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A recent study has demonstrated that several scales of neocortical interactions can be consistently
analyzed with the use of methods of modern nonlinear nonequilibrium statistical mechanics. The forma-
tion, stability, and interaction of spatial-temporal patterns of columnar firings are explicitly calculated, to
test hypothesized mechanisms relating to information processing. In this context, most probable patterns
of columnar firings are associated with chemical and electrical synaptic modifications. It is stressed that
synaptic modifications and shifts in most-probable firing patterns are highly nonlinear and interactive sets
of phenomena. A detailed scenario of information processing is calculated of columnar coding of exter-
nal stimuli, short-term storage via hysteresis, and long-term storage via synaptic modification.
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I. INTRODUCTION

An analytic formulation of neocortical information processing, consistent with and based upon cur-
rent data, has been developed which is applicable to a broad range of relevant spatial scales, with the use
of methods of modern nonlinear nonequilibrium (e.g., evolving irreversibly) statistical mechanics [1]. As
referenced in that work, there are many previous studies of cortex that have made severe approximations
not found to be necessary here. Perhaps the most important feature of this work is that some aspects of
neocortical phenomena now come within the scope of current paradigms of collective systems, expanding
the interdisciplinary approach to this complex system [2-5].

A major contribution of this work is the analytic treatment of minicolumns [6]. Minicolumns are
structures observed to span ∼ 7 × 102 µm2. Mesocolumnar domains are defined here as the spatial extent
of minicolumns, in order to distinguish their scale from that of microscopic neurons, but they retain neu-
ronal chemical and electrical properties. The proper stochastic treatment of their interaction permits their
development into macroscopic regions responsible for global neocortical information processing.

The basic hypothesis is that neocortical development and function can be correctly represented by
specific microscopic circuitries, upon which is superimposed a set of short-ranged interactions con-
strained by a nonlinear nonequilibrium statistical mechanics which guides the more microscopic electri-
cal-chemical biophysics. Furthermore, in the context of global information processing, even the specific
microscopic circuitries are subject to further averaging. Support for arguments invoking stochastic pro-
cessing to explain empirical observations range from electroencephalographic (EEG) [7-9] and magne-
toencephalographic (MEG) [10] (having resolution in the range of millimeters) studies to studies of neu-
ronal development and death [11].

Since neuronal and columnar firings transpire in epochs on the order of milliseconds, and synaptic
modifications take place in epochs on the order of tenths to many seconds, modifications must take place
in the (nonlinear) environment of changing eigenfunctions, i.e., firing states, of the firing patterns. I.e., it
is reasonable to assume that synaptic modifications generally follow changes in firing patterns adiabati-
cally. Linear algebraic approaches are appropriate only after the nonlinear problem has been solved for
most probable firing states for a given set of neuronal parameters.

Previous approaches do not consider the evolution of synaptic modifications as transpiring in the
context of interacting with changing firing patterns [1]. This is essential since the latter most usually
cause the former. In this study these efficacies can be better represented as more specific presynaptic or
postsynaptic modifications, and therefore ultimately they permit theory based on them to be more testable.
Instead of somewhat nonrigorously examining synaptic modifications of an "average" neuron, this theory
relatively rigorously examines the average synaptic modification of a mesocolumn consisting of over a
hundred neurons.

Section II outlines the derivation of the statistical mechanics of firing patterns [1] in the context of
this paper, and adds explicit polynomial expansions to detail the ranges where such approximations are
useful. More detailed biological, mathematical and physics support and references for this development
are given in Ref. 1. However, enough descriptive and mathematical detail are given here to be self-con-
tained, and to at least convey the nature of the nonlinearities and multiple hierarchies inherent in neocor-
tex.

Section III considers the dynamics of synaptic modification, and includes calculations of synaptic
coding of extrinsic stimuli and the stability of synaptic modifications. Estimates of the probability of hys-
teresis are calculated using the development of Sec. II. Initial results are presented of a Monte Carlo pro-
gram that explicitly calculates the probability distribution of firing patterns. Extensions of this algorithm
are described for future study of interlaminar and inter-regional interactions and chaotic behavior.

Thus the statistical mechanics of a detailed scenario is explicitly calculated, of columnar coding of
extrinsic stimuli, short-term storage via hysteresis, and long-term storage via synaptic modification. The
price paid for using a statistical mechanics paradigm to obtain the conceptual simplicity of these results
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consists of a relatively long formal development and computer calculations and rather tedious expansions
of the derived highly nonlinear functions.
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II. STATISTICAL MECHANICS OF FIRING PATTERNS

A. Microscopic neurons

Briefly stated, at the membrane level neuron-neuron interactions proceed at ionic and molecular
scales via gates regulated by electrical and chemical activity, by mechanisms currently under biochemical
and statistical mechanical investigations [12,13]: Voltage-gated axonal transmembrane ionic flows along a
firing efferent neuron, e.g., of Na+ and K+ sequentially, propagate an action potential of ∼ 100 mV. This
acts to voltage-gate presynaptic transmembrane ionic flows, e.g., of Ca2+, causing the release of "quanta"
of neurotransmitter, each quanta containing ∼ 103 molecules, e.g., glutamic acid (excitatory) or
γ -aminobutyric acid (inhibitory). Molecules of neurotransmitters that survive interactions through the
synaptic cleft act to chemically gate postsynaptic transmembrane ionic flows, e.g., of Na+ and K+ simulta-
neously (excitatory) or of K+ and/or Cl− (inhibitory), which depolarize or hyperpolarize the postsynaptic
membrane. With sufficient depolarization transduced at the trigger site of its axon from its synapses, typi-
cally located on dendrites and the cell body (soma), the afferent neuron fires, i.e., initiates an action poten-
tial, and becomes efferent to many other neurons via its branching axon and axonal collaterals. Coinci-
dence gating mechanisms, not considered here, can cause specific microscopic circuitries to be sensitive
to time scales ∼ 0. 01 msec.

Calculations [1] demonstrate that the probability of a given neuron firing within a refractory period
of τ n∼ 5 msec because of its neuronal interactions is essentially independent of the functional form, not the
numerical mean and variance, of the average inter-neuronal distribution of chemical quanta. τ n is taken to
lie between an absolute refractory period of ∼ 1 msec, during which another action potential cannot be ini-
tiated, and a relative refractory period of ∼ 0. 5—10 msec (larger neurons typically having larger periods),
during which a stronger stimulus is required to initiate another action potential. A Gaussian distribution Γ
is reasonable to describe the average intra-neuronal distribution of electrical polarization across the vari-
ous shapes and sizes of neurons in a mesocolumn. Throughout this study, excitatory (E) and inhibitory
(I ) firings retain their chemically mediated independences in neocortex.

-- Fig. 1 --

Consider the interaction of neuron k (k = 1, N ∗ ) with neuron j across all jk synapses according to a

distribution Ψ for q chemical quanta with mean efficacy a∗
jk =

1

2
A∗

jk(σ k + 1) + B∗
jk ∼ 0. 01, with B∗

jk a

background spontaneous contribution; σ k = 1 if k fires; σ k = −1 if k does not fire. Synaptic efficacy is a
measure of ionic permeability, and an inverse measure of electrical impedance. Efficacies A∗

jk measure
chemical synaptic activity; efficacies B∗

jk measure various small but measurable influences, e.g., local
couplings between transient postsynaptic polarizations (electrotonic potentials) [14], remote couplings to
transient extracellular fields of action potentials (ephaptic interactions) [15], and fluctuations in extracel-
lular ions especially in the wake of action potentials. As portrayed in Fig. 1, the final electrical effect at
the trigger zone of j is described by a Gaussian distribution Γ with mean qvjk and variance √  qφ jk , with
v jk ∼ φ jk ∼ 0. 1 mV. Neuron j fires if the threshold electric potential Vj ∼ 10 mV is attained at the trigger
zone of the axon. Numerical values of these parameters agree with those observed in experimental
studies [16-18]. A net effect is to make the firing of neuron j , near its firing threshold within τ n, sensitive
to changes of firing of ∼ 10−3—10−2 N ∗ of its efferents { k} . Neuronal firing rates typically are < 0. 1/τ n.

[Although recent studies favor a binomial distribution for Ψ over a Poisson distribution [17], it
should be noted that in that paper, albeit studying goldfish synapses, their variance σ in their L (Γ here)
should be replaced by √  kσ (√  qφ jk here), which arises from the application of the "central limit
theorem" [19] to independent Gaussian processes of q released quanta. That error appears to bias their
results for their pk (Ψ here) towards the binomial distribution, although their final conclusions may not
require substantial revision.]
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The derived probability for neuron j to fire, given its interaction with k = 1, . . . , N ∗ neurons is

pσ j
=

∞

Vj

∫ dWj Sj ≈ exp(−σ j F j )/[exp F j + exp(−F j )] , (2.1)

F j = 

Vj −

k
Σa∗

jk v jk


/

π

k′
Σa∗

jk ′(v
2
jk ′ + φ2

jk ′)



1/2

,

Sj = ∫ . . . ∫ dWj1
. . . dWjN ∗ Sj1

. . . SjN ∗ δ 

Wj −

k
ΣWjk




,

Sjk =
∞

q=0
Σ ΓΨ ,

Γ = (2πqφ2
jk)−1/2 exp[−(Wjk − qvjk)2]/(2qφ2

jk) ,

q→0
lim Γ ≡ δ (Wjk) ,

Ψ = exp(−a∗
jk)(a∗

jk)q/q! ,

Ψ′ =
[2a∗

jk(1 −ψ )]−1/2 exp { − (q − a∗
jk)2/[2a∗

jk(1 −ψ )]}

∫
∞
−[a∗

jk /(2(1−ψ )]1/2
dzexp(−z2)

,

where Sjk is the probability of neuron j developing an electric potential from all synapses with neuron k,
and Sj is the probability of j developing Wj from all N ∗ neurons. Ψ′ is an alternative possibility for Ψ;
ψ is defined by a∗

jk = ψ e, e the number of repetitions of an "experiment," and is likely correlated with the
number of synaptic knobs [17]. This result is found to be essentially independent of the distribution taken
for Ψ; i.e., Eq. (2.1) results from Ψ′ as well as from Ψ [with v2

jk ′ → (1 −ψ )v2
jk ′]. This av eraging process

assumes averaging over much neuronal circuitry and other microscopic details, e.g., some spatial nonad-
ditivity and some temporal summation of postsynaptic potentials.

The large bulk of N ∗ ∼ 104 intrinsic efferents to a neuron (extrinsic efferents are added in the next
Sec. II B) originate within the extent of a "macrocolumn" ∼ 7 × 105 µm2 corresponding to ∼ 105

neurons [6,16]. However, clustering of interactions, synchronization and reverberation of small numbers
of firing states, the greater importance of larger and more strategically placed synaptic interactions, and
multiple synaptic contacts between fibers, all act to effectively reduce N ∗ by perhaps a factor of 2.

