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This paper is an essential addendum to L. Ingber, ‘‘Statistical mechanics of neocortical interactions.
Derivation of short-term-memory capacity,’’ Phys. Rev. A 29, 3346-3358 (1984). Calculations are
presented here to support the claim there, that there exists an approximate one-dimensional solution to the
two-dimensional neocortical Fokker-Planck equation. This solution is extremely useful, not only to
obtain a closed algebraic expression for the time of first passage, but also to establish that minima of the
associated path-integral stationary Lagrangian are indeed stable points of the transient dynamic system.
Also, a relatively nontechnical summary is given of the basic theory.
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The purpose of this paper is two-fold: First, and most important, calculations and plots are
presented to support statements made in Ref. (1) that an approximate one-dimensional solution exists to
the two-dimensional neocortical Fokker-Planck equation developed in a series of papers [1-5]. Second,
and perhaps most useful to physicists in other specialties who are interested in this system, a relatively
nontechnical summary is given of the basic theory.

This theory is geared to explain macroscopic neocortical activity, retaining as much correct
description of underlying microscopic synaptic activity as can be carried by modern mathematical
physics, which turns out to be sufficient for several important circumstances. In fact, as calculated here,
the retained nonlinearities and statistics are essential to understand limitations to short-term memory
(STM) capacity. (The mechanisms limiting STM capacity are not necessarily equivalent to the various
electrical-chemical processes that are candidates for specific mechanisms of STM).

Microscopic neurons. Granted, for purposes of detailing anatomical or physiological properties of
neurons, it is simply incorrect to postulate an ‘‘average’’ neuron. However, for the purpose of
macroscopic brain function, when considering millions of neurons, it is reasonable to at least respect the
incredibly similar modular structure present in all regions of neocortex [6-11], still allowing for the
differentiation among the laminar structure of individual modules and among neurons active at different
time scales. Although laminar structure and tonic vs. phasic neurons can and will be included in future
investigations, in preliminary studies the only differentiation was amongE and I activities. For each of
the four resulting interactions (E → E, I → I , E → I , I → E), neuronal interactions were calculated using
distributions ranging from Poisson to Gaussian for inter-neuronal chemical-electrical synaptic
interactions, in terms of quantal transfers of chemical transmitters. Note that some investigators have
shown a Bernoulli distribution to be more accurate in some cases [3,12]. A Gaussian distribution was
used for intra-neuronal activity, in terms of average effective voltages contributed from synaptic
interactions to axonal polarizations. The mathematics [3,4] is similar to other studies [13], but with
different physical interpretations. By extending the validity of an approximation [14] to the ‘‘erf ’’
function [3], the firing of an individual neuron is well defined as a sigmoid distribution of synaptic
interactions with other neurons. The derived ‘‘threshold factor’’ of synaptic interactions, being the
argument of the conditional probability distribution which determines the rate at which the distribution
changes from concave to convex, contains a mild nonlinearity induced by the above folding of inter-
neuronal and intra-neuronal distributions. However, the following development is capable of accepting
any differentiable nonlinear function for the threshold factor, including laminar circuitries and more
complex synaptic interactions [4]. No linear rate-equation approximations to these distributed
interactions or artificial assumptions of quadratic distributions are necessary, nor will these yield results
consistent with empirical STM capacity.

Mesoscopic domains. As is found for most nonequilibrium systems, a mesoscopic scale is required
to formulate the statistical mechanics of the microscopic system, from which the macroscopic scale can
be developed. Neocortex is particularly interesting in this context in that a clear scale for the mesoscopic
system exists, both anatomically (structurally) and physiologically (functionally). ‘‘Minicolumns’’ of
aboutN≈100 neurons (about 200 in visual cortex) of extentρ∼ 102 µm comprise modular units vertically
oriented relative to the warped and convoluted neocortical surface throughout most, if not all, regions of
neocortex [6-11]. Clusters of about 100 neurons have been deduced to be reasonable from other
considerations as well, which process information more as a neural ‘‘throng’’ similar to social
interactions, than as hard-wired circuitry [15]. In this context, it is noted that the methods used here also
have been applied to financial markets [16]. Since the short-ranged interactions between neurons take
place within∼ 1 mm, which is the extent of a ‘‘macrocolumn’’ comprising∼ 103 minicolumns ofN ∗ ≈105

