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A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriv-
ing aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical
properties of synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has
demonstrated its capability in describing large-scale properties of short-term memory and electroen-
cephalographic (EEG) systematics. The necessity of including nonlinear and stochastic structures in this
development has been stressed. In this paper, a more stringent test is placed on SMNI: The algebraic and
numerical algorithms previously developed in this and similar systems are brought to bear to fit large sets
of EEG and evoked potential data being collected to investigate genetic predispositions to alcoholism and
to extract brain “signatures” of short-term memory. Using the numerical algorithm of Very Fast Simu-
lated Re-Annealing, it is demonstrated that SMNI can indeed fit this data within experimentally observed
ranges of its underlying neuronal-synaptic parameters, and use the quantitative modeling results to exam-
ine physical neocortical mechanisms to discriminate between high-risk and low-risk populations geneti-
cally predisposed to alcoholism. Since this first study is a control to span relatively long time epochs,
similar to earlier attempts to establish such correlations, this discrimination is inconclusive because of
other neuronal activity which can mask such effects. However, the SMNI model is shown to be consistent
with EEG data during selective attention tasks and with neocortical mechanisms describing short-term
memory previously published using this approach. This paper explicitly identifies similar nonlinear
stochastic mechanisms of interaction at the microscopic-neuronal, mesoscopic-columnar and macro-
scopic-regional scales of neocortical interactions. These results give strong quantitative support for an
accurate intuitive picture, portraying neocortical interactions as having common algebraic or physics
mechanisms that scale across quite disparate spatial scales and functional or behavioral phenomena, i.e.,
describing interactions among neurons, columns of neurons, and regional masses of neurons.
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I. INTRODUCTION

A. Methodology
In many complex systems, as spatial-temporal scales of observation are increased, new phenomena

arise by virtue of synergistic interactions among smaller-scale entities—perhaps more properly labeled
‘‘quasientities’’—which serve to explain much observed data in a parsimonious, usually mathematically
aesthetic, fashion [1,2]. For example, in classical thermodynamics of equilibrium systems, it is possible
to leap from microscopic molecular scales to macroscopic scales, to use the macroscopic concept of tem-
perature to describe the average kinetic energy of microscopic molecular activity, or to use the macro-
scopic concept of pressure to describe the average rate of change of momentum per unit area of micro-
scopic molecules bombarding the wall of a cavity.

However, many complex systems are in nonequilibrium, being driven by nonlinear and stochastic
interactions of many external and internal degrees of freedom. For these systems, classical thermodynam-
ics typically does not apply [3]. For example, the description of weather and ocean patterns, which
attempt to include important features such as turbulence, rely on semiphenomenological mesoscopic mod-
els, those in agreement with molecular theories but not capable of being rigorously derived from them.
Phase transitions in magnetic systems, and many systems similarly modeled [4-6], require careful treat-
ment of a continuum of scales near critical points. In general, rather than having a general theory of
nonequilibrium nonlinear process, there are several overlapping approaches, typically geared to classes of
systems, usually expanding on nonlinear treatments of stochastic systems [1,2,7-9]. Many biological sys-
tems give rise to phenomena at overlapping spatial-temporal scales. For example, the coiling of DNA is
reasonably approached by blending microscopic molecular-dynamics calculations with mesoscopic diffu-
sion equations to study angular winding [10]. These approaches have been directed to study electroen-
cephalography (EEG) [11], as well as other biological systems [12].

Therefore, it should not be surprising that the complex human brain supports many phenomena
arising at different spatial-temporal scales. What is perhaps surprising is that it seems possible to study
truly macroscopic neocortical phenomena such as EEG by appealing to a chain of arguments dealing with
overlapping microscopic and mesoscopic scales. A series of papers has developed this statistical mechan-
ics of neocortical interactions (SMNI) [13-25]. This approach permits us to find models of EEG whose
variables and parameters are reasonably identified with ensembles of synaptic and neuronal interactions.
This approach has only recently been made possible by developments in mathematical physics since the
late 1970s, in the field of nonlinear nonequilibrium statistical mechanics. The origins of this theory are in
quantum and gravitational field theory.

