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Abstract—An approach is explicitly formulated to blend a local with a global theory to

investigate oscillatory neocortical firings, to determine the source and the information-

processing nature of the alpha rhythm. Thebasis of this optimism is founded on a statistical

mechanical theory of neocortical interactions which has had success in numerically detailing

properties of short-term-memory (STM) capacity at the mesoscopic scales of columnar

interactions, and which is consistent with other theory deriving similar dispersion relations at

the macroscopic scales of electroencephalographic (EEG) and magnetoencephalographic

(MEG) activity.
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I. OBJECTIVES

If the development of artificial intelligence systems is to benefit from knowledge of how neocortex

processes macroscopic patterned information at multiple spatial-temporal scales, then this knowledge

must be gained by at least testing viable theoretical formulations based on neocortical properties against

empirical data plausibly related to such processing.To wards this end, in addition to the neuroscientific

relevance of this work, an approach is formulated to determine just what proportion of local and global

cortical circuitry gives rise to the alpha frequency. This has strong implications for other behavioral

studies which seek correlations between macroscopic EEG-MEG data and their underlying neuronal

mechanisms. Thiscalculation is an essential bridge to understand how neuronal specificity provides

mechanisms underlying neuropsychological states, e.g., selective and global ‘‘attention.’’ T he statistical

mechanical techniques employed are quite general[1]. E.g., they hav ebeen applied to study nucleon-

nucleon velocity-dependent [2]Riemannian contributions to the binding energy of nuclear matter[3,4],

and to study the nonlinear dynamics of financial markets [5]. The former application of these

mathematical techniques yields insights into representing mesoscopic firing patterns by eigenfunctions of

a Lagrangian; the latter application is particularly interesting in the context of describing neocortical

interactions more as a ‘‘neural throng’’ reminiscent of social interactions[6], than as ‘‘hard-wired’’ simple

local circuits.

II. BACKGROUND

Statistical Mechanics of Neocortical Interactions. A series of published studies, have demonstrated

that several scales of neocortical interactions can be consistently analyzed with the use of methods of

modern nonlinear nonequilibrium statistical mechanics[7-10]. A more extensive background for these

studies, with a fairly comprehensive set of references to other approaches, is detailed in these papers, but

Appendix A gives an outline of these calculations. The formation, stability, and interaction of spatial-

temporal patterns of columnar firings now can be explicitly calculated, to test hypothesized mechanisms
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relating to information processing.A detailed scenario has been calculated of columnar coding of

external stimuli, short-term storage via hysteresis, and long-term storage via synaptic modification[8].

This development supports the possibility of parallel processing of local information via microscopic

circuits and of global patterned information via mesoscopic columnar mechanisms [11-13].

One of the most dramatic successes of this theory has been to produce a nonphenomenological

calculation of a macroscopic ‘‘observable’’ f rom microscopic synaptic dynamics: the derivation of STM

capacity [9,10],i.e., the ‘‘rule of 7± 2.’’ [ 14-16] This theory demonstrates that empirical values of

chemical and electrical parameters of synaptic interactions establish several minima of the path-integral

Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima,

their time scales of hysteresis and probable reverberations, and their nearest-neighbor (NN) columnar

interactions are all consistent with well-established empirical rules of human STM capacity. Both the

nonlinear and statistical natures of the interactions developed by this theory are tested by the derivation of

STM capacity. Thus, aspects of conscious experience are derived from neuronal firing patterns, using

modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic

interactions. Thisresult at least partially justifies the process by which microscopic activity has been

statistically developed to describe mesoscopic and macroscopic activity. For example, although future

refinements can take into consideration state-dependent complex interactions among intra-neuronal

components [17,18], the assumptions outlined in Appendix A appear to suffice to detail STM capacity.

In the wake of this interesting result obtained for STM capacity, this paper speculates that this

theory also be applied to macroscopic EEG-MEG phenomena. As outlined in Appendix A, microscopic

neuronal synaptic interactions, consistent with anatomical observations, are first spatially averaged over

minicolumnar afferent and macrocolumnar efferent domains, defining a physiological ‘‘mesocolumn.’’

