − t ′),

If dF terms are included to express mesocolumnar coupling, the resulting Langevin equations specify a
reaction-diffusion system in real-space and time coordinates. gG and gGG′ are defined in this context as
the first and second rate-jump-moments of this V = 0 system.

If all the V and gGG′ are arbitrarily set to zero, the resulting equations, written in terms of "average
neurons," are just those taken as the starting point for the phenomenological pioneering modelling of cor-
tex in previous studies [30,31,115,116], upon which other studies referenced in Sec. 1.2 are based. In
some studies, additive white noise, which assumes ĝG

j = constant, is included, and then typically several
thousand computer "trials" are examined to find most probable trajectories. In Secs. 4 and 5, a variational
principle is derived to directly calculate these extrema trajectories, without requiring the above assump-
tions.

4.7. Further Application of Other Formalisms

This subsection also is not essential to the development of Secs. 4 and 5. However, this study per-
mits other related issues to be discussed that have been raised by other investigators of neocortical mod-
elling.
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Renormalization group (RG) analyses may be appropriate to the GL polynomial obtained. This
nonequilibrium system has well defined: diffusion, short-ranged interactions, derivative NN couplings,
continuous order parameters, 2 spatial dimensions, and 2 independent fields. Time-dependent RG field
theories can be applied to Eqs. (4.12), (4.15) and (4.19) which rely on older RG techniques [11,14,19,20].
However, in two dimensions renormalization of all b-coefficients of L may be necessary. Real-space
techniques developed primarily for 2-dimensional systems may be more practical [71-74,85], using Eq.
(4.22). This latter approach shows promise of eventually consistently treating both first and second order
phase transitions, if more calculational accuracy can be achieved [75].

This system may also support various collective phenomena described by phase transitions of E
and I (or E±I , etc.) fields considered separately, by extrinsically, chemically or electrically, maintaining
the other field fixed. Then the linear b-coefficient would be analogous to the "orienting field" of a mag-
netic system, the quadratic b-coefficient would be proportional to the relative "critical temperature" [69].

It should be noted that although MG-space anisotropies are present, the possibility exists of trans-
forming away (MG)3 terms, effectively rounding out a first order phase transition [69]. Other long-ranged
long-time interactions considered in Eq. (4.15b) may act to drive the linear coefficient to zero, permitting
symmetric bifurcation, and the onset of a second order phase transition must be considered. Thus a plau-
sible hypothesis is presented, whereby long-ranged afferents act to drive the system of short-ranged inter-
actions through phase transitions. An example of this mechanism is further discussed in Sec. 5.

The mesocolumnar parameters, initial conditions, and long-range source terms may be taken as
dependent on different regions. Long-range interactions between regions I and II in Fig. 1c’ may be
expressed as a sum of an interaction plus independent regional Lagrangians. The resulting set of EL
equations, written in terms of "average neurons," can be reduced to those used in other studies that con-
sider the dipole-layered effects of long-range interactions [86,87]. However, this study permits inclusion
of the short-range interactions.

Rigorous theorems exclude second order phase transitions in isotropic O(2) (rotationally invariant)
2-dimensional GL systems with numbers of field components ≥ 2, due to "spin-wav e" fluctuations that
compete with couplings between spins [44,78], considered to be firings in this study. Many rotationally
equivalent long-ranged periodic configurations, wav es, each with an otherwise nonzero average spin,
interfere to give a net average of zero. However, the Lagrangian of these coupled MG fields does not pos-
sess the O(2) algebraic structure assumed to describe this phenomena, permitting a discrete set of minima
to exist that can likely withstand these particular fluctuations even under critical conditions.

Similarly, other arguments for "topological order" cannot be straightforwardly applied [9,58,59].
Still, this system may support some topological excitations, solitary wav es. Most investigations have been
done only in 1-dimensional systems [10], including some neuronal reaction-diffusion models [105]. A
1-dimensional excitation might propagate in 2 dimensions, with a contribution to the "rest mass" (b-coef-

ficient of M2) proportional to ∫ dM (gG gG)
1
2 , but similar to the discussion above, these models typically

possess symmetries not directly appropriate to the neocortex. An important, quite general benefit to be
derived by considering these excitations is that dispersive gradient effects, localized defects, and boundary
conditions are many times more easily analytically treated than by other formal methods by dealing
directly with the EL equations [93,94].