B. Mesocolumnar description

The neocortex has ∼ 5 × 1010 neurons distributed rather uniformly over ∼ 5 × 108 minicolumns. (The
visual cortex has double this density.) These columnar structures define unit modules by virtue of their
afferent inputs and the nature of their processing of that input [6]. Within these minicolumns, a "vertical"
structure is defined perpendicular to six highly convoluted laminae of total thickness ∼ 2. 5 × 103 µm [20].
However, there is also a horizontal stratification to columnar interactions, and although the columnar con-
cept has anatomical and physiological support, the minicolumnar boundaries are not so clearly defined.
For instance, although minicolumns may be considered aptly as afferent modules, there is relatively much
greater efferent connectivity between minicolumns within the range of a macrocolumn, rather than
between two neighboring minicolumns or within a minicolumn [21]. Therefore intrinsic minicolumnar
interactions within a macrocolumn of ∼ 103 minicolumns might be represented well by including efferent
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laminar circuitry of nearest-neighbor (NN) minicolumnar interactions, next-nearest-neighbors (N2N), . . .,
and N16N. However, giv en the clear anatomical and physiological support for the afferent minicolumnar
module, and seeking a correct but more spatially homogeneous substrate for first study, a mesocolumn is
defined here as an average afferent minicolumn (e.g., averaged over sev eral minicolumns) of N neurons,
and as an efferent average over a macrocolumn of N ∗ neurons efferent upon this average minicolumn.

Therefore a rough measure of divergence and convergence of columnar interactions is N ∗ /N,
whereby a minicolumn interacts afferently via N neurons, and efferently via ∼ N ∗ axonal collaterals to a
subset of its efferents as well as to other minicolumns. (If the empirically observed existence of mini-
columns is arbitrarily ignored, then, as calculated in the previous Sec. II A, divergence and convergence of
neuronal interactions can only be measured by that of individual neurons, which may be as high as ∼ N ∗ .)
The empirics of N ∗ and N justify the extrapolation of the global conjecture, that to facilitate communica-
tion between all neurons the number of neurons per macrocolumn in a given mammalian neocortex is
approximately the square root of the total number of neocortical neurons [22], to the more local conjec-
ture, that to facilitate communication between all neurons within the unit of a macrocolumn N∝ N ∗ 1/2.
By including NN mesocolumnar interactions and inter-regional constraints from long-ranged fibers, a
blend of these global and local optimum connectivities is formulated.

However, the functional relationships between efferent and afferent interactions are highly nonlin-
ear, as explicitly calculated subsequently here and in Sec. II C. The following describes this averaging
process calculated previously [1], which permits a minimal homogeneous spatial scale of the extent of
minicolumns to be developed for macroscopic study over regions of neocortex. In this way, stratification
of interactions as well as other long-ranged input to groups of minicolumns can be included in a definition
of a physiological unit consisting of one to perhaps several minicolumns, defined by its spatial-temporal
excitatory (E) and inhibitory (I ) afferent and efferent firing states [1]. This study formalizes these cir-
cumstances by defining a mesocolumn with extent ρ∼ 102 µm, corresponding to N ∼ 100—200 neurons, as
an intermediate integral physiological unit. Dynamic nearest-neighbor interactions between meso-
columns are analytically defined by their overlapping neuronal interactions, in accordance with the
observed horizontal columnar stratifications. Calculations verify that in macroscopic activity, where
mesocolumnar patterns of firing vary relatively smoothly over neighboring mesocolumns, it is consistent
to approximate mesocolumnar interactions by including only second-order gradient correction terms [1].

As derived [1], the probability of effecting a change in firing within τ ≥ τ n∼ 5 msec in mesocolumn
MG(r ; t + τ ), G = E or I , located at space-time point (r ; t) = (x, y; t) containing N ≡ N+ = NE + NI neu-
rons from NN interactions with MG(r ′; t) (scaled down from M ∗ G as discussed subsequently), G = E and
I contributions, within r ′ − r ≤ ρ, is

P =
G
Π PG[MG(r ; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 jE
Σσ j − M E(r ; t + τ )




δ



 jI
Σσ j − M I (r ; t + τ )





N

j
Π pσ j

≈
G
Π (2π)−1

∞

−∞
∫ dQG exp[iQGMG(r ; t + τ )]

NG

j ∈{ G,ε }
Π [1 + |ε |D1

ε̂ +
1

2
|ε |2D2

ε̂ ]

× cosh[FG(r ; t) + iQG]sechFG(r ; t)

P≈
G
Π (2πτgGG)−1/2 exp(−Nτ LG) ,

LG = (ṀG − gG)2/(2NgGG) + MGJG/(2Nτ ) − V ′G ,
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V ′G →
G′
ΣV ′′GG′(ρ∇ MG′)2 ,

V ′G = −(2NgGG)−1gG(gG + 2MG/τ )dFG ,

dFG = − tanh FG(dFG
1 − 2 tanh FGdFG

2 ) ,

dFG
1 = 1. 24NG(ρ2/24)α G(1 + α GM+)−1/2{ −

1

2
FG(1 + α GM+)−1/2(∇ 2 M+) − β G(∇ 2 M−)

+α G(1 + α GM+)−1(∇ M+) ⋅ [β G(∇ M−) +
3

4
FG(1 + α GM+)−1/2(∇ M+)]} ,

dFG
2 = 0. 513NG(ρ2/24)(α G)2(1 + α GM+)−1[β G(∇ M−) +

1

2
FG(1 + α GM+)−1/2(∇ M+)]2 , (2.2)

where τ and ρ measure the temporal and spatial scales of a mesocolumn, M− = M E − M I , and
M+ = M E + M I . Mesocolumnar firing rates are measured by (MG + NG)/(2τ ). D1,2

ε̂ are directional
derivatives along ε̂ = ε /|ε | = (r ′ − r )/|r ′ − r |. The ∇ 2 MG terms are calculated by integration by parts on all
factors to their left in V ′G to yield an expression proportional to (∇ MG)2. These parameters are further
defined by

ṀG(t) = τ −1[MG(t + τ ) − MG(t)] ,

∇ MG(x, y) = ρ−1[MG(x + ρ, y) − MG(x, y)] ̂x

+ρ−1[MG(x, y + ρ) − MG(x, y)] ̂y ,

gG = −τ −1(MG + NG tanh FG) ,  (2.3)

gGG = τ −1 NGsech2FG ,

FG = β G(γ G − α GM−)/(1 + α GM+)1/2 .

JG are constraints on MG from long-ranged fibers, and {α G, β G, γ G} are six mesoscopic parameters
derived from the electrical and chemical synaptic parameters averaged over a mesocolumn:

α G = N ∗ G A∗ G/(2N ∗ NGa∗ G) << 1 ,

a∗ G =
1

2
A∗ G + B∗ G ,

(2.4)

β G = (N ∗ a∗ G[1 + (φG/vG)2π]−1)1/2 < N ∗ 1/2 ,

γ G = VG/(a∗ GvGN ∗ ) − N ∗− /N ∗ ,

where N ∗− = N ∗ E − N ∗ I , N ∗ ≡ N ∗+ = N ∗ E + N ∗ I , A∗ G are the efficacies weighting transmission of polar-
ization, B∗ G are spontaneous backgrounds, vG are postsynaptic polarizations, φG are the variances of
polarizations delivered to the trigger site, and VG are the threshold electric potentials to be exceeded to
trigger presynaptic activity. The forward difference definition of ṀG(t) permits LG to possess a relatively
simple functional dependence on this order parameter. I.e., P which measures the probability of
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transition to MG(t + τ ) from MG(t) is much more nonlinear in MG(t) than in MG(t + τ ). This is consis-
tent with MG(t + τ ) being a firing state after interacting with efferents MG(t). Also note that, only for
notational convenience leading to facilitation of subsequent analysis, α G are scaled parameters, thereby
also causing efferent MG(t) to represent scaled firings. I.e., in the continuum limit of MG for large NG,
MG(t) ≡ M ∗ G(t)NG/N ∗ G, |MG| ≤ NG still represent N ∗ G efferent interactions, just scaled by NG/N ∗ G,
and α G ≡ α ∗ GN ∗ G/NG are still defined by averages over N ∗ G efferent and NG afferent interactions. This
scaling accomplishes the efferent definition of a mesocolumn described previously.

This development includes spatial-temporal mesocolumnar constraints, JG = JG(r ; t), from long-
ranged inter-regional and extrinsic sources. These JG constraints can also mimic other proposed chemical
and electrical microscopic mechanisms that alter macroscopic firing states [9,23,24]. Empirically,
NE: NI ∼ 10: 1, but this includes extrinsic efferents which are essentially all excitatory, comprise 5—20%
of all excitatory terminals, and typically terminate on inhibitory fibers [6]. Their net effects are included
in JGMG. For the remaining short-ranged interactions, considering the relative importance of inhibitory
synapses (size, proximity to soma, etc.), perhaps a better ratio is NE: NI ∼ 5: 1.

It is known that neighboring minicolumnar interactions are predominantly inhibitory. This might
be accounted for by the mesocolumnar NN’s defined here as arising from overlapping efferent domains of
macrocolumnar extent, with domain centers offset within the extent of a minicolumn, interacting with
neighboring afferent minicolumns. As discussed previously, this definition is consistent with observations
that the bulk of interminicolumnar efferents come from within the range of a macrocolumn. Therefore, it
is particularly interesting that most sets of neuronal parameters to be discussed subsequently do give rise
to gradient mesocolumnar NN interactions that are effectively inhibitory, i.e., they yield a net (−)(∇ M E)2

or (+)(∇ M I )2 contribution to LE + LI . Inhibitory NN interactions permit significant sharpening and iden-
tification of processed patterns across mesocolumns. Overlapping efferent domains also may be a con-
tributing mechanism to the development of minicolumnar structure, in addition to other proposed mecha-
nisms, e.g., two-dimensional weakly graded chemoaffinities and quasipreservation of distant mappings of
neighboring efferents to neighboring afferents.

C. Macroscopic regions

This work has calculated the conditional probability that a given mesocolumn will fire, given its
direct interactions with other mesocolumns just previously firing. A string of these conditional probabili-
ties connects mesocolumnar firings at one time to the firing at any time afterwards. Many paths or strings
may link given initial and final states. A Lagrangian L̃, the argument of the exponential expression repre-
senting the time evolution of macroscopic regions, each containing ∼ N4 neurons, is derived from strings
of mesocolumnar conditional probabilities [1]. A major benefit derived from this formalism is a varia-
tional principle that permits extrema equations to be developed.