These spatially ordered domains,∼10−2 cm, retain intimate contact with the original physical synaptic

parameters, are consistent with observed columnar physiology, and are a suitable substrate for

macroscopic spatial-temporal regions,∼ tens of cm, described by a path-integral Lagrangian formalism of

coupled excitatory-inhibitory spatial-temporal firing states. NN interactions among mesocolumns support

regions of alternating columnar structures. Long-ranged influences from extrinsic and inter-regional
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afferents drive these short-ranged interactions, giving rise to columnar mechanisms affecting macroscopic

activity. Within neighborhoods of established most-probable stationary firing minima determined by the

Euler-Lagrange equations, the linearized field equations give rise to a dispersion relation relating firing

frequencies and spatial wav evectors, i.e., exhibiting properties of classical wav ephenomena.

Origins of Time Dependencies of Scalp EEG. Other researchers have dev eloped quite different

approaches to investigating macroscopic neocortical activity, e.g., stressing that systematics of alpha

rhythm of EEG can be modeled by resonant modes of macroscopic dipole-layered firing patterns of

neocortex [19-22]. Theseresonances, in linearized coupled excitatory-inhibitory spatial-temporal integral

equations describing dipole-layered sources, give rise to a macroscopic dispersion relation relating firing

frequencies to spatial wav evectors, consistent with empirical observations. Asdemonstrated in Appendix

A, typical synaptic parameters result in mesoscopic dispersion relations consistent with these macroscopic

dispersion relations.

While many other investigators also accept dipole layers to model EEG activity, at least to the

extent of recognizing activity perpendicular to laminae, they also demonstrate that there are respectable

candidates for mechanisms that might fundamentally be responsible for macroscopic activity, other than

those proposed here which detail synaptic dynamics of mesocolumnar interactions[23-30]. For example,

given the present lack of empirical knowledge, it is possible to formulate macroscopic neocortical activity

in terms of statistics of either membrane or synaptic microscopic neuronal activities, albeit that these two

are obviously empirically dependent on each other[31]. Therefore,the results derived in Appendix A

might be interpreted either as suggesting that mesocolumnar activity instigates macroscopic activity, or

rather as suggesting that mesocolumnar activity strongly interacts with ongoing macroscopic activity

which is instigated or sustained by other mechanisms.

III. PRESENT ISSUES

The two approaches outlined above in Section II, i.e., local mesocolumnar versus global non-

mesocolumnar, giv e rise to important alternative conjectures: (1) Is the alpha rhythm a global resonance
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of primarily long-ranged cortical interactions? If so, can relatively short-ranged local firing patterns

effectively modulate this frequency and its harmonics, to enhance their information processing across

macroscopic regions? (2)Or, does global circuitry imply boundary conditions on collective mesoscopic

states of local firing patterns, and is the alpha rhythm a manifestation of these collective local firings?(3)

Or, is the truth some combination of (1) and (2) above?

Using this mesocolumnar approach, within their empirical ranges, sets of synaptic parameters can

be examined to determine local dispersion relations[8] similar to those obtained from the global

dispersion relations[19]. Theresults of such a calculation, outlined in Appendix A, clearly demonstrate

that this local theory predicts alpha frequencies and spatial wav enumbers compatible with those predicted

by the global resonance model.For example, the possibility of generating alpha rhythm from multiple

mechanisms at multiple scales of interactions, e.g., as discussed above, may account for its presence

under many physiological conditions[19]. Note that these results, similar to results derived for STM

capacity [9,10],are not obtained by ‘‘fitting’ ’ theoretical parameters mocking neuronal mechanisms to

empirical data.Rather, these results are obtained by taking reasonable synaptic parameters, developing

the statistical mechanics of neocortical interactions, and then discovering that indeed they are consistent

with the empirical macroscopic data.Furthermore, this theory allows the local and global approaches to

complement each other at a common level of formal analysis — i.e., the ‘‘equations of motion’’

analogous toΣ(forces)= d(momentum) /dt describing mechanical systems: A more detailed calculation

will include contributions from most probable states of the stochastically averaged microscopic system in

the local approach, i.e., the linearized Euler-Lagrange equations, and will include contributions from

normal modes of the linearized macroscopic system in the global approach, i.e., resonances of the dipole

field equations.