Other physical systems have varying degrees of theoretical support leading to Fokker-Planck partial
differential equation descriptions. Here, new problems arise in nonlinear nonequilibrium systems, often
requiring modeling with the introduction of a nonconstant coefficient of the second-derivative ‘‘diffusion’’
term. The spatial second-derivative term usually represents the kinetic energy, when the first derivative
represents the momentum in the differential-equation description of a system. It was early noticed that a
similar treatment of the gravitational equation [26] required a modification of the potential term of the
corresponding Lagrangian. We now better understand the mathematical and physical similarities between
classical stochastic processes described by Fokker-Planck equations and quantum processes described by
the Schro¨dinger equation [27]. The Lagrangian, essentially equal to the kinetic energy minus the poten-
tial energy, to first order in an expansion about the most likely state of a quantum or stochastic system,
gives a global formulation and generalization of the well-known relation, force equals mass times
acceleration [28]. In the neocortex, the velocity corresponds to the rate of firing of a column of neurons,
and a potential is derived which includes nearest-neighbor interactions between columns. The Lagrangian
formulation also accounts for the influence of fluctuations about such most likely paths of the evolution of
a system, by use of a variational principle associated with its development. The Lagrangian is therefore
often more useful than the Hamiltonian, essentially equal to the kinetic energy plus the potential energy,
related to the energy in many systems. As will be demonstrated, this is especially useful to obtain infor-
mation about the system without solving the time-dependent Fokker-Planck equation; however, we also
will describe neocortical phenomena requiring the full solution.
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In its differential form, the momentum is proportional to the derivative operator. For classical sys-
tems, the coefficient of the square of the momentum is twice the diffusion, e.g., the second moment of a
probability distribution describing some systems. The introduction of a nonconstant coefficient of even
the first-derivative term requires careful treatment. Such a problem arises for a charged particle in an
electromagnetic field [29], which originally was treated by physical arguments to enforce ‘‘minimal cou-
pling,’’ whereby the momentump is simply replaced byp − Ae/c, whereA is the electromagnetic poten-
tial, e is the electric charge, andc is the speed of light. Minimal coupling excludes otherA2 terms from
appearing in the equation of evolution, e.g., Schro¨dinger’s equation. Such problems are related to the
operator-ordering of the derivative operators with respect to their nonconstant coefficients. For classical
systems, the analogous expression toAe/c is the drift, e.g., the first moment of a probability distribution
describing some systems. In the neocortex, we derive nonlinear expressions for both the drift and diffu-
sion. The detailed mathematical relationships to the physical content of these issues was only clarified in
the late 1970s and early 1980s, and is relevant to the mathematics of the neocortex. The first real break-
through was achieved by noting how these issues should be treated in the context of classical nonlinear
nonequilibrium statistical mechanics [30,31].

While application has been made of these new mathematical physics techniques in quantum and
classical statistical mechanics [32-34], we are not merely bringing over techniques to neuroscience from
other disciplines out of curiousity. Indeed, the contention appears to be well supported that a mathemati-
cal investigation of the neocortex reasonably demands these mathematical techniques, to such an extent
that it can be argued that, if the neocortex had been studied and sufficient data collected prior to mathe-
matical developments in quantum or gravitational theory, then these mathematical techniques might have
been developed in neuroscience first. The brain is sufficiently complex that it requires the same tools used
for similar very complex physical systems. In many ways, we may consider the brain as the prototypical
information processing system, and the mathematical techniques used here may be rigorously viewed as
filters to describe the processing of this information.