neurons, and since macrocolumns also exhibit rather specific information-processing features, this theory
has retained the divergence-convergence of macrocolumn-minicolumn efferent-afferent interactions by
considering domains of minicolumns as having similar synaptic interactions within the extent of a
macrocolumn. This macrocolumnar-averaged minicolumn is designated in this theory as a
‘‘mesocolumn’’.

This being the empirical situation, it is gratifying to find thatN≈102 is just the right order of
magnitude to permit a formal analysis using methods of mathematical physics recently developed for
statistical systems [17,18].N is small enough to permit nearest-neighbor (NN) interactions to be
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formulated, such that interactions between mesocolumns are small enough to be considered gradient
perturbations on otherwise independent mesocolumnar firing states. This is consistent with rather
continuous spatial gradient interactions observed among columns [19], and with the basic hypothesis that
nonrandom differentiation of properties among broadly tuned individual neurons coexists with functional
columnar averages representing superpositions of patterned information [20]. This is a definite
mathematical convenience, else a macrocolumn of minicolumns would have to be described by a system
of minicolumns with up to sixteenth order next-nearest neighbors. Also,N is large enough to permit the
derived binomial distribution of afferent minicolumnar firing states to be well approximated by a
Gaussian distribution, a luxury not afforded to an ‘‘average’’ neuron even in this otherwise similar
physical context. Finally, mesocolumnar interactions are observed to take place via one to several relays
of neuronal interactions, so that their time scales are similarlyτ ≈5—10msec.

Macroscopic regions. Inclusion of all the above microscopic and mesoscopic features of neocortex
permits a true nonphenomenological Gaussian-Markovian formal development for macroscopic regions
encompassing∼ 5 × 105 minicolumns of spatial extentΩ∼ 5 × 109 µm2, albeit one that is still highly
nonlinear and nonequilibrium. The development of mesocolumnar domains presents conditional
probability distributions for mesocolumnar firingsMG , G = E or I , with spatially coupled NN
interactions. The macroscopic spatial folding of these mesoscopic domains and their macroscopic
temporal folding of tens to hundreds ofτ yields a true path-integral formulation, in terms of a Lagrangian
possessing abona fide variational principle for most-probable firing states. Much of this algebra is
greatly facilitated by, but does not require, the use of Riemannian geometry to develop the nonlinear
means, variances, and ‘‘potential’’ contributions to the Lagrangian [18]. In the context of representing
firing patterns by eigenfunctions of a Lagrangian, it is noted that these methods also have been used to
study nucleon-nucleon velocity-dependent [21] potential contributions to nuclear-matter binding
energy [22,23].

The prepoint-discretized LagrangianL, associated with the midpoint-discretized Feynman
LagrangianLF [1], defines the path-integral solution for the conditional probabilityP of mesocolumnar
firings MG .

P =
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G − gG)2/(2NgGG) + MG JG /(2Nτ ) − V ′G ,

V ′G =
G′
ΣV ′′ G

G′(ρ∇ MG′)2 ,

gG = −τ −1(MG + N G tanhFG) , gGG = τ −1N Gsech2FG ,

FG =
[V G −

G′
Σ aG

G′ v
G
G′ N

G′ −
G′
Σ 1

2
AG

G′ v
G
G′ M

G′ ]

((π
G′
Σ[(vG

G′)
2 + (φG

G′)
2](aG

G′ N
G′ +

1

2
AG

G′ M
G′)))1/2

,

aG
G′ =

1

2
AG

G′ + BG
G′ , (1)

whereG represents contributions fromE and I neurons, and minicolumnar-averaged synaptic parameters
{ AG

G′ , BG
G′ , vG

G′ ,φG
G′ } and NN interactionsV ′G are detailed in Ref. (1). The (excitatory) long-ranged fibers,

represented byJG constraints onMG, most likely sustain activity over widely separated regions [24], to
coordinate information processing ranging between local and global scales [5].