It is plausible that studies of the source of the alpha rhythm will give direct insight into related

mechanisms underlying evoked potentials. Inany case, initially a study the Euler-Lagrange variational

equations can determine just what kinds of spatial-temporal structures can be supported by the

mesocolumnar system, given initial driving forces that match/mismatch firing eigenfunctions (patterns of

columnar firings) currently possessed by a given set of synaptic parameters, and under conditions of
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plastically changing synaptic parameters reflecting changes of bases of eigenfunctions.However, in

contrast to the alpha rhythm being a gauge of a general alertness to process information, the time-locked

av eraged evoked potentials appear to be a gauge of more selective attention to information being

processed. Therefore,to derive the nature of evoked potentials, it is more likely that more details of local

interaction among columnar interactions must be included, properly short of neuronal specificity of the

specific information being processed to not refute the proper level of generality of these events. Laminar

circuitry can be included in the statistical mechanics paradigm developed [8]. Therefore, ultimately

Monte Carlo importance sampling techniques are to be extended to find the response of neocortex sev eral

hundred milliseconds after an initial excitation of ∼100 milliseconds duration, e.g., analogous to

thalamocortical stimulation.Stability analyses must be made of these solutions in the context of the

original nonlinear equations.Also laminar circuitry is to be included in both the local and global models.

Previous papers have detailed how this can be realized, but more numerical study is needed to determine

the degree to which this can be accomplished.The solutions will be tested by their goodness-of-fit to

existing EEG data normalized to flat space [19,21].

APPENDIX A

Microscopic Neurons. The microscopic probabilitypσ j
for neuron j firing (σ j = +1 if j fires,

σ j = −1 if it does not) is derived from folding a processΨ for the distribution ofq chemical quanta

transmitted across a synaptic cleft, with a Gaussian processΓ for the distribution of the net effect of

postsynaptic interaction as it affects the electrical activity at the axonal trigger zone.Each quanta

contains thousands of molecules of neurotransmitter. The probabilitypσ j
is essentially the same forΨ

taken to be a Poisson or a Gaussian distribution [7].For Ψ Poisson, the mean efficacy is giv en as

a∗
jk =

1

2
A∗

jk(σ k + 1) + B∗
jk , (A1)

whereA∗
jk is the activity induced if the presynaptic neuronk fires, andB∗

jk is a spontaneous background.

A∗
jk and B∗

jk are on the order of 0.001—0.01, and for a ‘‘typical’’ neuron there may be as many as
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N∗∼104—105 presynaptic neurons, most emanating locally from within the the range of a macrocolumn

of spatial extent∼1 mm. ThedistributionΓ has meanqvjk and variance√ qφ jk , wherev jk andφ jk are the

net electrical potential and its variance, resp., at the trigger zone; |v jk | and φ jk are∼0.1 mV, wherev jk is

positive for excitatory interactions and is negative for inhibitory interactions.Neuron j most likely fires if

the threshold potentialV j is exceeded within a neuronal relaxation time ofτ n∼5—10 msec.pσ j
is derived

to be

pσ j
≈

exp(−σ j F j )

exp F j + exp−F j
, (A2)

F j =
(V j −

k
Σ a∗

jk v jk)

(π
k′
Σ a∗

jk′(v jk′
2 + φ jk′

2))1/2
.