This statistical-mechanics approach, at many junctions in its development, may be intuitively com-
pared to the approach used in simple magnetic systems, a comparison made early in neuronal
modeling [35]. While caution must be exercised to respect the integrity of the neocortical system, such
comparisons can be useful pedagogically. The mathematical approach presented here also has been use-
ful to describe phenomena in social systems, ranging from military command, control and
communications [36-38], to political systems [39], to pricing bonds on financial markets [40-42]. In this
context, it has been noted that the activity of neurons may resemble the activity of a throng of people, in
which interactions take place at multiple hierarchical levels [43]. The numerical algorithms used in this
paper were developed in part in the process of investigating these other systems.

B. Top-down versus bottom-up
There are at least two ways to present this admittedly complex technical approach. First, we will

take the top-down approach, essentially examining some macroscopic issues in EEG measurement. This
will motivate us to then look to a bottom-up approach, starting with microscopic synaptic activity and
neuronal interactions, then scaling up through mesocolumnar activity of columns of neurons, to finally
achieve a reasonable macroscopic description of EEG activity. The confluence of these approaches is
expected to yield a tractable approach to EEG analyses [17,24,44].

Section II presents the current dipole string model as a top-down approach to give a rationale for
incorporating several scales of neuronal interactions in order to understand macroscopic EEG phenomena.
We demonstrate how this dipole string model is the Euler-Lagrange variational limit of the derived bot-
tom-up electric-potential EEG Lagrangian.

Section III presents a self-contained outline of the papers describing SMNI, highlighting the essen-
tial steps in aggregating from microscopic scales of synaptic-neuronal interactions, to mesoscopic scales
of minicolumns and macrocolumns of neurons, to macroscopic scales of regional activity over centimeters
of neocortex. Appendix A giv es a brief derivation of the three equivalent mathematical representations
used here, i.e., coupled Langevin stochastic rate equations, the Fokker-Planck partial-differential equation,
and the path-integral equation defined by the Lagrangian.
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Section IV presents a self-contained outline of previous verification of SMNI theory, applied to
short-term memory (STM) at the mesoscopic scale, EEG systematics at the macroscopic scale, and statis-
tical constraints on synaptic modification coding STM into long-term memories. Some discussion is
given on the relevance of chaos in this system.

Section V presents an approach to directly fit SMNI theory to specific sets of EEG data, utilizing
algorithms and physical insights gained in Secs. II-IV. It is demonstrated that SMNI can indeed fit these
data within experimentally observed ranges of its underlying neuronal-synaptic parameters, and use the
quantitative modeling results to examine physical neocortical mechanisms to discriminate high-risk and
low-risk populations genetically predisposed to alcoholism. The SMNI model of STM is shown to be
consistent with EEG data during selective attention tasks.

Section VI gives our conclusions, based on the success of the calculations presented in the previous
sections. We emphasize the success in finding SMNI to be a reasonable model of neocortical interactions
that can fit STM and EEG using only physically based parameters. We also emphasize the scaling of
common similar nonlinear stochastic interactions at multiple levels, i.e., at microscopic-neuronal, meso-
scopic-columnar, and macroscopic-regional scales.

II. DIPOLE STRING MODEL

A. Background
The human neocortex is a complex physical and biological system that processes information at

multiple spatial and temporal scales. Connections between cortical neurons are of two major types: The
short-range intracortical fibers (both excitatory and inhibitory) of average length less than 1 mm, and the
long-range cortico-cortical fibers (exclusively excitatory) which form most of the white matter in humans
and have an average length of several centimeters [45,46].

There are several noninvasive experimental or clinical methods of recording brain activity, e.g.,
EEG, magnetoencephalography (MEG), magnetic resonance imaging (MRI), positron-emission tomogra-
phy (PET), single-photon-emission-computed tomography (SPECT). While MRI, PET, and SPECT offer
better three-dimensional presentations of brain activity, EEG and MEG offer superior temporal resolu-
tions on the order of neuronal relaxation times, i.e., milliseconds. Recently, it also has been shown that
EEG and MEG offer comparable spatial resolutions on the order of several millimeters; a square millime-
ter is the approximate resolution of a macrocolumn representing the activity of approximately 105 neu-
rons.