It is interesting that for neocortex, N, the number of neurons per mesocolumn, is large enough to
permit the development of a Lagrangian macroscopic statistics; yet N is small enough for macroscopic
mesocolumnar interactions to be developed as NN interactions. As determined by Eq. (2.2), N−1 mea-
sures the scale of fluctuations.

This Lagrangian can be expanded into a simple fourth order polynomial of powers of the meso-
columnar firings, yielding a generalized Ginzburg-Landau (GL) expression [3]. At the present stage of
development of statistical mechanics, for many purposes this simple form is a practical necessity to con-
tinue future studies. This expansion is valid for the neocortical system. This also makes it possible to
draw analogies to the "orienting field" and "temperature" of equilibrium collective systems. (There are
also several formal developments relevant to collective equilibrium systems, based on specific GL expres-
sions, which are not relevant to neocortex.) [1] It should be noted that some investigators have been
unwilling to accept the GL analogy between ideal equilibrium and large nonequilibrium systems to
describe phase transitions and long-ranged order. Howev er, recent research demonstrates that this
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analogy is indeed often appropriate [2,25-27].

Using the prior form of the short-time conditional probability, the long-time probability for global
regional activity persisting for tenths of a second to seconds is derived as [1]

P̃[M̃(t)]dM̃(t) = ∫ . . . ∫ DM̃ exp(−NS̃) ,  (2.5)

S̃ =
t

t0

∫ dt′ L̃ ,

L̃ = ΛΩ−1 ∫ d2rL ,

L = LE + LI ,

DM̃ =
u+1

s=1
Π

Λ

ν =1
Π

E,I

G
Π (2πθ)−1/2(gν

s)1/4dMGν
s

×δ [Mt = M(t)][δ [M0 = M(t0)] ,

M̃ = { MGν } ,

where ν labels the two-dimensional laminar →r-space of Λ∼ 5 × 105 mesocolumns spanning a typical region
of neocortex, Ω, (total cortical area ∼ 4 × 1011 µm2); and s labels the u + 1 time intervals, each of duration
θ ≤ τ , spanning (t − t0). At a giv en value of (r ; t), it also is convenient to define M = { MG} . The path
integral in Eq. (2.5) defines Ṁ as a continuous, not necessarily differentiable, mesoscopic variable to
study macroscopic regions. The "information" contained in this description is well defined as

ϒ̂[P̃] = ∫ . . . ∫ DM̃ ′ P̃ ln(P̃/P) ,  (2.6)

DM̃ ′ = DM̃ /dM̃u+1 ,

where P is a reference stationary state. Although many microscopic synaptic degrees of freedom have
been averaged over, many degrees of freedom are still present, as measured by dMGν

s . For example,
neglecting specific coding of presynaptic and postsynaptic membranes, detailed neuronal circuitry, and
the dynamics of temporal evolution, in a hypothetical region of 109 neurons with 1013 synapses: consider-
ing each synapse as only conducting or not conducting, there are ≈ exp(7 × 1012) possible synaptic combi-
nations; considering only each neuron as firing or not firing, there are ≈ exp(7 × 108) neuronal combina-
tions; considering only each mesocolumn as having integral firings between −100 and 100, there are
≈ exp(5 × 107) mesocolumnar combinations.

The prepoint discretization of L(M), θ Ṁ(t ′) → Ms+1 − Ms and M(t ′) → Ms, is derived from the
biophysics of neocortex, Eqs. (2.2)-(2.4); this is not equivalent to the Stratonovich midpoint discretization

of a proper Feynman Lagrangian LF , θ Ṁ(t ′) → Ms+1 − Ms and M(t ′) →
1

2
(Ms+1 + Ms) [28,29]. The

discretization and the Lagrangian (and g) must be consistently defined to give an inv ariant P̃(M̃)dM̃ .
The Feynman Lagrangian is defined in terms of a stationary principle, and the transformation to the
Stratonovich discretization permits the use of the standard calculus. The Einstein convention of summing
over factors with repeated indices is henceforth assumed.

S̃F = min ΛΩ−1 ∫ dt′ ∫ d2r L F ,
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LF =
1

2
N−1(ṀG − hG)gGG′(M

G′ − hG′) − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

V = V ′ − (
1

2
hG

;G + R/6)/N ,

V ′ = V ′E + V ′ I − MGJG/(2Nτ ) ,

hG
;G = g−1/2(g1/2hG),G ,

g = ||gGG′ || = det(gGG′) = gEEgII , (2.7)

gGG′ = (gGG′)−1 ,

R = g−1(gEE,II + gII ,EE) −
1

2
g−2

×{ gII [gEE,EgII ,E + (gEE,I )2]

+gEE[gII ,I gEE,I + (gII ,E)2]} ,

[. . .],G ≡ (∂/∂MG)[. . .] .

The Riemannian curvature R arises from the nonlinear inverse variance gGG′ , which is a bona fidemetric
of this parameter space [30]; P̃(M̃)dM̃ is covariant under general MGν transformations. It has been noted
that neocortex is the first physical system to be investigated with these methods that is measurably sensi-
tive to R [1,31].

To first order in (∇ MG)2, the differential evolution of P̃ associated with Eqs. (2.5) and (2.7)
is [1,29-32]

∂P̃

∂t
= Ω−1 ∫ d2r [

1

2
δ̂Gδ̂G′(g′GG′ P̃) − δ̂G(g′GP̃)]

≈Ω−1 ∫ d2r [
1

2
(gGG′ P̃),GG′ − (gGP̃),G + NV′ P̃]

= Ω−1 ∫ d2r (−
1

2
p̂G p̂G′ g

GG′ − i p̂GgG + NV′)P̃

≡ −iΩ−1 ∫ d2r Ĥ( p̂G, M)P̃ ,

p̂G = −i∂/∂MG ,

τ g′G = τ gG − dF|G| N |G| tanh F |G| , (2.8)

τ g′GG′ = τ gGG′ + δ G′
G dFGNGsech2FG ,

δ̂G[. . .] = [. . .],G − ∇ z[. . .],∇ zG + ∇ 2
z[. . .],∇ 2

zG
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≡ [. . .],G − [. . .],G:z:z + [. . .],G:zz:zz ,

[. . .],G:z:z = [. . .],G:zG′ M
G′

:z

+[. . .],G:zG′:z MG′
:zz ,

[. . .]:z = ∂[. . .]/∂z ,

z = { x, y} ,

where vertical bars on an index, e.g., |G|, indicate no sum is taken over that repeated index. The Fokker-
Planck functional differential equation, i.e., possessing no potential term, corresponds to the derivation in
Ref. 1 of NN interactions in L. Howev er, the simpler partial differential equation arises from expansion
of the ∇ MG perturbations, yielding a Schrödinger-type equation with a V ′ potential of NN interactions.
This also defines the Hamiltonian operator Ĥ . (Note that the previous discussion modifies corresponding
discussions of L̃ and Ĥ in Ref. 1.)

If all the V and gGG′ in this differential equation are arbitrarily ignored, the corresponding Langevin
rate equations, written in terms of "average neurons," are just those taken as the starting point for the phe-
nomenological pioneering modeling of cortex in previous studies [33,34], upon which most other studies
are based. In some studies, simple additive noise is arbitrarily included, and then typically several thou-
sand computer "trials" are examined to find most probable trajectories. This ad hocprocedure is unjusti-
fied in systems where mesoscopic fluctuations arise from intrinsic, i.e., in contrast to extrinsic
sources [35], such as occurs in neocortex. Here, the mesoscopic fluctuations are derived from the micro-
scopic system [1]. Furthermore, a variational principle is derived to directly calculate extrema trajecto-
ries.

Numerical calculations demonstrate that, for reasonable neuronal parameters, τ ṀG and ρ∇ MG

contributions to LF are significant but small. Therefore, it is meaningful to solve for extrema, << MG >>,

of LF (M) in terms of "uniform" MG (τ Ṁ
G

= 0 = ρ∇ MG). Minima represent most-probable firing states
for LF , and are determined by finding roots of the Euler-Lagrange variational equations, LF ,G = 0, such
that the Hessian determinant ||LF ,GG′ || > 0 and one of its diagonal entries LF ,|G||G| > 0. These uniform
minima of LF may not be minima of LF for all time.

In the following examples, for convenience only, N ∗ G have been scaled down to NG, and the effica-
cies A∗ G and B∗ G have been scaled up by N ∗ G/NG to AG and BG (and a∗ G → aG). I.e., α G, β G, and γ G

are not affected by this scaling. This scaling is performed after the scaling in Eq. (2.4), and defines an
equivalent mesoscopic system independent of N ∗ with the same efferent sensitivity. Table I details some
representative calculations. The following notation is used to represent calculations at minima: At
<< M >>, calculate (M E, M I ; LF ), and the coefficients of [(∇ M E)2||(∇ M I )2] and
[(Ṁ E)2: (Ṁ I )2: : Ṁ E: Ṁ I ] that contribute to LF . Also included are V − V ′ terms at minima, illustrating
that these Riemannian contributions are a measurable contribution to LF .

[Numerical calculations verify that at minima of LF , hG≈gG (hG = gG for γ G = 0), and that V − V ′
is a smooth contribution to LF . Therefore, given the realistic constraint of limited computer resources, in
Ref. 1 it was decided to search for minima by minimizing L, instead of LF which requires processing of
two orders of magnitude additional algebraic expressions. Here some of these calculations using LF have
been performed, verifying that the calculations in Ref. 1 give good estimates of those performed using
LF . Also note the corrections to the [(∇ M E)2||(∇ M I )2] coefficients of the corresponding entries in Table
I in Ref. 1. Inadvertently, coefficients of (∇ M E ⋅ ∇ M I ) were added to those of (∇ MG)2. Coefficients of
(∇ M E ⋅ ∇ M I ) are not given here since they average to zero in L̃, but they most likely will not average to
zero when interlaminar and efferent interminicolumnar circuitries are included, as discussed in Secs. II B
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and III E.]

Examples A and a.Consider the following rather arbitrary example of a region of mesocolumns,
each with 150 neurons, selected to model minicolumns and to symmetrize the mesoscopic parameters,
with γ G = 0. Take NE = 125, NI = 25, VG = 10 mV, AG = 1. 5, BG = 0. 25, vG = φG = 0. 1 mV. Con-
tributing to V − V ′ at << MG >> are the curvature R = 0. 175 and hG

;G = 0. 418. This corresponds to exam-
ple a in Ref. 1. Since γ G = 0, gG = hG. At a scale at which gradient interactions are still small contribu-
tions, a fine structure yielding other local minima of L also becomes apparent. At the nearest integral val-
ues of MG, data at these local minima are included in Table I together with data calculated at global min-
ima. The local minima at (6, 3), (−5, −3), (8, 4), and (−7, −4) have been calculated to trap firings only for
integral << MG >>.