A Hamiltonian formulation can be obtained, one which does not permit simple ‘‘energy’’-type
conservation approximations, but one which does permit the usual time-evolution picture [18]. The time-
dependent differential macroscopic probability distributionP̃ = Πr P, or ‘‘propagator’’, is found to satisfy
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a true Fokker-Planck equation, but one with nonlinear drifts and diffusion in the space ofE and I firings.
The Fokker-Planck equation for the regionΩ corresponding to Eq. (1) is

∂P̃

∂t
≈Ω−1 ∫ d2r[

1

2
(gGG′ P̃),GG′ − (gG P̃),G + NV ′ P̃] .

(2)

STM capacity. The most detailed and dramatic application of this theory has been to predict a
stochastic mechanism underlying the phenomena of human STM capacity [1], transpiring on the order of
tenths of a second to seconds, limited to the retention of7 ± 2 items [25]. This is true even for apparently
exceptional memory performers who, while they may be capable of more efficient encoding and retrieval
of LTM, and while they may be more efficient in ‘‘chunking’’ larger patterns of information into single
items, nevertheless they also are limited to a STM capacity of7 ± 2 items [26]. This STM capacity-
limited chunking phenomena also has been noted with items requiring varying depths and breadths of
processing [27-31].

Contour plots of the stationary LagrangianL for model BC′ [1], wherein typical synaptic
parameters are balanced between predominately inhibitory and predominately excitatory firing states, are
examined at many scales when the background synaptic noise is only modestly shifted to cause both
efferent and afferent mesocolumnar firing states to have a common most-probable firing centered at
MG = 0, where G = E or I , −N G ≤ MG ≤ N G , and N = N E + N I [1]. Within the range of synaptic
parameters considered, for values ofτ L∼ 10−2, this ‘‘centering’’ mechanism causes the appearance of from
5 to 10-11 extrema for values ofτ L on the order of∼ 10−2. (See Fig. 1.) The appearance of these extrema
due to the centering mechanism is clearly dependent on the nonlinearities present in the derived
Lagrangian, stressing competition and cooperation among excitatory and inhibitory interactions at
columnar as well as at neuronal scales.

Since the extrema appear to lie fairly well along a line in the two-dimensionalMG-space, and since
coefficients of slowly varyingdMG /dt terms in the nonstationaryL are noted to be small perturbations on
L [4], a solution to the stationary probability distribution is hypothesized to be proportional toexp(−Φ/D),
whereΦ = CN2L, the diffusionD = N /τ , andC a constant. Along the line of the extrema, forC≈1, this is
determined to be an accurate solution to the full two-dimensional Fokker-Planck equation. (See Fig. 2.)
This is extremely useful, as a linear stability analysis shows that stability with respect to mesocolumnar
fluctuations induced by several neurons changing their firings is determined by the second derivatives of
−Φ [32], but here this just measures the parabolic curvature ofL at the extrema. Thus, all the extrema of
the stationary Lagrangian are determined to be stable minima of the time-dependent dynamic system.

More precisely, an estimate of a stationary solutionPstat to the Fokker-Planck differential equation
for the probability distributionP of MG firings for an uncoupled mesocolumn, i.e.,V ′ = 0, is giv en by the
stationary limit of the short-time propagator,

Pstat≈Nstatg
1/2 exp(−CNτ L) , (3)

g = det(gGG′)−1 ≡ det(gGG′) = gEE gII ,

where Nstat and C are constant factors. An estimate of the approximation made in Eq. (3) is made by
seeking values of constantsC, such that the stationary Fokker-Planck equation is satisfied exactly.
Contour plots in Fig. 2 ofC versus MG demonstrates that there exists real positiveC which may only
range from∼ 10−1 to ∼ 1, for which there exists unbroken contours ofC which pass through or at least
border the line of minima.At each pointMG, Eq. (3) leaves a quadratic equation forC to be solved.
Dropping theg1/2 factor in Eq. (3) results inC not being real throughout the domain ofMG .