Limiting cases of linear macroscopic theories of intracortical interaction predict local wav e phe-
nomena and obtain dispersion relations with typical wav e numbersk= 10 to 100 cm−1 and dominant fre-
quencies in the general range of human spontaneous EEG (1−20 Hz) [17,47]. However, human scalp
potentials are spatially filtered by both distance and tissue between cortical current sources and surface
electrodes so that scalp EEG power is attenuated to about 1% of its cortical value atk= 1 or 2 cm−1. This
implies that spontaneous cortical activity is only measurable on the scalp if at least several hundred con-
tiguous cortical macrocolumns, each macrocolumn being comprised of about 105 neurons, produce coher-
ent source activity. Many such columns of correlated sources cause substantial cortical power at lowk,
measurable on the scalp. The use of an average reference removes spectral power neark = 0, and skull
and scalp tissue effects strongly attenuate power fork > 0. 5  cm−1. At k= 0.5 cm−1, scalp power is typi-
cally below the noise level of the EEG machine. In one study, it was suggested that theα mode (9.5 Hz)
is consistent with standing wav es, whereas theµ mode (8.0 Hz) is more consistent with posterior-to-ante-
rior traveling wav es across the electrode array [24,46].

Vertically oriented neuronal columns generally receive input in the top two of six horizontal lami-
nae and output their neuronal signals from the lower laminae. This justifies a dipole model of the neocor-
tex, albeit care must be taken in this interpretation to account for spreading of electric potentials due to
volume effects and skull and scalp mismatched conductivities [46,48-50]. Since coherent vertically ori-
ented dipoles greatly enhance their contribution to the scalp electric potential, only a small fraction of
columns approaching this idealized structure are required to justify this approximation [51].
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It must be appreciated that this effective dipole model is just that, and is appropriate only at spatial
scales of about a millimeter to a centimeter. Using a scalp EEG or MEG to infer sources at resolutions
less than a millimeter is likely an inappropriate use of this tool as it underestimates the complex neuro-
physiology giving rise to electromagnetic recordings. Using scalp EEG or MEG on the order of tens of
centimeters to infer a single source of regional activity also often is inappropriate, as in many situations
there are likely to be many sources of activity giving rise to such recordings. The resolution of several
millimeters to several centimeters appears to be quite appropriate to model statistically aggregated activity
as an effective dipole.

These experimental considerations of scalp EEG have led to the development of a linear model of
neocortical dynamics in which global delays are dominant and local delays are either neglected or treated
as a perturbation [46]. Standing brain wav es are predicted with resonant modes determined partly by cor-
tical surface geometry. Both temporal and spatial properties predicted by this theoretical approach are in
semiquantitative agreement with EEG states associated with minimal cognitive processing, i.e., awake
resting with eyes closed (α rhythm), asleep, or under the influence of an anesthetic agent [48,49,52,53].
Recently, this approach has been extended to encompass theories based on linear interactions in which
local delays (rise and decay times of postsynaptic potentials) are included [44].

There is ample experimental evidence of the existence of linear EEG phenomena in lower
mammals [54,55] and humans [46,56] which occurs over limited ranges of experimental conditions (mod-
ulation depth of sinusoidal driving of the brain, for example). However, the use of linear and quasi-linear
theories and the neglect of interactions across spatial scales are evidently crude approximations.

Complementing these studies, SMNI has shown that limiting cases of nonlinear treatments of the
neocortex across microscopic-mesoscopic-macroscopic scales give similar numerical confirmation of
EEG observables, thereby addressing both of the above approximations, i.e., nonlinearities and multiple
scales of interaction. The SMNI approach has recently outlined a means to consistently include the long
range cortico-cortical interactions that appear critical to the observed characteristics of scalp
potentials [23].