5. Calculations

5.1. Examples

Straightforward calculations of the approximate potential surface ϒ(0), using uniform MG of Eq.
(4.17), have been performed. Calculated is:

L ≡ L0(MG) = 1
2 N−1[gEE (gE )2 + gII (gI )2]. (5.1)



Statistical Mechanics of Neocortical ... -20- Lester Ingber

Some systematics are suggested from searching out minima of L for a few sets of mesoscopic parameters.

Note that minima of L are sought, not minima of Le derived from Eq. (4.20). The contribution to

Le from ln(τ g−1
2 ) is typically > 0, except for regions of very large |FG |. For example, for N E = 125 and

N I = 25, ln(τ g−1
2 ) ≤ 0 for |FG | ≥ 4. 717, not at all a typical value for reasonable neuronal parameters given

in Eq. (3.3). The effects of this ln contribution, relative to L, are to give a positive translation and to glob-
ally warp the surface of L over MG-space.

Example a. Consider the following rather arbitrary example of a region of mesocolumns, each
with 150 neurons, selected to model minicolumns and to symmetrize the mesoscopic parameters, with
γ G = 0. Take N E = 125, N I = 25, V G = 10 mV, AG = 1. 5, BG = . 25, vG = . 1  mV =φG . This yields
α G = . 005, β G = 4. 886, γ G = 0.

A search reveals a minimum at MG = 0, L = 0. At this minima, FG = gG = 0, gEE = . 008, gII = . 04.
Also, gE

;E = gE ,E = 2. 054, gI
;I = gI ,I = −. 3892, R = . 179, and HG = 0. This surface has a least steep span

across the axis maintaining FG = 0, where M/ = 0. For example, L = . 1  at MG = 25 and at MG = − 25;
L = 1. 539 at M E = ±25 = − M I . About this minimum, a small difference in MG can change exp(−Nϒ(0))
to a substantially lower probability of being in the altered firing state. For instance, L = 3. 929 × 10−4 at
M E = 5, M I = 0, gives the probability for this state as exp(−ΛuN L) × the probability at the minimum,
which is vanishingly small for ΛuN ≈ 1010.

The following notation will be used to represent calculations only at extrema (demonstrated by cal-
culations to be minima): At << M >>, calculate (M E , M I ; L), and the coefficients of ((∇ M E )2 // (∇ M I )2)
and ((Ṁ E )2 : (Ṁ I )2 : : Ṁ E : Ṁ I ) that contribute to L in Eq. (4.12). For the above << M >>, obtain (0, 0;
0), (0 // 0), (2. 67 × 10−5 : 1. 33 × 10−4 : : 0 : 0). Note that the differential factors of these coefficients vary
slowly and are of long wav elength in macroscopic regions, and are therefore also small.

-- Fig. 3 --

This minimum might seem to be a classic representation of a disordered state of firings. Fig. 3
exhibits the cortical surface of L for these parameters [91]. However, at a scale at which gradient interac-
tions are still small contributions, a fine structure yielding other local minima becomes apparent. At the
nearest integral values of MG , data at these local minima are included in Table 1 together with data calcu-
lated at global minima. The existence of pairs of degenerate minima suffice to recommend further investi-
gation into second order phase transitions and into properties of solitary wav es that may be supported in
this instance [93,94].

-- Table 1 --

Example b1. If the mesoscopic parameters are changed from the above, by changing the synaptic
conductivities from AG = 1. 5 to AE = 1. 25 and AI = 1. 75, this yields
α E = 4. 762 × 10−3, α I = 5. 185 × 10−3, β E = 4. 570, β I = 5. 182, γ E = 9. 524 × 10−2, γ I = − 7. 407 × 10−2.
Note that MG = 0 is no longer a minimum. (See Table 1.) Fig. 4 exhibits the cortical surface of L for
these parameters.

-- Fig. 4 --

Example b2. Example b1 is changed to AE = 1. 75, AI = 1. 25. (See Table 1.)

Example c. Example b1 is changed to N E = 150, N I = 30. This retains the same ratio of N E /N I ,
but increases N . (See Table 1.)

Example d. Example b1 is changed to N E = 150, N I = 50. This decreases the ratio N E /N I and
increases N . (See Table 1.)

As calculated in Table 1, the gradient couplings cause NN mesocolumns to fire M E (M I ) oppo-
sitely (similarly), in accord with empirical observations of interacting columnar structures that favor peri-
odically alternating firings, supporting the development of Secs. 2 and 3. Of course, Sec. 4 is also
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essential to establish a variational principle, to demonstrate the stability of such structures in the presence
of nonlinearities and (weak) fluctuations.