-- Table I --

Examples B and b1.The mesoscopic parameters are changed from example A, by changing the
synaptic efficacies from AG = 1. 5 to AE = 1. 25 and AI = 1. 75. Contributing to V − V ′ at << MG >> are
R = 1. 06 × 10−2 and hG

;G = −1. 26; hE = −5. 78 and gE = −5. 60; hI = 0. 277 and gI = 0. 289. This corre-
sponds to example b1 in Ref. 1. (See Table I.)

Example b2.Example b1 is changed to AE = 1. 75, AI = 1. 25. (See Table I.)

Example c.Example b1 is changed to NE = 150, NI = 30. This retains the same ratio of NE/NI ,
but increases N. (See Table I.)

Example d.Example b1 is changed to NE = 150, NI = 50. This decreases the ratio NE/NI and
increases N. (See Table I.)

The variational principle expressed by Eq. (2.7) straightforwardly leads to a set of 12 coupled first-
order differential equations, with coefficients nonlinear in MG, in the 12 variables
{ MG, ṀG, M̈G, ∇ MG, ∇ 2 MG} in (r ; t) space. However, as discussed before example A, it is a good
approximation to consider the nonlinear most probable firing states of L. In the neighborhood of
<< MG >>, LF can be expanded as a GL polynomial. To inv estigate first-order linear oscillatory, only
powers up to 2 in each variable are kept, and from this the variational principle leads to a relatively simple
set of coupled linear differential equations with constant coefficients:

0 = δ̂ LF = LF ,Ġ:t − δ̂GLF ,

≈ − f |G| M̈
|G| + f 1

GṀG′ − g|G|∇
2 M |G| + b|G| M

|G| + bMG′ ,

[. . .],Ġ:t = [. . .],ĠG′ ṀG′ + [. . .],ĠĠ′ M̈G′ , (2.9)

MG = MG− << MG >> ,

f 1
E = − f 1

I ≡ f .

These equations are then Fourier transformed and examined to determine for which values of
{α G, β G, γ G} ={ AG, BG, VG, vG, φG, NG} and of ξ , the conjugate variable to r , can oscillatory states,
ω(ξ ), persist [1]. E.g., solutions are sought of the form

MG = Re MG
osc exp[−i(ξ ⋅ r − ωt)] , (2.10)

MG
osc(r , t) = ∫ d2ξ dω M̂

G
osc(ξ , ω) exp[i(ξ ⋅ r − ωt)] .
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For instance, using L, extrinsic sources JE = −2. 63 and JI = 4. 94 drive the global minima of
example b2 to M E = 25 and M I = 5, and yield dispersion relations

ωτ = ±{ − 1. 86 + 29. 6(ξ ρ )2; −1. 25i + 18. 7i(ξ ρ )2} , (2.11)

ξ = |ξ | .

The boundary conditions in Eq. (2.5) further specify these solutions. In those regions where real ω exist,
wave propagation velocities, v̂, are determined by dω/dξ . Sev eral different mesocolumnar mechanisms,
defined by the influences of the b, f , and g coefficients in Eq. (2.9), can produce real wav e propagation
rates. Examples are manufactured straightforwardly.

Table I demonstrates that even modest changes in AG or NG cause dramatic shifts in << MG >> and
in properties of MG solutions to Eq. (2.9). This is a highly nonlinear system, even after taking meso-
columnar averaged parameters. The closest example to linearity arises in the special case of γ G≈0 and
M E≈M I , when the mean τ ṀG≈NGβ G(α GM− − γ G) − MG. More generally, even if Ṁ , ∇ M , and V − V ′
terms are neglected, a true minimum is often determined by competition between the two conditions,
0 = MG + N |G| tanh F |G|, each weighted by its variance gGG = τ −1 N |G|sech2F |G|. Furthermore, as
demonstrated [1], there are often multiple minima, which will eventually require more detailed studies of
subharmonic (period-doubling) bifurcations, phase transitions and fluctuations [3,36].

A complete GL expression for L is derived for example b1:

τ L≈1. 59 × 10−3 − 5. 33 × 10−5(∇ M E)2 + 9. 65 × 10−4(∇ M I )2 + 4. 81 × 10−5(Ṁ E)2 + 1. 09 × 10−3(M I )2

−9. 05 × 10−7 M E Ṁ E + 2. 37 × 10−3 M I Ṁ I − 1. 45 × 10−4 M E Ṁ I + 1. 12 × 10−4 Ṁ E M I

+5. 38 × 10−4 Ṁ E − 6. 14 × 10−4 Ṁ I + 1. 15 × 10−5(M E)2 − 1. 72 × 10−4 M E M I

+1. 36 × 10−3(M I )2 − 5. 91 × 10−8(M E)3 − 7. 44 × 10−7(M E)2 M I

+4. 29 × 10−5 M E(M I )2 − 5. 43 × 10−5(M I )3 + 8. 67 × 10−9(M E)4 − 3. 96 × 10−8(M E)3 M I

+7. 64 × 10−7(M E M I )2 − 1. 99 × 10−6 M E(M I )3 + 1. 38 × 10−6(M I )4 . (2.12)

MG≈0 is the range of maximum redundancy of mesocolumnar firing; i.e., there are more combina-
tions giving MG = 0 than any other firing state [1]. Therefore, when suitably constrained by JG, e.g.,
JE = 1. 27 and JI = −1. 12 drive << MG >> to 0 for example b1, this is the range most likely to induce
plastic synaptic modifications, e.g., during development. The GL polynomial for this state is

τ L≈0. 0970 + 4. 24 × 10−4(∇ M E)2 + 3. 39 × 10−4(∇ M I )2 + 3. 20 × 10−5(Ṁ E)2 + 1. 54 × 10−4(Ṁ I )2

−1. 49 × 10−4 M E Ṁ E + 5. 51 × 10−4 M I Ṁ I − 2. 26 × 10−4 M E Ṁ I + 1. 94 × 10−4 Ṁ E M I

+3. 28 × 10−3 Ṁ E − 2. 82 × 10−3 Ṁ I + 2. 14 × 10−4(M E)2 − 7. 38 × 10−4 M E M I

+7. 19 × 10−4(M I )2 − 1. 01 × 10−6(M E)3 − 1. 06 × 10−6(M E)2 M I

+1. 00 × 10−5 M E(M I )2 − 8. 30 × 10−6(M I )3 + 2. 42 × 10−8(M E)4 − 1. 92 × 10−7(M E)3 M I

+6. 09 × 10−7(M E M I )2 − 7. 89 × 10−7 M E(M I )3 + 3. 52 × 10−7(M I )4 . (2.13)
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The measure DM̃ in Eq. (2.5) contains a weighting factor g1/2 which is also expanded and included in an
effective Lagrangian Leff. For brevity, to 2nd order,

Leff = L + (Nτ )−1 ln(τ g−1/2) ,

(2.14)

τ −1g1/2≈0. 0211 + 2. 76 × 10−6 M E − 3. 60 × 10−5 M I + 1. 06 × 10−5(M E)2 − 2. 13 × 10−5 M E M I

+1. 10 × 10−5(M I )2 .

These polynomial expansions, besides being starting points for more detailed investigations, also
serve to explicitly display simple functional forms that can be directly used or truncated after the nonlin-
ear eikonals are calculated. This specificity is necessary if theoretical and experimental investigations are
to eventually merge. More intuitive insights are gained by examining three-dimensional plots of spatially
temporally averaged L versus MG at various resolutions [1].

D. Corrections to previous modeling of neocortex

Many previous theoretical studies and computer simulations that have modeled neural systems have
been careful to initially describe the empirical situation, but unfortunately they hav e also often arbitrarily
and erroneously used simple linear differential rate equations for "average neurons" as the essential under-
lying foundation of their specific calculations, thereby opening to question the net validity of their results.
It is understandable that a relatively simple set of readily solvable differential equations is required for
many models and modelers. However, it is clearly better to be consistent with the actual empirical situa-
tion, e.g., by attempting to use a set of Langevin rate equations corresponding to the Schrödinger-type
equation (2.8). This still would not add much labor to existing computer calculations.

This might be achieved in the following manner: For a given set of neuronal parameters, within a
neighborhood of an established set of minima, it might be possible to have the contributions to the poten-
tial from MGJG be simulated by appropriate boundary conditions. This is sometimes possible [19]. E.g.,
if the effect of JG is known beforehand to simply shift << MG >>, then these "boundary conditions" are
essentially accounted for by writing all expressions in terms of MG=MG− << MG >>, and considering all
calculations to take place in a neighborhood of << MG >>. If this hurdle could be overcome, then the
ensuing Fokker-Planck equation can be written with V = 0 in Eq. (2.8). If only most probable transition
states are sought, simple coupled first-order rate equations are given by [37]:

ṀG = g′G −
1

2
g′1/2(g′−1/2g′GG′),G′ , (2.15)

g′ = (det g′GG′)−1 ,

where g′G and g′GG′ are defined in Eq. (2.8).

However, if fluctuations are required, these can be included in the coupled Langevin rate equations
corresponding to Eq. (2.8) with MGJG simulated by boundary conditions. The Langevin equations in the
Stratonovich representation are

ṀG = g′G −
1

2
δ jk ĝG′

j ĝG
k,G′ + ĝG

j η j ,

ĝG
j ĝG′

k δ jk = g′GG′ /τ ,

(2.16)
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< η i (t) >= 0 ,

< η i (t)η j (t ′) >= δij δ (t − t ′) ,

where η j represents Gaussian white noise arising from the microscopic neuronal system labeled by j .
Because of the derivations in Secs. II A and II B, it is reasonable to take ĝG

j ≈δ G
G′[g′GG′ /(NGτ )]1/2,

j = 1, . . . , N and j ∈ G; ĝG
j = 0, j ∈ G′ ≠ G.

Equations (2.15) and (2.16) also may be rewritten for individual mesocolumnar-averaged neurons,
mG, by setting MG = NmG. The terms dFG, defined in Eq. (2.2), appear in accordance with their
derivation [1], and they may be retained to include intercolumnar interactions. FG, defined in Eq. (2.3),
and dFG may be further simplified to linear terms in MG=MG− << MG >>, expanded about minima
<< MG >> after these are correctly calculated.

In the neighborhood of minima << MG >>, the coefficients of MG in rate equations may be substan-
tially altered, e.g., by a factor ranging from 10−2 to 102. As deduced by scaling these equations to set the
MG coefficients = 1, this essentially radically changes the effective time scale of τ ∼ 5—10 msec assumed
in previous studies by this factor. Also, the "noise" contribution is multiplicative, not simply additive as
has been assumed in previous studies.