B. Modeling of observables
The mechanical string model of the neocortex assumes linear properties of connected local nonlin-

ear oscillators [24]. Local cortical dynamics in dipole layers is considered analogous to the nonlinear
mechanical oscillators that influence global modes. Macroscopic scalp potentials are analogous to the
lower modes of string displacement. The linear global model of EEG wav es is much more involved than
the simple linear string. For example, multiple long-range fiber systems cause multiple branches of the
dispersion relation, and distributed propagation velocities cause selective damping of macroscopic
modes [44,46,53]. The application of boundary conditions to the two-dimensional cortical surface has
predicted other EEG properties [44,46]. Many of these features can be included in our nonlinear general-
ization of the simple string described here.

The equation for the string displacementΦ is

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ [ω2
0 + f (Φ)]Φ = 0 ,  (1)

for a linear array (lengthl) of sensors (electrodes) of sizes. We can only observe wav e numbers in the
approximate range

π
l

≤ k ≤
π
s

. (2)

If the center-to-center spacing of sensors, considered to form a closed loop, is alsos, l = Ms, whereM=
(number of sensors) − 1),k= 2nπ/R for n = { 1, 2, 3,. . . } , and sensors span half the string,l = R/2, then

1 ≤ n ≤ M (3)

for some maximumM , which is on the order of 3 to 7 in EEG studies using multielectrode recordings in
two-dimensional arrays on the cortical surface. A typical circumference of the neocortex following a
coordinate in and out of fissures and sulci isR = 100 cm (about 50 cm along the scalp surface). If EEG
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power is mostly restricted tok < 0. 5  cm−1, only modesn < 4 are observed, independent of the number of
electrodes.

Thus, the string displacementΦ (potential within the cortex) is given by

Φ(x, t) =
∞

n=1
Σ Gn(t) sinkn x , (4)

where we have assumed zero boundary conditions at the ends of the string for simplicity of presentation,
but our observedΦ† is given by

Φ†(x, t) =
M

n=1
Σ Gn(t) sinkn x . (5)

In the linear case, wheref (Φ) = 0 (equal linear oscillators to simulate local circuit effects in corti-
cal columns), we have

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ ω2
0Φ = 0 ,

Φ =
∞

n=1
Σ An cosωnt sinkn x ,

ω2
n = ω2

0 + c2k2
n , (6)

giving a dispersion relationωn(kn). For the nonlinear case,f (Φ) ≠ 0, the restoring force of each spring is
amplitude dependent [57].

Returning to the cortical medium, what can we say about

Φ†(x, t) =
M

n=1
Σ Gn(t) sinkn x , (7)

the macroscopic observable displacement potential on the scalp or cortical surface? On the basis of previ-
ous studies of EEG dispersion relations [17,46], it would seem that we should be able to describeΦ† as a
linear or quasilinear variable, but influenced by the local nonlinear behavior that crosses the hierarchical
level from mesoscopic to macroscopic (columnar dipoles). How do we mathematically articulate this
intuition, for the purposes of consistent description as well as lay the foundation for future detailed
numerical calculations? We suggest answers to these questions in the ‘‘bottom-up’’ approach part of this
paper.

We examine these issues by taking reasonable synaptic parameters, developing the statistical
mechanics of neocortical interactions, and then determining whether they are consistent with observed
EEG data. In fact, here we report fits of multichannel human scalp EEG data to these algebraic forms. A
current project is investigating the response of the cortical system to given initial driving forces that match
or mismatch firing patterns of columnar firings possessed by a given set of synaptic parameters, and under
conditions of plastically changing synaptic parameters reflecting changes of these patterns. This should
help in clinical diagnoses using the EEG tool.

C. Outline of derivation of the nonlinear string model
We use a mechanical-analog model, the string model, derived explicitly for neocortical interactions

using SMNI [24]. This defines a probability distribution of firing activity, which can be used to further
investigate the existence of other nonlinear phenomena, e.g., bifurcations or chaotic behavior, in brain
states.