Mesoscopic Domains. A mesoscopic probability distribution P is developed for an afferent

minicolumn of N∼102 neurons, with spatial extent ρ∼102 µm and temporal relaxationτ ≥ τ n , having

excitatory (E) firing M E and inhibitory (I ) firing M I , −NG ≤ MG ≤ NG , whereG = E or I . P is a

response to efferent input within the extent of a macrocolumn ofN∗ neurons. Asminicolumns are

sensitive to one to several neuronal afferents withinτ n , the relaxation timeτ for mesocolumns is of the

same order as the relaxation timeτ n for neurons. E and I type neurons have chemically independent

synaptic interactions in neocortex, although the firing of a neuron is affected by the contribution fromG =

E and I neurons. Amesocolumn is defined as this afferent minicolumn and efferent macrocolumn scaled

down to minicolumnar size, expressing the convergence and divergence of neocortical interactions.NN

mesocolumnar interactions are defined by overlapping efferent macrocolumnar domains, with centers

offset within the extent of a minicolumn. The net effect is to average over the jk neurons, yieldingGG′

columnar interactions. The efferent scaling ofM∗G macrocolumnar efferent firings toMG = (N/N∗)M∗G

is conveniently done by simultaneously scalingA∗
jk → (N/N∗)A jk andB∗

jk → (N/N∗)B jk .

P =
σ j

Σ δ


 jE
Σσ j − M E(r ; t + τ )




δ



 jI
Σσ j − M I (r ; t + τ )





N

j
Π pσ j

(A3)
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≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG) ,

LG = (Ṁ
G − gG)2/(2NgGG) + MGJG/(2Nτ ) − V′G ,

V′G →
G′
ΣV′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + NG tanhFG) , gGG = τ −1NGsech2FG ,

FG =
[VG −

G′
Σ aG

G′v
G
G′ N

G′ −
G′
Σ 1

2
AG

G′v
G
G′ M

G′]

{π
G′
Σ[(vG

G′)
2 + (φG

G′)
2](aG

G′ N
G′ +

1

2
AG

G′ M
G′)}1/2

,

where aG
G′ =

1

2
AG

G′ + BG
G′ , and the NN differential interactionsV′′GG′ are further specified in other

papers [9]. TheJG are constraints onMG from long-ranged fibers, e.g., from thalamocortical cortical,

ipsilateral association and contralateral commissural excitatory fibers extrinsic to macrocolumns.

Macroscopic Regions. The macroscopic probabilityP̃[M̃(t)|M̃(t0)] is developed by folding

Λ∼5 × 105 mesocolumns of spatial extent Ω∼5 × 109 µm2, labeled byν (ν = Λ + 1 ≡ 1), and folding the

differential propagator Pθ for u + 1 time periods, spanning timet − t0 = sθ , each period of durationθ ≤ τ

labeled bys. Boundary conditions on the macroscopic regions are defined to beM̃u+1 = M̃(t) and

M̃0 = M̃(t0) , M̃ = {MGν } , and the Einstein convention of summing over factors with repeatedG indices

is henceforth assumed, except when vertical bars appear on an index, e.g., |G| .  The prepoint

discretization ofL(M), θ Ṁ
G

(t′) → MG
s+1 − MG

s and MG(t′) → MG
s , is derived from the biophysics of

neocortex. This is not equivalent to the Stratonovich midpoint discretization of a proper Feynman

LagrangianLF , θ Ṁ
G

(t′) → MG
s+1 − MG

s and MG(t′) →
1

2
(MG

s+1 + MG
s ) [1]. Thediscretization and the

Lagrangian must be defined consistently to give an inv ariant scalarg1/2P(M) , where g = ||gGG′|| ,

gGG′ = (gGG′)−1 . The covariant Feynman Lagrangian is defined in terms of a stationary principle, and the
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transformation to the Stratonovich discretization permits the use of the standard calculus.