Statistical Mechanics of Neocortical ... -16- Lester Ingber

III. DYNAMICS OF SYNAPTIC MODIFICATION

A. Firing patterns and synaptic modifications

There are several new and useful features to be added to neocortical description by this formalism:

Depth and breadth of processing.The sharpness of the mean rate of firings, the depth of informa-
tion processing, is measured by the "step-function" tanh FG, where the "threshold function" FG is sensi-
tive to a factor of N ∗ 1/2. The strength of coupling between mesocolumns, the breadth of information pro-
cessing, measured by the potential term V ′, is roughly proportional to a factor of NN∗ 1/2. It is noted that
visual cortex possesses twice the density of neurons per mesocolumn as other cortical regions [6], and
therefore is better suited than other regions to process large patterns of detailed information. Calculations
of formation, stability, hysteresis, and interaction of patterns of firings, upon which are based other calcu-
lations describing plastic synaptic modifications, exhibit this dependence on these depth and breadth
dimensions.

Columnar development and processing.Using the variational principle, most-probable firings can
be simply calculated even in the presence of highly nonlinear means and variances. Because both tempo-
ral and spatial differentials have been developed, space-time properties of these most-probable states are
easily examined. For example, for some reasonable values of synaptic parameters, oscillatory states are
found for small space-time fluctuations. There exist many sets of gradient couplings in V ′ that cause
nearest-neighbor mesocolumns to fire M E (M I ) oppositely (similarly), in accord with empirical observa-
tions that favor periodically alternating columnar organization [38-42].

An interesting set of hypotheses of columnar development and physiology is immediately sug-
gested: Synaptic stimulation of fibers is most likely necessary for trophic as well as communicative
purposes [43], and during early development extrinsic stimulation is necessary [44] but probably rela-
tively nonspecific, statistically favoring the observed alternating columnar development. In mature cortex,
extrinsic regional stimulation by a given extrinsic source, JG, is sufficient to stimulate all columns in a
region to facilitate nonspecific global attention [45,46] in preparation for pattern formation, as well as to
facilitate specific selective attention and processing, e.g., by increasing the signal-to-noise ratio. This
shift in columnar activity would be parallel to shifts in sensitivity during selective attention noted in indi-
vidual neurons, which exhibit a decrease in spontaneous activity due to their extrinsic stimulation, mod-
eled here by B∗

jk .

Plastic synaptic modifications can develop new sets of eigenfunctions of firing states which retain
the information from these sets of external stimulation, if they can reproduce and sustain the externally
induced most-probable firing patterns and their associated set of eigenfunctions. Induced chemical and
developmental processes, several of which are conjectured in the literature [23,24], may be considered to
have evolved to permit the columnar system to achieve its most-probable firing states which are commen-
surate with the mesocolumnar firings calculated before. Further, these firing states may provide favorable
statistical backgrounds to facilitate the development of specific neuronal pathways that also have been
hypothesized to process information [11,47].

Latency and spatial extent of pattern formation.With regard to pattern formation, latencies of
ev oked potentials [8] and fields [10] on the order of hundreds of milliseconds most likely involve delays
due to slower short-ranged mesocolumnar interactions, despite faster long-ranged axonal propagation of
impulses at rates of 600—900 cm/sec, larger myelinated fibers affording faster transportation of action
potentials [9]. It has been noted that phase changes of evoked fields often only occur over distances
greater than several centimeters, on the scale of a region, so that long wav elength low-frequency process-
ing, sufficient to process patterns of information involves many columnar interactions requiring long tem-
poral and spatial coherencies of short-time and short-ranged interactions. These latencies and spatial
extents can be explicitly calculated, e.g., as propagation rates of information processing as calculated in
Sec. II. These latencies also express the long temporal scales necessary, albeit not sufficient, to favor
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plastic synaptic modifications.

Calculation of pattern interactions.A large literature deals with information processing of neural
networks, but the experimental and theoretical values of their conclusions are generally diminished
because they do not properly include relatively fundamental synaptic interactions or properly treat nonlin-
ear and nonequilibrium aspects of neocortex [7,48-50]. Once the information states referred to by these
authors have been calculated or tabulated, then their proposed mechanisms and conclusions can be tested.
For example, an eigenfunction expansion of the probability function derived in Sec. II, into a set of spa-
tial-temporal solutions, provides a mathematical framework to rigorously discuss pattern formation, sta-
bility, and interactions, e.g., short-term and long-term memory, nonassociative learning (habituation and
sensitization) and associative learning (classical and operant conditioning), the latter especially requiring
temporal correlations. This is a straightforward, albeit modest, computer project, similar to that accom-
plished in other physical problems possessing gradient ("momentum-dependent") potentials, e.g., in
nuclear physics [51]; i.e., the "momentum" operators p̂G in Eq. (2.8) operate on nonconstant factors mul-
tiplying P̃.

As calculated, simple localized or oscillatory patterns exist for specific mesoscopic parameters in
regions of small spatial-temporal fluctuations, but nonlinearities and fluctuations now can and should be
included to perform more definitive calculations. For example, overlaps of eigenfunctions from different
sets of mesocolumnar parameters can measure the formation and stability of patterns of plastic changes in
presynaptic and postsynaptic parameters [52].

B. Synaptic modifications coding extrinsic stimuli

Section II describes the nonlinear nonequilibrium dynamics of patterns of mesocolumnar firings,
formulated in terms of mesocolumnar-averaged static neuronal parameters. Perturbations of these param-
eters correspond to plastic synaptic modifications, associated with new firing minima and their associated
sets of eigenfunctions, related to learning new sets of information. Especially during development of
synaptic formation, at a rate determined by successive small increments of these perturbations, changes in
the coefficients of gradient couplings also represent shifts in oscillatory states and in the degree of interac-
tion between columnar firings.

To further clarify this methodology, an explicit calculation is given, demonstrating how a small
increment of extrinsically imposed firing activity can be learned and stored as plastic synaptic modifica-
tions. Moderate changes in efficacies of even one neuron per mesocolumn give rise to moderate changes
in macroscopic activity, and therefore it is proposed that macroscopic measurements can be sensitive to
microscopic details of neocortical interactions.

Consider the change in probability of firing of neuron j , pσ j
, associated with modifications of the

neuronal parameters that enter Eq. (2.1). For example, changes can occur in

Z = { A∗
jk , B∗

jk , Vj , v jk , φ jk , N ∗ E, N ∗ I } (3.1a)

which leads to

Z + ∆Z = Z + {∆ A∗
jk , ∆B∗

jk , ∆Vj , ∆v jk , ∆φ jk , ∆N ∗ E, ∆N ∗ I } , (3.1b)

where changes in each parameter Z, ∆Z, can be independent or proportional to the (repeated) firing of
neuron(s) postsynaptically ( j ) or presynaptically (k):

∆Z = ∆Z1 + σ k∆Z2 + σ kσ j ∆Z3 + σ j ∆Z4 . (3.2)

More theory and experiments are needed to further detail the biophysics [53] and biochemistry [43] of
∆Z1,2,3,4.

All these ∆Z effects collect to modify

F j → F j ′ = F j + (∆F j1 + ∆F j2) + σ j (∆F j3 + ∆F j4) .  (3.3)
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To order ∆F j1,2,3,4, to preserve the normalization of probability, p+ + p− = 1, it is derived that pσ j
is mod-

ified as

pσ j
→ pσ j

′ = exp(σ j F j ′′ )/[exp F j ′′ + exp(−F j ′′ )] , (3.4)

F j ′′ = F j + ∆F j1 + ∆F j2 − (∆F j3 + ∆F j4) tanh F j .

Thus, the change in response of a single neuron associated with its synaptic modifications is a
highly nonlinear function of the synaptic parameters { Z, ∆Z} . Nonlinearities persist even after meso-
columnar averaging, but then, because of the derived variational principle, explicit calculations can be
performed to portray most-probable changes in patterns of columnar firings associated with changes in
the Lagrangian:

LF → LF + ∆LF≈LF +
Z
Σ ∂LF

∂ZG
∆ZG . (3.5)

To emphasize the point that linear response models of neuronal activity should be scrutinized with
respect to the biophysics and mathematics they are assuming to be linear, the following equation repre-
sents the first-order change in L, Eq. (2.5), associated with modifications of only the columnar averaged
efficacies AG:

∆L = ∆FG(2NGNτ )−1{ [(NG)2 + (τ ṀG + MG)2] sinh(2FG) + 2NG(τ ṀG + MG) cosh(2FG)}

−∆AG(∂V ′′GG′ /∂AG)(ρ∇ MG′)2 ,

∆FG = −(2FG
d )−1∆AG[vG(M− + N−) + π(vG2 + φG2

)(M+ + N+)FG/(2FG
d )] , (3.6)

FG
d = [π(vG2 + φG2

)(AGM+/2 + aGN+)]1/2 ,

∆AG = ∆AG
1 + ∆AG

2 − (∆AG
3 + ∆AG

4 ) tanh FG .

Examining ∆AG in Eq. (3.6), it is clear that even after mesocolumnar averaging, groups of synaptic
modifications dependent on postsynaptic firings can be discerned from groups of modifications indepen-
dent of this activity, by the additional tanh FG factor. Howev er, mesocolumnar averaging washes out dis-
crimination of ∆AG

1,3 from ∆AG
2,4 unless these possess additional distinguishing functional features. Simi-

lar calculations are proposed to further investigate phenomena as encountered in habituation [43].

For instance, if the system described by example b1 is synaptically modified about its most proba-
ble firing state by ∆AE

3 = 0. 01 [requiring modification by − tanh FG as in Eq. (3.6)], e.g., numerically
equivalent to a substantial change in Ajk of one E neuron per mesocolumn in a region, then the change in
the uniform Lagrangian is

τ ∆L≈ − 4. 87 × 10−4 + 3. 99 × 10−6(M E− << M E >>)

−9. 80 × 10−5(M I − << M I >>) .  (3.7)

The shifts in the most-probable firing state << MG >> associated with this synaptic modification are
observed to be algebraically equivalent, within a constant increment to L, to those that could also have
been caused by extrinsic stimulations measured by JE/(2τ N) = 3. 99 × 10−6 and
JI /(2τ N) = −9. 80 × 10−5. This shifts << MG >> and L from (89. 02, 23. 14; 1. 59 × 10−3) (see Table I) to
(89. 20, 23. 19; −3. 25 × 10−4), and changes the derivative coefficients to [−5. 72 × 10−5||9. 65 × 10−4] and
[4. 82 × 10−5: 1. 10 × 10−3: : 5. 43 × 10−4: −5. 28 × 10−4]. ωτ is shifted from
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±{ 0. 392i − 1. 68i(ξ ρ )2; 1. 01i − 0. 541i(ξ ρ )2} to ±{ 0. 396i − 1. 79i(ξ ρ )2; 1. 01i − 0. 550i(ξ ρ )2} . These
numbers indicate that the sensitivity of mesocolumnar statistics to microscopic dynamics is barely within
the present range of experimental determination.