Previous studies have detailed that the predominant physics of short-term memory and of (short-
fiber contribution to) EEG phenomena takes place in a narrow ‘‘parabolic trough’’ inMG space, roughly
along a diagonal line [16]. Here,G representsE or I , M E represents contributions to columnar firing
from excitatory neurons, andM I represents contributions to columnar firing from inhibitory neurons.
The object of interest within a short refractory time,τ , approximately 5 to 10 msec, is the LagrangianL
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for a mesocolumn, detailed further below.τ L can vary by as much as a factor of 105 from the highest
peak to the lowest valley inMG space. Therefore, it is reasonable to assume that a single independent fir-
ing variable might offer a crude description of this physics. Furthermore, the scalp potentialΦ can be
considered to be a function of this firing variable. (Here, ‘‘potential’’ refers to the electric potential, not
the potential term in the Lagrangian derived below.) In an abbreviated notation subscripting the time-
dependence,

Φt− << Φ >>= Φ(M E
t , M I

t ) ≈ a(M E
t − << M E >>) + b(M I

t − << M I >>) ,  (8)

wherea and b are constants, and <<Φ >> and <<MG >> represent typical minima in the trough. In the
context of fitting data to the dynamic variables, there are three effective constants,{ a, b,φ } ,

Φt − φ = aM E
t + bM I

t . (9)

We scale and aggregate the mesoscopic probability distributions,P, over this columnar firing space
to obtain the macroscopic probability distribution over the scalp-potential space:

PΦ[Φ] = ∫ dM E dM I P[M E , M I ]δ [Φ − Φ′(M E , M I )] . (10)

The parabolic trough described above justifies a form

PΦ = (2πσ2)−1/2 exp(−
∆t

2σ 2 ∫ dx LΦ) ,

LΦ =
α
2

|∂Φ/∂t|2 +
β
2

|∂Φ/∂x|2 +
γ
2

|Φ|2 + F(Φ) ,  (11)

whereF(Φ) contains nonlinearities away from the trough,σ 2 is on the order of 1/N given the derivation
of L above, and the integral overx is taken over the spatial region of interest. In general, there also will
be terms linear in∂Φ/∂t and in∂Φ/∂x.

Previous calculations of EEG phenomena, described below [17], show that the short-fiber contribu-
tion to theα frequency and the movement of attention across the visual field are consistent with the
assumption that the EEG physics is derived from an average over the fluctuations of the system, e.g., rep-
resented byσ in the above equation. I.e., this is described by the Euler-Lagrange equations derived from
the variational principle possessed byLΦ (essentially the counterpart to force equals mass times accelera-
tion), more properly by the ‘‘midpoint-discretized’’ FeynmanLΦ, with its Riemannian terms, as discussed
below [14,15,23]. Hence, we can use the variational principle,

0 =
∂
∂t

∂LΦ

∂(∂Φ/∂t)
+

∂
∂x

∂LΦ

∂(∂Φ/∂x)
−

∂LΦ

∂Φ
. (12)

The result is

α
∂2Φ
∂t2

+ β
∂2Φ
∂x2

+ γ Φ −
∂F

∂Φ
= 0 .  (13)

If there exist regions in neocortical parameter space such that we can identifyβ /α = −c2, γ /α = ω2
0 (e.g.,

as explicitly calculated below),

1

α
∂F

∂Φ
= −Φ f (Φ) ,  (14)

and we takex to be one-dimensional, then we recover our nonlinear string, Eq. (1) above. Terms linear in
∂Φ/∂t and in∂Φ/∂x in LΦ in Eq. (11) can make other contributions, e.g., giving rise to damping terms.