Thus, Eq. (3) defines a solution with potentialN2L = ∫ AdM, drift A, and diffusionN /τ . Stability of

transient solutions, defined forδ MG about a stationary state byδ Ṁ
G≈ − A,Gδ MG = −N2L,GGδ MG , is

therefore equivalent to<< M >> being minima ofL. This stationary solution is also useful for calculating
the time of first passage,tvp , to fluctuate out of a valley in one minima over a peak to another minima. It
turns out that the values ofτ L∼ 10−2 for which the minima exist are just right to givetvp on the order of
tenths a second for about 9 of the minima when the maximum of 10—11 are present. The other minima



Statistical Mechanics of Neocortical ... -5- Lester Ingber

give tvp on the order of many seconds, which is large enough to cause hysteresis to dominate single jumps
between other minima [1]. Thus,7 ± 2 is the capacity of STM, for memories or new patterns which can
be accessed in any order during tenths of a second, all as observed empirically [26].

This is a very sensitive calculation. IfN were a factor of 10 larger, or ifτ L < 0. 1 at the minima,
thentvp is on the order of hours instead of seconds, becoming unrealistic for STM durations. Oppositely,
if tvp were much smaller, i.e., less than∼ 5τ , this would be inconsistent with empirical time scales
necessary for formation of any memory trace [33]. In this context, it is noted that the threshold factor of
the probability distribution scales as(N ∗ N )1/2 , demanding that both macrocolumnar divergence and
minicolumnar convergence of mesocolumnar firings be tested by these calculations.

The statistical nature of this storage and processing also explains the primacy vs. recency effect in
STM serial processing, wherein first-learned items are recalled most error-free, with last-learned items
still more error-free than those in the middle [34]. The deepest minima are more likely accessed than the
others of this probability distribution, and these valleys are sharper than the others. I.e., they are more
readily accessed and sustain their patterns against fluctuations more accurately than the others. The more
recent memories or newer patterns may be presumed to be those having synaptic parameters more
recently tuned and/or more actively rehearsed.
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FIG. 1. From Ref. (1). Contours ofτ LBC′ over the(M E , M I ) plane for values less than 0.04 are
drawn, invoking the ‘‘centering’’ mechanism for model BC′, where−80 ≤ M E ≤ 80 and−30 ≤ M I ≤ 30. Ref.
(1) calculates that the results are similar for the Feynman Lagrangian.

FIG. 2. Using the ansatz that a solution to the two-dimensionalMG-space Fokker-Planck equation
for the stationary probability distribution of MG is proportional toexp(CNτ L), contours of positiveC are
plotted over MG for which this ansatz does indeed satisfy this equation. Plots are presented for model BC′
of Fig. 1. (a)C-contours at 7 equally spaced values between the minimum value of 0, and the maximum
value of 600, give rise to a peak close to the origin and a solitary contour of 100 at
MG = (M E , M I ) = (−80,−30). (b) C-contours cut off at 10 giv e rise to contours of disconnected regions from 0
to 10 along the line of minima of Fig. 1. (c)C-contours cut off at 1.0 give rise to contours ranging from
1.0 atM E = −80 towards 0.2 on the LHS, from 0.2 to 1.0 on the RHS atM E = 80, and from 0.2 on the outer
contours along the line of minima of Fig. 1 to 1.0 on the inner contours. Note that the contours at 1.0 are
closest to the center of the minima. (d)C-contours cut off at 0.1 give rise to a valley at 0 at
(M E , M I ) = (−80,−30), and contours at 0.1. Note that no new contours appear in addition to those already
found in Fig. (c).