This calculation also represents an explicit demonstration of how extrinsic constraints on firing pat-
terns can be learned and coded by plastic synaptic modifications. In general, there exist (a set of) synaptic
modifications ∆Z(r ; t ′) that reproduce the most probable firing states << M̃(t ′) >> induced by JG(r ; t ′).
The examples in Table I also serve to demonstrate that relatively larger shifts in ∆Z represent highly non-
linear changes in firing patterns.

-- Fig. 2 --

It is interesting to take both local and global views of the influences of JG on extrema << MG >>, as
typically large ranges of << MG >> appear to have simple functional relationships to JG. Figure 2 illus-
trates three-dimensional and contour plots for example c, using L, of values of JG necessary to establish
extrema << MG >>JG , viewed from a large enough distance to avoid much perceptual convergence. Figure
3 giv es a closer look at a rather smooth fine structure relevant to neocortex by examining a small range of
Fig. 2 about << MG >>JG=0 for example c.

-- Fig. 3 --

Maxima and minima of L are conveniently ascertained by examining the Hessian (H) of L. For
H > 0 and −2N L,EE=JE,E (or JI ,I )< 0, L has a local minimum; if H > 0 and −2N L,EE > 0, L has a local
maximum; else if H < 0, a local extremum does not exist. Figure 4 giv es contour plots of 4N2H , to be
consistent with the scalings in Figs. 2 and 3, and of JE,E.

-- Fig. 4 --

Thus, although the dependency of << MG >> on MG is highly nonlinear, the interaction between
<< MG >> and JG is only mildly nonlinear. This explicitly defines how the macroscopic interaction of
most-probable firing patterns with extrinsic sources, still sensitive to microscopic circuitries, is a smoother
phenomenon than the mesoscopic and microscopic responses to these sources. Note that a selected pair
of << MG >> defines a pair of JG uniquely, but this mapping is not globally one to one: It is possible that
different pairs of JG may induce the same extrema << MG >>. Furthermore, it may be expected that when
spatial-temporal variations are included in the full LF Lagrangian, there will be even more nonlinearity in
the interaction between JG(r ; t ′) and << M̃(t ′) >>.

C. Hysteresis of firing patterns

It is generally conceded that a short-term memory mechanism is necessary, albeit not sufficient, for
long-term stability of coding to take effect [43]. Hysteresis of firing patterns encoding information is a
possible mechanism. This also has been suggested as a mechanism for other neocortical
phenomena [3,54]. For hysteresis to be prominent, the typical period within which synaptic parameters
are altered, e.g., alterations of ∆Z in Eqs. (3.1) due to changes in extrinsic JG, should be much greater
than the relaxation period of MG, but much less than the decay period for the system to jump or fluctuate
between competing minima << MG >>. Figures 2—4 specifically illustrate how stationary << MG >> of L
shift with JG, and Eq. (3.7) illustrates how these shifts may be coded by ∆Z.

Time scales on which jumps between competing minima take place can be estimated by calculating

the time of first passage between competing minima of LF [25], given by − ∫
∞
0

dt t(∂P/∂t). Example a,

with the seven minima listed in Table I, can be examined to estimate times of first passage. For this
example a very good estimate of a stationary solution Pstat to the Fokker-Planck Eq. (2.8) for an uncou-
pled mesocolumn, i.e., V ′ = 0, is given by
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Pstat≈Nstat exp(−Nτ L) ,  (3.8)

where Nstat is the stationary normalization. Nonconstant corrections from gGG′ are ignored for this esti-
mate, and also taken into consideration is that L

E∼ (NE/NI )L
I
. This effectively reduces the calculation to

a one-dimensional linearized Fokker-Planck equation along a trajectory connecting the minima. Then,
using this stationary solution and the Fokker-Planck equation, the time for first passage, tvp, is calculated
as

tvp/τ ≈π


||L,GG′(<< M >>p)||

||L,GG′(<< M >>v)||



1/2

× exp { Nτ [L(<< M >>p) − L(<< M >>v)]} , (3.9)

where << M >>v is the minimum at the valley of L in question, and << M >>p is the maximum at a peak
separating two minima.

-- Fig. 5 --

The exponential factor in Eq (3.9) can be quite large in some instances, and quite small in others.
Figure 5 gives some contour plots of example a which illustrate this point. Values of τ L at maxima
between the five minima clustered about the global minimum << MG >>= (0, 0) are on the order of 0. 01
and therefore only contribute an argument on the order of unity to this exponential factor. [This calcula-
tion could be extended to consider pairs of minima clustered about (0, 0) being close enough to warrant a
critical point treatment.] [25] As noted in Table I, differences in L from valleys to peaks are still large rel-
ative to the Riemannian correction terms and relative to differential spatial-temporal contributions,
thereby permitting this analysis. However, values of L at maxima between the far minima near maximal
and minimal << MG >> firings, or between minima clustered about (0, 0) and minimal << MG >> firings,
are >1, thereby contributing an argument on the order of 102 to this exponential, yielding an enormous
tvp, typical of many physical systems undergoing hysteresis.

Relaxation times tr about this stationary state are estimated by (gG
,G)−1 [25], and are on the order of

τ . This is also the relaxation time of most-probable firing rates, as calculated in Eqs. (2.9)-(2.11), and is
consistent with the basic hypotheses of this development.

For changes in Z that transpire within a ∆t of several tenths of a second to many seconds, e.g., dur-
ing typical attention spans, hysteresis is more probable than simple jumps between minima if the follow-
ing inequalities are satisfied. These estimates necessarily require more details of the system in addition to
tr and tvp [25]. For example a,





tr ∆t∆L,E

∆Z





−1

|M | >>
∆Z

∆t
>>





Nτ tvp∆L

∆Z





−1

, (3.10a)

which leads to

50τ −1 >>
∆Z

∆t
∼ 10−4τ −1 ?

>>10−66—3 τ −1 , (3.10b)

where the numerical estimate has used tr = τ , tvp∼ 1—1066 τ , ∆t = 102τ , ∆Z = 10−2, |M | = 10, and from
Eq. (3.6) about the minima at (6,3) taking ∆Z = ∆AE

3 , τ ∆L,E/∆Z = 2. 28 × 10−3 and
τ ∆L/∆Z = 2. 29 × 10−3. ||L,GG′ || has been taken to be of the same order of magnitude at peaks and val-
leys; e.g., H only varies between 2. 45 × 10−8 and 3. 49 × 10−8 throughout the range of minima clustered
about (0, 0), although it increases to 8. 04 × 10−7 at (117. 85, 23. 57) and to 0. 271 at (−124. 99, −25).

Therefore, it is possible for hysteresis to be highly more probable than simple jump behavior to
another firing state. This provides a mechanism whereby an extended temporal firing pattern of
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information can be processed beyond the time scale of relaxation periods, e.g., reverberation among sev-
eral local minima. It is to be expected that the effects of JG(r ; t) on ∆Z(r ; t) create more complex exam-
ples of spatial-temporal hysteresis. These sustaining mechanisms may serve to permit other biochemical
processes to store information for longer time periods as stable synaptic modifications, discussed subse-
quently.

As calculated in Eq. (3.10a), it is interesting that neocortex possesses intrinsic parameters and
extrinsic driving forces that make hysteresis sometimes highly improbable as well as other times highly
probable, i.e., the second inequality in Eq. (3.10b) is not always satisfied. With respect to this flexibility,
neocortex is quite unusual [25].

D. Shifts in synaptic modifications

It is important to examine how spatial-temporal shifts in synaptic modifications may be stabilized
for long time periods, i.e., to increase [52] as well as decrease efficacies. For instance, consider keeping
fixed << MG >>= 0 for example B, e.g., by extrinsic JE = 1. 33 and JI = −1. 19 [cf. constraints on exam-
ple b1 in Eq. (2.13)], and observe shifts in LF associated with changes in AG, e.g., ∆AG

2 . Expanding in
powers of ∆AG

2 , to second order in LF to gauge the stability of AG
2 with respect to << MG >>, and to first

order in the differential contributions to gauge effects on spatial-temporal interactions, obtain the modifi-
cations ∆LF from Eq. (3.5) to LF :

τ ∆LF≈ − 0. 774∆AE
2 + 0. 0989∆AI

2 + 2. 27(∆AE
2 )2 − 4. 13 × 10−4∆AE

2 ∆AI
2 + 0. 204(∆AI

2)2

+(−3. 95 × 10−3∆AE
2 + 1. 36 × 10−4∆AI

2)(∇ M E)2 + (−2. 77 × 10−3∆AE
2 + 1. 76 × 10−4∆AI

2)(∇ M I )2

−4. 90 × 10−5∆AE
2 (Ṁ E)2 + 1. 63 × 10−4∆AI

2(Ṁ I )2 − (0. 0176∆AE
2 − 1. 15 × 10−4∆AI

2)Ṁ E

−(0. 0125∆AI
2 + 8. 62 × 10−5∆AE

2 )Ṁ I . (3.11)

This calculation demonstrates how the stability of synaptic modifications and associated columnar
interactions may be statistically maintained during the codification and sustenance of a given firing pat-
tern. E.g., a stable pattern is possible for ∆AI

2 = 7. 82∆AE
2 , since the remaining coefficients of the (∆AG

2 )2

terms are positive for this example.

Most likely, synaptic modifications, hysteresis, mesocolumnar interactions, shifts in firing patterns,
long-ranged couplings, and constraints from external stimuli are highly interactive phenomena in vivo.
Indeed, all these aspects are relevant in Eqs. (3.7), (3.10a) and (3.11).

Any definitive calculation of the dynamics of macroscopic regions of neocortex must include spa-
tial-temporal effects in LF from ṀG, ∇ MG, and JG. A Monte Carlo program has been formulated to
directly calculate P̃[M̃(t)] from the path integral in Eq. (2.5) using the prepoint discretization defined by
L. An importance-sampling algorithm is used [55], extended to weight arbitrary paths according to
exp(−Nτ L) and to accumulate probabilities of finding MG in (M E, M I ; x, y; t ′) space. Each accumulated
probability is weighted by the measure g1/2[M E(r ; t ′), M I (r ; t ′)], and afterwards normalized by summing
over all (r ; t ′) points sampled, Σ P = 1. By also accumulating probabilities within several large t ′ bins,
{ tB} , P̃(M E, M I ; x, y; tB) can be reasonably estimated at several intermediate subdivisions of t. The
error in disregarding appropriate periodic boundary conditions for intermediate tB is probably on the
order of n−1/2

B . Increments of MG are thinned as the number of t ′ iterations increase, making for an effi-
cient algorithm.