The path-integral formulation has a utility beyond its deterministic Euler-Lagrange limit. We hav e
utilized this to explicitly examine the long-time evolution of systems, to compare models to long-time
correlations in data [36,37]. This use is being extended to other systems, in finance [41,42] and in EEG
modeling as described here.
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D. Macroscopic coarse graining and renormalization
We now are in a position to address the issue posed originally of how to mathematically justify the

intuitive coarse-graining ofΦ to getΦ†. In LΦ above, consider terms of the form

∫ Φ2dx = ∫ dx
∞

n
Σ

∞

m
ΣGnGm sinkn x sinkm x

=
n
Σ

m
ΣGnGm ∫ dx sinkn x sinkm x

= (2π/R)
n
ΣG2

n . (15)

By similarly considering all terms inLΦ, we effectively define a short-time probability distribution for the
change in noden, defined by

pn[Gn(t + ∆t)|Gm(t)] , (16)

where we note that in general theF(Φ) term in LΦ will require coupling betweenGn(t + ∆t) andGm(t),
n ≠ m, likely including more than onem. Therefore, we can define

PΦ = p1 p2
. . . p∞ . (17)

We now physically and mathematically can define a coarse-graining,

PΦ† = ∫ dkM+1dkM+2
. . .dk∞ p1 p2

. . . pM pM+1 pM+2
. . . p∞ . (18)

I.e., since we have abona fide probability distributionPΦ, we can integrate over those fine-grained vari-
ables, which are not observed. This procedure is one contribution to algorithms used in ‘‘renormalization-
group’’ theory [6], to account for multiple intermediate scales of interactions. While other criteria for use
of this theory certainly are not present here, it is useful to recognize that this is a reasonable phenomeno-
logical approach to integrating over many scales of neocortical interactions.

The integration over the fine-grained wav e numbers tends to smooth out the influence of thekn ’s
for n > M , effectively ‘‘renormalizing’’

Gn → G†
n ,

Φ → Φ† ,

LΦ → L†
Φ† . (19)

Eventually, laminar circuitry should be included in both the local and global models. Previous
papers have detailed how this can be realized, but more numerical study is needed to determine the degree
to which this can be accomplished. As reported here, the solutions are being tested by their goodness of
fit to existing EEG data using methods of very fast simulated reannealing [58].

III. SMNI MODEL

A. Rationale
We begin our ‘‘bottom-up’’ approach by taking the viewpoint that, since there has been much

progress made in mathematically describing the physics at finer spatial-temporal scales, we should use
these descriptions to derive a dev elopment of the coarser EEG macroscopic scale described above. SMNI
has reasonably detailed a consistent physics which at least parallels, with striking numerical specificity,
short-term memory (STM) and EEG phenomena at the macrocolumnar scale of hundreds of thousands of
neurons, in terms of aggregated physics transpiring at the single-neuronal level. The details of this SMNI
development of STM and EEG will be used to support the ‘‘top-down’’ dev elopment described above.
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A major contribution of this work is the analytic treatment of minicolumns [59]. Minicolumns are
observed to span approximately 7× 102 µm2. Mesocolumnar domains are defined here as physiological
(functional) units, with input converging from an anatomical (structural) macrocolumn extent of approxi-
mately 1000 minicolumns, and output diverging from an anatomical minicolumn out to a macrocolumnar
extent. Calculations support observations of periodically alternating firings of columnar
structures [60-64]. As pictured in Fig. 1, this microscopic scale is orders of magnitude larger than the
molecular scale of membrane biophysics. Also note that ‘‘macrocolumns’’ spanning roughly 7× 105 µm2

have been defined as another physiological entity observed in the neocortex [59], but the macroscopic
regions considered here are orders of magnitude larger than these. Mesocolumnar domains are suffi-
ciently close to the scale of microscopic neurons to allow direct dependence of this theory on neuronal
chemical and electrical properties. The proper stochastic treatment of their interaction permits their
development into macroscopic regions responsible for global neocortical information processing. ‘‘Ther-
modynamic’’ entities corresponding to the ‘‘free-energy’’ potential, ‘‘temperature,’’ and order parameters
of these macroscopic regions are derived by a statistical-mechanics paradigm [65].

Figure 1.