In the vicinity surrounding a minimum, the extrema equations can be fit to a GL polynomial, as per-
mitted by Eq. (4.21). Some preliminary least-square fits have been performed, using mesocolumnar
parameters within the ranges of the above Examples. Long-ranged JG influences were also included,
causing substantial shifts in << MG >> for JG terms on the order of L. These calculations confirm that
linear terms in the EL equations are typically much larger than higher order terms, for quite large values
of MG− << MG >>, and that extrema are quite sensitive to nonlinearities and to long-ranged afferents.

5.2. Oscillatory Behavior

An examination of the Lagrangian shows that the linearized EL equations for the firing deviations
from the static (nonlinear) extrema can be written as:

0 = − f |G| M̈
|G| + f 1

G ṀG′ − g|G|∇
2 M |G| + b|G| M

|G| + bMG′ , (5.2)

MG = MG− << MG >> ,

f 1
E = − f 1

I ≡ f ,

where the vertical bars indicate no sum is to be taken over repeated indices, and G ≠ G′. The first step
towards finding a weakly nonlinear oscillatory steady state [79] is to examine the spatially-temporally
Fourier-transformed linearized EL equations. Define

MG
osc(z, t) = ∫ d2ξ dω M̂

G
osc(ξ , ω) exp[i(ξ ⋅ z − ωt)], (5.3)

and obtain a dispersion relation for ω(ξ ):

2A(ωτ )2 = − B ± (B2 − 4AC)
1
2 , (5.4)

A = f E f I > 0,

B = ( f E bI + f I bE − f 2) + (ξ ρ )2( f E gI + f I gE ) ,

C = (bE bI − b2) + (ξ ρ )2(gE bI + gI bE ) + (ξ ρ )4gE gI .

This condition also fixes the ratio M E
osc/M I

osc.

Empirical observations of macroscopic EEG activity, reasonably extrapolated to nondispersive flat
z-surfaces [87], estimate ω < 102sec−1 and ξ < 10−1cm−1. ω = 2πq ×frequency and ξ = 2πr/wav elength,
where q and r are integers representing normal modes. Since τ ≈ 10−2 sec and ρ < 10−2 cm, ωτ < 1  and
ξ ρ < 10−3. Therefore B, C, and ω2 may be relatively independent of (ξ ρ )2 for many values of meso-
scopic parameters, consistent with the lack of spatial correlation of much of EEG data.

All the Examples in Table 1 yield B > 0  and C > 0. Therefore ω is imaginary and no oscillatory
steady state exists about these static extrema. Rather, these Examples exhibit behavior typical of the "low
temperature" side of phase transitions [69], reinforcing motivation to continue RG studies in this system.

Oscillatory steady states with B > 0  and C < 0  can be induced in the above Examples by the long-
ranged JG sources. For instance, if the static extremum of Example b2 is driven to MG = 0 by turning on
JE = −1. 3 and JI = 1. 5, then C/A ≈ −2. 1 − 6. 3(ξ ρ )2 and 1

2 B/A = 1. 0−. 55(ξ ρ )2, whereas
C/A ≈ 1. 0 − 4. 4(ξ ρ )2 and 1

2 B/A = 1. 0 − 3. 5(ξ ρ )2 with JG = 0. This is one example of the mechanism
hypothesised in Sec. 4.6, wherein JG afferents can induce phase transitions. This also stresses the impor-
tance of long-ranged interactions.
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Oscillatory steady states can also arise with B < 0. Different coefficients in Eq. (5.2), and therefore
different mesocolumnar mechanisms, are involved. Applying JE = −2. 6 and JI = 4. 9 to Example b2
produces an extremum shifted to M E = 25 and M I = 5, with 1

2 B/A = −. 72 − 6. 7(ξ ρ )2. Note that all
these spatially uncorrelated steady states are consistent with the empirical ωτ < 1.

It is also interesting to examine oscillatory steady states by yet other mechanisms that yield
C ≈ O[(ξ ρ )2]. Since the gG-coefficients enter, this also tests the development of Secs. 2 and 3. Eq. (5.4)
yields:

ω = v̂ξ , (5.5)

were v̂ is the wav e propagation rate. In this oscillatory state, low-frequency long-wav elength propagation
of information has minimal oscillatory background. JE = −. 53 and JI = −. 11 applied to Example b2 pro-
duces an extremum shifted to M E = −3. 0 and M I = 1. 5, with 1

2 B/A = . 74−. 24(ξ ρ )2 and
C/A = −2. 5(ξ ρ )2+. 025(ξ ρ )4. This yields v̂ ≈ 1 cm/sec, consistent with the rate of information process-
ing between mesocolumns.