P̃[M̃ |M̃0] = ∫ . . . ∫ DM̃ exp(−NS̃F )δ [M̃ = M̃(t)]δ [M̃0 = M̃(t0)] , (A4)

S̃F = minΛΩ−1 ∫ dt′ ∫ d2r LF ,

DM̃ =
Λ

ν =1
Π

E,I

G
Π

u+1

s=1
Π [(2πθ )−1/2(gν

s)1/4]
u

s′=1
Π dMGν

s′ ,

LF =
1

2
N−1(Ṁ

G − hG)gGG′(Ṁ
G′ − hG′) − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ , hG

;G = g−1/2(g1/2hG),G ,

V = V′ − (
1

2
hG

;G + R/6)/N , V′ = V′E + V′I − MGJG/(2Nτ ) ,

where [. . .],G denotes∂[. . .]/∂MG , and ‘‘min’ ’ specifies that the short-time propagator is evaluated by

expanding about that path which makes the actionS̃F stationary. The Riemannian curvature R arises

from the nonlinear inverse variancegGG′ , which is abona fidemetric of this parameter space,

R = g−1(gEE,II + gII ,EE) −
1

2
g−2[gII (gEE,EgII ,E + gEE,I

2) + gEE(gII ,I gEE,I + gII ,E
2)] . (A5)

This path-integral representation is equivalent to the Fokker-Planck and Langevin differential-equation

representations [1,9].

Euler-Lagange Variational Equations. The Euler-Lagrange variational equations associated with

LF leads to a set of 12 coupled first-order differential equations, with coefficients nonlinear inMG , in the

12 variables{MG, Ṁ
G

, M̈
G

, ∇MG, ∇2MG} in (r ; t) space. Inthe neighborhood of extrema << MG >> ,

LF can be expanded as a Ginzburg-Landau polynomial.To inv estigate first-order linear oscillatory states,
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only powers up to 2 in each variable are kept, and from this the variational principle leads to a relatively

simple set of coupled linear differential equations with constant coefficients:

0 = δ̂ LF = LF ,Ġ:t − δ̂GLF (A6)

≈ − f |G|M̈
|G| + f 1

GṀ
G¬

− g|G|∇
2M |G| + b|G|M

|G| + b MG¬
, G¬ ≠ G ,

[. . .],Ġ:t = [. . .],ĠG′ Ṁ
G′ + [. . .],ĠĠ′ M̈

G′
,

MG = MG− << MG >> , f 1
E = − f 1

I ≡ f .

These equations are then Fourier transformed and the resulting dispersion relation is examined to

determine for which values of the synaptic parameters and ofξ , the conjugate variable tor , can

oscillatory states,ω (ξ ), persist. E.g., solutions are sought of the form

MG = ReMG
oscexp[−i(ξ ⋅ r − ω t)] , (A7)

MG
osc(r , t) = ∫ d2ξ dω M̂

G
osc(ξ ,ω ) exp[i(ξ ⋅ r − ω t)] .

For instance, a typical example is specified by: extrinsic sourcesJE = −2. 63 and JI = 4. 94,

NE = 125,N I = 25,VG = 10 mV, AE = 1. 75,AI = 1. 25,BG = 0. 25,andvG = φG = 0. 1mV. The global

minima is atM E = 25 andM I = 5. Thisset of conditions yields (dispersive) dispersion relations

ωτ = ±{ − 1. 86+ 2. 38(ξ ρ)2; −1. 25i + 1. 51i(ξ ρ)2} , (A8)

whereξ = |ξ |. Thepropagation velocity defined bydω /dξ is ∼1 cm/sec, taking typical wav e-numbersξ

to correspond to macrocolumnar distances∼30ρ. Calculated frequenciesω are on the order of EEG

frequencies∼102 sec−1. These mesoscopic propagation velocities permit processing over sev eral

minicolumns∼10−1 cm, simultaneous with processing of mesoscopic interactions over tens of cm via
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association fibers with propagation velocities∼600—900 cm/sec. I.e., both can occur within∼10−1 sec.

Note that this propagation velocity is not ‘‘slow’’: Visual selective attention moves at ∼8

msec/degree [32],which is ∼1/2 mm/sec, if a macrocolumn of∼mm2 is assumed to span 180 degrees.

This suggests that NN interactions play some part in disengaging and orienting selective attention.
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