For instance, for example A, for one mesocolumn at an arbitrary (x, y) point, thereby neglecting
∇ MG spatial interactions but including ṀG temporal interactions, the probability distribution P[M(t)] of
MG

s at macroscopic times was calculated, at 25τ , 50τ , 100τ , 200τ , and 300τ . Table II gives the means
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< MG >=Σ MGP, the mean-square deviations σ GG′=[n−1
B Σ (MG− < MG >)(MG′− < MG′ >)P]1/2, and

nB = number of t ′ points sampling macroscopic times in bin tB. Initial Markov paths were taken to be
Gaussian distributions with means << MG >> and standard deviations σ EE

0 = 5 and σ II
0 = 2, but with initial

time MG
0 and final times MG

100 and MG
300 set equal to << MG >>. The coarse t ′ sampling of only 400 itera-

tions was dictated by availability of computer resources. For the first 200 iterations, paths were incre-
mented randomly and independently within ∆M E = ±5 and ∆M I = ±2, and tested for chance increases in
exp(−Nτ L) to identify most important contributors which were then accrued in P(M E, M I ; tB) bins. The
last 200 iterations set ∆M E = ∆M I = ±1. Probabilities were collected within bins of integer
−NG ≤ MG ≤ NG, within bins of tB. For example, for the second set of calculations in Table II, values of
MG actually selected to populate the largest bin ranged from −12 ≤ M E ≤ 13 and −6 ≤ M I ≤ 4, sufficient
to span the local minima clustered about (1. 90, 0. 939). One set of values at 100τ was calculated as an
endpoint in the first set of three values, and another set as a subdivision of the next set of three values.
The difference of these two sets of values is due primarily to the small number of iterations. However, the
first set of values does demonstrate that for example a the system remains stable in its relaxed state, and
the calculation of the evolution of means and mean-square deviations of MG demonstrates how < MG > is
shifted due to ṀG influences and fluctuation among other local minima. This formalism does not warrant
calculating a path integral for small time scales, e.g., less than 25τ .

-- Table II --

E. Future studies

(a) Other applications of this formalism using the the Stratonovich paradigm will require using LF
in Eq. (2.7), instead of L in Eq. (2.5), making it necessary to do further numerical studies of LF , despite
two orders of magnitude increased algebraic complexity. Note that the Riemannian terms V − V ′ given in
Table I illustrate that these give a measurable contribution to LF .

(b) Future calculations will add spatial ∇ M̃ interactions and spatial-temporal JG(r ; t ′) to study the
ev olution of evoked potentials, and their effects on synaptic modifications ∆Z(r ; t). The GL expansions
calculated in Sec. II C can be utilized to investigate long-time and long-ranged order in the evoked
regions, e.g., roll or polygon patterns.

(c) The previous Monte Carlo calculation also permits inclusion of effects of interactions at (r ; t ′) in
a giv en lamina, labeled by λ , from other statistically independent laminae at point r and nearest-neighbor
r ′ points at time t − τ . Along with the inclusion of interlaminar circuitry, the definition of a mesocolumn
can be extended to include interminicolumnar efferent circuitry, by including higher order NN’s as men-
tioned in Sec. II B.

For example, to address interlaminar circuitry, using the prepoint discretization of Eq. (2.2), replace
G → λ G and let λ = 1, . . . , 6. A reasonable description has the predominantly middle and upper laminae
driven by Jλ G, e.g., to account for thalamocortical and inter-regional processes. The predominantly lower
efferent laminae and higher afferent laminae are described by {α λ G, β λ G, γ λ G} in modified Eq. (2.4),
determined from { A∗ λ G, B∗ λ G, vλ G, φλ G, N ∗ λ G} which are obtained from Σk ∈ λ ′ in Eq. (2.1). These
effects accumulate to cause firing transitions from M λ ′G′(r ′; t ′) to M λ G(r ; t ′ + τ ), where λ is an internal
index summed over in L =Σλ G Lλ G similar to the sum over G in the absence of the λ indices. For exam-
ple,

k ∈ λ ′
Σ a∗

j λ kv2
j λ k → (vλλ ′G)2

×(Nλ ′Gaλλ ′G +
1

2
Aλλ ′GM λ ′G) ,  (3.12)
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θ ṀG(t ′) → θ Ṁ λ G(t ′) = M λ G(t ′ + θ ) − M λ G(t ′) .

The readily derived result is a probability distribution highly nonlinear in λ . This permits explicit inclu-
sion of ongoing alterations in synaptic parameters: For a given path chosen as described previously,
changes in Lλ in lamina λ at location r at time t ′ + τ are determined by changes in Jλ G and ∆Z transpir-
ing at time t ′ from laminae λ ′ at locations r ≤ r ± ρ. These ∆Z modifications may in turn be due to
changes in Jλ G and/or to changes in firings M λ G necessary to encode and process patterns of firings
<< M λ G >>.

Interactions between two or more macroscopic regions, denoted by indices Λ, arising from long-
ranged fibers, may be modeled by LF =ΣΛ LΛ

F by adding to LΛ
F

JΛλ G(r Λ; t ′)MΛλ G(r Λ; t ′) = CΛΛ′λλ ′GG′

×MΛ′λ ′G′(r Λ′ ; t ′ − tΛΛ′ − τ )MΛλ G(r Λ; t ′) ,  (3.13)

where tΛΛ′ is the time of transmission from Λ′ to Λ, which can be on the order of 10—30 msec,
CΛΛ′λλ ′GG′ are empirically fitted couplings between firings in regions Λ and previous spatially averaged
firings in region Λ′ , and GG′ is predominantly EE. The spatial averaging in region Λ′ , denoted by r Λ′ , is
not required, but is suggested for reasonable first order computer calculations.

(d) There is some empirical evidence to support the conjecture of chaotic behavior [36,56,57] in
neocortex, driven by changes in concentrations of neurotransmitters [58]. The observed time scale of this
phenomenon is hundreds of seconds, but no metric or measure space yet has been established to analyti-
cally explain the empirical evidence. It is reasonable to assume that these chemical changes effect synap-
tic changes, e.g., in ∆AG(r ; t ′) and ∆BG(r ; t ′), which drive neuronal firing states. This may induce chaotic
behavior in firing states, and/or particular firing patterns may be an essential component of a mechanism
causing chaotic behavior of the chemical product accumulation rates. E.g., under some conditions, the
"information dimension" measuring the space mapped out by the probability distribution of MG(r ; t ′)
may be a noninteger less than the initial phase space dimension, essentially 2[dMGν

0 ] in Eq. (2.5). There
is good evidence that the measure of this information dimension can be calculated efficiently from the
Lyapunov dimension, which measures the (in)stability of MG(r ; t ′) trajectories; chaos results if at least
one Lyapunov exponent > 0 [56]. A direction for future study of these phenomena examines the evolu-
tion of the conditional probabilities of mesocolumnar firings as given by the previous path integral. A rel-
atively simple function for first study of this stochastic evolving map on MG(r ; t0) is giv en by the pre-
point-discretized Lagrangian L expanded to first order in the external driving parameter ∆AG or ∆BG, as
in Eq. (3.6).

Chaotic behavior of mesocolumns induced by long-ranged constraints JG may account for observed
intermittent bursting of firing patterns on time scales of tenths of a second. Synchronized bursting of
mesocolumnar firings is also a candidate for explaining information processing, in addition to stochastic
processing and reverberation among local minima of firing patterns. For example, changing JG drives LF

to various local minima, giving rise to various evolving L or Ĥ stochastic maps, some of which can lead
to chaotic behavior, similar to that observed for the logistic map, via the route of intermittency [59].

(e) As more detailed neuronal parameters become available, more detailed renormalization-group
studies of regional activity can profitably utilize GL polynomials, demonstrated in Sec. II C to be valid
expansions about stationary firing minima, to study phase transitions. The expansion coefficients of GL
polynomials of L are expected to be measurably renormalized by multiple scales of fluctuations present
between mesoscopic and macroscopic scales. Fluctuations present between microscopic and mesoscopic
scales presumably have been included in developing the mesoscopic scale. For example, these studies are
also necessary for definitive analyses of the previous future projects (b) and (d).
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(f) Beyond their classical interactions across several spatial-temporal scales, spanning membrane to
regional activities as presented here, under some conditions of cooperation and competition among these
multiple hierarchies, there may exist sensitive interactions between macroscopic regional scales and quan-
tum synaptic or membrane scales. Critical points, of cooperative behavior or diverging chaotic trajecto-
ries defined at a given scale, essentially may reflect sensitivity to initial conditions and interactions at
smaller scales. For example, as noted previously, these critical points may plausibly exist at the follow-
ing: membrane scales — phase transitions among gated synaptic and membrane activities [12,53]; meso-
scopic scales — chaotic behavior or second-order phase transitions of columnar firing states; and macro-
scopic scales — chaotic behavior of neurotransmitters or wav e propagation. Competition at a given scale,
causing large cancellations among interactions, also enhances sensitivity to smaller scales. For example,
as noted previously, these cancellations occur at the following: membrane scales — at ionic and neuro-
transmitter gates; microscopic scales — E and I competition among many synapses; and mesoscopic
scales — NN minicolumnar interactions from neighboring macrocolumnar domains.

Hypotheses of decision-making and problem-solving based on interactions between relatively small
and large scales [60,61], may require interactions at critical points of chaotic or phase transitions of meso-
scopic MG(r ; t) trajectories [45]. For example, a wav e function or packet involving synaptic and mem-
brane interactions over regional scales may represent alternative future macroscopic events by branching
into distinct wav e functions [62], the absolute square of each being a statistical measure associated with a
specific P̃(M̃) [63]. At these critical points, reflecting microscopic sensitivity to these quantum alterna-
tives, mesoscopic processing, and stored information structures — represented by L̃, neuronal parameters
{α G, β G, γ G} , and initial conditions P̃[M̃(0)] — "recognize" (or reduce) one of these alternative quantum
wave functions, thereby necessitating a true freedom of choice or even creation of a macroscopic firing
pattern. This also may generate macroscopic nonlocal interactions of information associated with the
other branching wav e functions. Empirical verification of these events would have important implications
for current unresolved issues in the foundations of quantum theory and the mind-body problem [64,65].
Note that a "weakened" stochastic choice of a firing pattern is still operative at macroscopic scales due to
the evolution and interaction of nonlinear nonequilibrium probability distributions of alternative M̃ trajec-
tories: This stochasticity arises from statistically averaging over microscopic and membrane scales which
represent chemical-electrical processes transpiring at quantum scales, but not necessarily from statistical
correlations induced by the process of macroscopic measurement of quantum interactions.
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IV. DISCUSSION

Detailed calculations have been presented to support a scenario of neocortical columnar coding of
extrinsic stimuli, short-term storage via hysteresis, and long-term storage via synaptic modification. This
development has assumed that, at the synaptic interaction scale of 10−2 µm, neocortical information is
statistically processed primarily by voltage-gated presynaptic and chemically gated postsynaptic interac-
tions. Among a collection of hundreds of neurons, mesocolumns encompassing one to several mini-
columns on a scale of 102 µm communicate via ∼ 106 synaptic interactions. Long-ranged fibers contribute
driving forces on these rates of firings of short-ranged fibers.