In the above 3 examples of oscillatory states driven by long-ranged sources, the gradient couplings
cause NN mesocolumns to fire MG similarly. These examples support the hypothesis that low-frequency
long-wav elength interactions between short-ranged neurons, modulated by long-ranged afferents, are pri-
marily correlated with intra-regional information processing among mesocolumns. Since inter-regional
interactions are facilitated at long-ranged excitatory action potential rates of 600 to 900 cm/sec [87], it is
possible for several regions to simultaneously process similar information at the slower intra-regional rate.

6. Conclusion

The following assumptions and their derived conclusions have been formulated. These assump-
tions, although supported by arguments resting on the cited references, may be correctly viewed as gross
simplifications of the complex microscopic details of neocortical function. However, the detailed analytic
development of even these assumptions and their logical conclusions has not been previously formulated,
and much empirical neuronal information is explicitly retained without adding any undefined or unphysi-
cal parameters.

Neocortical information is assumed to be statistically processed primarily by voltage-gated presy-
naptic and chemically gated postsynaptic interactions that take place on the molecular scale of membrane
physics. Averages over tens of thousands of synapses are taken to derive the conditional probability for
neuronal firing. Similar to other physical systems, an averaging over these microscopic degrees of free-
dom, whether they be deterministic or stochastic, gives rise to a stochastic macroscopic description.

Short-ranged short-time neuronal interactions are assumed to be primarily mediated by neuronal
processes within nearest-neighbor distances of empirically observed minicolumns. Av erages over hun-
dreds of neurons, respecting the independence of excitatory and inhibitory transmitters, are taken to derive
nearest-neighbor mesocolumnar gradient interactions and the conditional probability for regional activity
of mesocolumnar firings. Similar to other physical systems, there exist local order parameters that
describe the dynamics.

A Markovian development for the short-time conditional probability is assumed to describe the
long-time response of a region. Long-time electrotonic and humoral influences, and long-ranged synaptic
influences are consistently treated in this formulation. A temporal string of these conditional probabilities
is developed to derive a Lagrangian formulation, expressing the statistical mechanics inherent in this sys-
tem. Similar to other physical systems, the macroscopic nonequilibrium statistical mechanics can be
described by an Onsager-Machlup type Lagrangian. Sufficient conditions for long wav elength, long
period oscillatory behavior have been derived directly from the corresponding variational principle
applied to the macroscopic statistics of interacting mesocolumns, driven by long-ranged extrinsic or inter-
regional afferents. The spatial behavior of extrema is also consistent with observed columnar physiology.
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Other features of this Lagrangian motivate further study into phase transitions.

As experienced in studies of other collective systems, the macroscopic activity of the neocortex is
derived to depend only on the systematics of microscopic activity and on a few mesoscopic parameters,
albeit some care must be taken in this development. This formulation also permits future approximation
or elaboration within current paradigms of collective systems. For example, consistent with existing
ranges of numerical values of all parameters, a Ginzburg-Landau expression is derived for neocortex.

Some tentative conjectures on biological mechanisms supported by this study are published else-
where [48,49]. Calculations examining more complex spatial-temporal interactions typically investigated
in other dissipative systems, and other more detailed computations on specific mechanisms will be pre-
sented in future papers.

Acknowledgements

I am grateful for stimulating interaction with the late Bernd Matthias, Director of IPAPS, a Board of
Director of PSI, and a dear friend and colleague for two decades. I also thank Michael Arbib for careful
readings of earlier drafts in 1979 and 1980.



Statistical Mechanics of Neocortical ... -24- Lester Ingber

References

[1] E.S. Abers and B.W. Lee, "Guage theories," Phys. Rep. C9 (1973) 1-141.

[2] W.R. Adey, "Long-range electromagnetic field interactions at brain cell surfaces," in Magnetic Field
Effect on Biological Systems (Plenum, New York, 1978) p. 56-80.

[3] A.K. Afifi and R.A. Bergman, Basic Neuroscience, 519 p. (Urban & Schwarzenberg, Baltimore,
MD, 1978).

[4] S.-I. Amari, "Neural theory of association and concept formation," Biol. Cybernetics 26 (1977)
175-185.

[5] D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena, 336 p. (Mc Graw-
Hill, New York, 1978).

[6] J.A. Anderson, "A simple neural network generating an interactive memory," Math. Biosci. 14
(1972) 197-220.

[7] J.A. Anderson, J.W. Silverstein, S.A. Ritz, and R.S. Jones, "Distinctive features, categorical percep-
tion and probability learning: Some applications of a neural model," Psych. Rev. 84 (1977)
413-451.

[8] A. Babloyantz and L.K. Kaczmarek, "Self-organization in biological systems with multiple cellular
contacts," Bull. Math. Biol. 41 (1979) 193-201.

[9] M.N. Barber, "Phase transitions in two dimensions," Phys. Rep. 59C (1980) 375-409.

[10] A.R. Bishop, J.A. Krumhansl and S.E. Trullinger, "Solitons in condensed matter: A paradigm,"
Physica D1 (1980) 1-44.

[11] N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed., 620 p.
(Wiley & Sons, New York, 1980).

[12] I.A. Boyd and A.R. Martin, "The end-plate potential in mammalian muscle," J. Physiol. (London)
132 (1956) 74-91.

[13] V. Braitenberg, "Cortical architectonics: General and areal," in Architectonics of the Cerebral Cor-
tex, eds. M.A.B. Brazier and H. Petsche (Raven Press, New York, 1978) p. 443-465.
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FIGURE CAPTIONS

FIG. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a*)-(a’) microscopic
neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. In Fig (a*) synaptic inter-neu-
ronal interactions, averaged over by mesocolumns, are phenomenologically described by the mean and
variance of a distribution Ψ. Similarly, in Fig. (a) intra-neuronal transmissions are phenomenologically
described by the mean and variance of Γ. (This is a modified freehand sketch from Ref. [100].) Meso-
columnar averaged excitatory (E) and inhibitory (I ) neuronal firings, N and M , are represented in Fig.
(a’). In Fig. (b) the vertical organization of minicolumns is sketched together with their horizontal stratifi-
cation, yielding a physiological entity, the mesocolumn. In Fig. (b’) the overlap of interacting meso-
columns is sketched. In Fig. (c) macroscopic regions of neocortex are depicted as arising from many
mesocolumnar domains. These are the regions designated for study here. Fig. (c’) sketches how regions
may be coupled by long-ranged interactions.

FIG. 2. Represented is the relationship of this study to other neurological structures and processes.
The macroscopic Lagrangian L in the triangle represents the interactions and fluctuations that process
input to output patterns of mesocolumnar firings. These patterns, represented by the RHS and LHS cir-
cles, are expressed in terms of the probability eigenfunctions of L. The b’s are the expansion coefficients
of the polynomial representation of L. The square, representing stored acquired/inherited patterns, may
interact back on the triangle, changing the electrical and chemical parameters which affect the local and
global information processing of L.

FIG. 3. Illustrated is the surface of the Lagrangian L over the (M E − M I ) plane, for Example a.
Figs. (a), (b) and (c) are viewed from a distance of 10,000 grid units to minimize perceptual convergence,
at an azimuth of -25 degrees, measured counterclockwise from the vector (0,0) to (0,-25), and an elevation
of 30 degrees. The scale of L is full in Fig. (a) at a height of 2. 64 × 103/τ . In Fig. (b), all points on the
surface higher than 102/τ are deleted, and in Fig. (c) the cutoff is at 5 × 10−3/τ . Another view of the fine
structure at this latter cutoff is seen in Fig. (d), which is viewed from an azimuth of 135 degrees and an
elevation of 45 degrees.

FIG. 4. Illustrated is the surface of L for Example b1. The details of the viewing angles and scales
are described in Fig. 3. Here, Fig. (a) is at full scale at a height of 3. 06 × 103/τ . Fig. (b) is cutoff at
5 × 10−2/τ , and Fig. (c) shows the same surface at the view described in Fig. 3(d).
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TABLE CAPTIONS

TABLE 1. At minima << M >>, for the mesoscopic parameters given in the various Examples, cal-
culated are (M E , M I ; L), the coefficients of ((∇ M E )2//(∇ M I )2) and ((Ṁ E )2: (Ṁ I )2: : Ṁ E : Ṁ I ), and the
values of the Riemannian contributions to the differential propagator, V − V ′.