This description of neocortical interactions, although correctly viewed for purposes of single neu-
ronal studies as a gross simplification of complex microscopic details of neocortex, is reasonable and
appropriate to investigate macroscopic properties of neocortex. In the literature, there are many theoreti-
cal treatments of neocortical phenomena based on averaged neuronal interactions and random noisy back-
grounds. These basic assumptions must be analyzed with the same scrutiny giv en to the empirical data
and to mechanisms proposed for their explanation. In this development much empirical neuronal infor-
mation is explicitly retained without adding any undefined or unphysical parameters, and the net formal-
ism falls within the scope of modern treatments of collective systems. A direction is specified for correct-
ing previous modeling of neocortex that includes the salient features of this development. Some tentative
conjectures on neocortical and neuropsychological mechanisms have been made elsewhere [1,45,60].
This approach to understanding properties of macroscopic neocortex offers a reasonable balance between
two realistic constraints: to include as much microscopic neuronal detail as possible without requiring
unreasonable computer calculations of the mesoscopic columnar system.

Although experimental uncertainty prohibits giving definitiveness to any particular set of neuronal
parameters, within the empirical range of these sets, several macroscopic properties of neocortex hav e
been analyzed, giving insight into information processing of real brains and into some features desired in
artificial (computer) intelligence. It is now possible to explicitly calculate spatial-temporal firing patterns
of columns, as demonstrated by a Monte Carlo program. The dynamics of synaptic modification demand
that their nonlinear interactions with these most probable firing patterns be explicitly accounted for in any
treatment of information processing or storage. This has been demonstrated by calculating changes and
stabilities of most probable firing patterns associated with changes of electrical-chemical presynaptic and
postsynaptic parameters induced by extrinsic sources, and by calculating the probability of extrinsic
sources enabling hysteresis of firing patterns to retain information for epochs longer than typical relax-
ation periods. Explicit directions are given for future study of interlaminar and inter-regional interactions
and chaotic behavior.
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TABLE CAPTIONS

TABLE I. At minima << M >>, for the mesoscopic parameters given in examples A and B, calculated are
(M E, M I ; LF ), the coefficients of [(∇ M E)2//(∇ M I )2] and [(Ṁ E)2: (Ṁ I )2: : Ṁ E: Ṁ I ], and the values of
the Riemannian contributions V − V ′ to LF . Examples a, b1, b2, c, and d are calculated using L.

TABLE II. At two macroscopic times tB, 100τ and 300τ , each sample with three subdivisions of nB

points, a Monte Carlo calculation of the path integral for example a yields the means < MG > and mean-
square deviations σ GG′ . Differences at 100τ and nonzero σ EI are due primarily to the small number of
points sampled.
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FIGURE CAPTIONS

FIG. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a*)-(a’) microscopic neu-
rons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. In (a*) synaptic interneuronal inter-
actions, averaged over by mesocolumns, are phenomenologically described by the mean and variance of a
distribution Ψ. Similarly, in (a) intraneuronal transmissions are phenomenologically described by the
mean and variance of Γ. Mesocolumnar averaged excitatory (E) and inhibitory (I ) neuronal firings are
represented in (a’). In (b) the vertical organization of minicolumns is sketched together with their hori-
zontal stratification, yielding a physiological entity, the mesocolumn. In (b’) the overlap of interacting
mesocolumns is sketched. In (c) macroscopic regions of neocortex are depicted as arising from many
mesocolumnar domains. These are the regions designated for study here. (c’) sketches how regions may
be coupled by long-ranged interactions.

FIG. 2. In (a) and (c), a distant view is taken of JG versus << MG >>: This is determined in terms of min
= (<< M E >>min, << M I >>min, JG

min) and max = (<< M E >>max, << M I >>max, JG
max): The plots are pro-

jected onto a plane perpendicular to the line running between a point on the line of sight, chosen here to
be (min + max)/2, and the point from which the projection is made, chosen here to be max + 3(max -
min). For this example c, << M E >>min= −150, << M E >>max= 150, << M I >>min= −30, and
<< M I >>max= 30. The horizontal << M I >> axes increase to the right, and the sloping << M E >> axes
increase down towards the left. Contour plots in (b) and (d) are of JG vs << M E >>, on the horizontal axis
increasing to the right, and << M I >>, on the vertical axis increasing upwards.

FIG. 3. A closer look at the plots in Fig. 2 reveals a fine structure relating JG to extrema << MG >>JG .
Axes run similar to those in Fig. 2, but here << M E >>min=<< M E >>JG=0 −15,
<< M E >>max=<< M E >>JG=0 +15, << M I >>min=<< M I >>JG=0 −3, and << M I >>max=<< M I >>JG=0 +3,
where for this example c, << MG >>JG=0= (21. 15, 21. 42).

FIG. 4. Contour plots are given of 4N2H=4N2||L,GG′ ||, and of −2N L,EE = JE,E for example c. Plots (a)
and (b) correspond to the scaling of Fig. 2, and plots (c) and (d) correspond to the scaling of Fig. 3. In
plot (a), the upper left contours range from 1. 2 × 106 down to 2 × 105, in decrements of 2 × 102; if more
contours were plotted, some of value ∼ − 10−5 would appear about those at 0. In plot (b), if more contours
were plotted, some of value ∼ − 10−6 would appear about those at 3 × 10−5.

FIG. 5. In (a) the stationary Lagrangian, L, for example a is plotted versus MG. Axes and perspective are
as described in Fig. 2. (b) gives a contour plot of L. (c) gives the contour plot for τ L ≤ 1. 0. (d) gives the
contour plot for τ L ≤ 0. 01, where labels give ranges from low to high contours for 6 minima. The single
closed contour about 0. 01 is essentially a plateau, not to be considered a minimum. The global seventh
minimum is at (0, 0).
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(M E, M I ; L) [(∇ M E)2 || (∇ M I )2] [(Ṁ
E

)2 : (Ṁ
I
)2 : : Ṁ

E
: Ṁ

I
] (V − V ′)

Example A

(1. 90, 0. 939; 1. 63 × 10−3) [7. 37 × 10−7||9. 71 × 10−7] [2. 67 × 10−5: 1. 33 × 10−4: : −5. 36 × 10−5: 9. 57 × 10−5] −1. 59 × 10−3

Example a

(0, 0; 0) [0||0] [2. 67 × 10−5: 1. 33 × 10−4: : 0: 0] −1. 68 × 10−3

(6, 3; 4. 29 × 10−4) [6. 59 × 10−6||9. 06 × 10−6] [2. 68 × 10−5: 1. 34 × 10−4: : −1. 58 × 10−4: 3. 25 × 10−4] −1. 41 × 10−3

(−5, −3; 4. 52 × 10−4) [2. 95 × 10−6||4. 22 × 10−6] [2. 67 × 10−5: 1. 34 × 10−4: : 6. 57 × 10−5: −4. 69 × 10−4] −1. 92 × 10−3

(8, 4; 7. 54 × 10−4) [1. 12 × 10−5||1. 57 × 10−5] [2. 69 × 10−5: 1. 35 × 10−4: : −2. 06 × 10−4: 4. 40 × 10−4] −1. 32 × 10−3

(−7, −4; 7. 57 × 10−4) [7. 63 × 10−6||1. 01 × 10−5] [2. 68 × 10−5: 1. 34 × 10−4: : 1. 29 × 10−4: −5. 68 × 10−4] −2. 03 × 10−3

(117. 85, 23. 57; 1. 83 × 10−14) [−1. 44 × 10−3||1. 68 × 10−3] [2. 40 × 10−4: 1. 20 × 10−3: : 3. 66 × 10−9: 4. 58 × 10−9] 6. 12 × 10−3

(−124. 99, −25. 00; 1. 09 × 10−10) [−11. 09|| − 0. 741] [1. 17 × 10−1: 5. 83 × 10−1: : −7. 12 × 10−6: 0. 00] 6. 66 × 10−3

Example B

(94. 92, 23. 42; −2. 25 × 10−3) [−1. 15 × 10−4||1. 14 × 10−3] [5. 45 × 10−5: 1. 32 × 10−3: : 6. 30 × 10−4: −7. 33 × 10−4] 4. 17 × 10−3

Example b1

(89. 02, 23. 14; 1. 59 × 10−3) [−5. 33 × 10−5||9. 65 × 10−4] [4. 81 × 10−5: 1. 09 × 10−3: : 5. 38 × 10−4: −6. 14 × 10−4] 3. 69 × 10−3

Example b2

(122. 69, 21. 87; 1. 17 × 10−13) [−5. 64 × 10−3||1. 61 × 10−3] [7. 30 × 10−4: 5. 69 × 10−4: : −1. 11 × 10−8: −1. 30 × 10−8] 6. 77 × 10−3

Example c

(21. 15, 21. 42; 2. 38 × 10−14) [3. 19 × 10−5||1. 45 × 10−4] [1. 89 × 10−5: 1. 89 × 10−4: : −1. 15 × 10−9: −2. 16 × 10−9] −9. 66 × 10−4

Example d

(109. 48, 43. 15; 1. 02 × 10−2) [−3. 86 × 10−5||6. 89 × 10−4] [2. 63 × 10−5: 2. 70 × 10−4: : 9. 79 × 10−4: −1. 07 × 10−3] 3. 28 × 10−3

Table 1. Lester Ingber
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tB/τ nB < M E > σ EE < M I > σ II σ EI

25 96 -1.50 3.40 -1.22 1.55 1.31
50 202 -1.58 2.41 -1.28 1.10 0.730

100 400 -1.60 1.68 -0.929 0.825 0.476

100 129 -1.05 3.33 -0.928 1.39 0.781
200 273 -1.19 2.28 -1.24 1.03 0.623
300 400 -1.49 1.83 -1.11 0.831 0.552

Table 2. Lester Ingber