Relative to other biological entities, the intrinsic synaptic activity of the most highly evolved mam-
malian human neocortex functions via the most degenerate and the shortest-ranged neuronal interactions
(on the order of micrometers). Here, ‘‘degenerate’’ reflects the mesoscopic state of approximate redun-
dancy of connectivity among microscopic neurons, for purposes of describing this coarser scale. This
suggests that many collective aspects of this system may be fruitfully studied similarly to other collective
systems, e.g., including magnetic systems, lasers, and more general information-theoretic systems [8,66].
Collective effects, from clustering [67,68] or from statistical interactions [69], are proposed to be mecha-
nisms of information processing, in addition to the ‘‘hard-wiring’’ mechanisms also possessed by other
more ordered cortical entities [70,71].

Reasonable criteria for any physical approach to the neocortex should include the following three
basic features. These also serve to illustrate the appropriate analogies between the neocortex and other
collective physical systems.

i. Interactions. Short-ranged neuronal interactions over time periods of several milliseconds should
be derived from even more microscopic synaptic activities [72]. [See Fig. 1(a).] Long-ranged spatial
interactions from specific neuronal pathways, primarily composed of the relatively low population of long
excitatory fibers from ipsilateral association, contralateral commissural, and thalamocortical processes
must be consistently treated. These long-ranged interactions are also important for collective activity in
the mammalian cortex [45], and they are included in this study. Longer-time, weaker and modulatory
nonsynaptic influences arising from humoral and electrotonic interactions [73-75] are included, only as
their averaged properties affect synaptic parameters.

ii. Statistics. Neurons separated by large distances, across 103 to 108 neurons, can be statistically
coupled via their short-ranged interactions. [See Fig. 1(c).] Order parameters, the underlying indepen-
dent variables at the appropriate scale of the theory, must be identified, and intrinsic fluctuations from the
microscopic synaptic and neuronal systems, diffusion effects, must be included. There also are fluctua-
tions of the mesoscopic system due to their aggregated neuronal interactions, derived here as gradient
couplings between neighboring mesoscopic cells. These spatially ordered mesoscopic domains respect
the observed anatomy and physiology of the neocortex [67,68], complementing earlier theories hypothe-
sizing random neural networks [76,77].

iii. Dynamics. A viable formalism must be adopted to describe the statistical time evolution of the
macroscopic nonequilibrium system over scales of 102 to 104 msec.

Although cooperativity between distant neurons is typically quite low [78], except perhaps in
homologous regions of separate hemispheres, macroscopic regions reflect cooperative behavior, proposed
here to best be understood as initiated at the mesoscopic level of interaction. The existence of collective
spatial-temporal activity, embedded in a spontaneous noisy background, is supported by statistical analy-
ses of electroencephalographic and magnetoencephalographic recordings [79,80]. As long as collective
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mechanisms arising in a physical system characterized by the above three features are considered to be
viable sources of collective neocortical phenomena, then these features must be correctly formulated.

There is a large body of literature dealing with neuronal mechanisms that intuits phenomenological
differential equations from rates of change of average excitatory and inhibitory neuronal firings, and then
proceeds to search for collective behavior, limit cycles, and oscillatory behavior [81-86]. Mechanisms are
sought to explain varied phenomena such as hysteresis in perception [84], perception and
learning [87,88], and ontogenesis of columnar formation [88,89]. Comparisons with applications of these
techniques to those used in other physical systems [1], illustrates that the pioneering application of these
appropriate formalisms to the neocortical system still has much to offer. Much inspiration for these appli-
cations has come from work in nonequilibrium thermodynamics, which has been applied to specific sys-
tems, e.g., chemical reactions, lasers, magnetic systems, fluids, spin glasses, etc., as well as to the general
formulation of complex nonlinear systems [1,2,9,69,90].

This study also distinguishes between neuronal mechanisms the neocortex uses to process informa-
tion and the structures of information the neocortex processes. A Lagrangian is derived that operates on
firings of the system. When integrated over a time period, this yields the nonequilibrium equivalent of a
‘‘thermodynamic potential.’’ This Lagrangian is derived, not conveniently defined or hypothesized, from
the short-time evolution of the probability distribution of columnar firing states. The exponential of
minus the Lagrangian, essentially this short-time distribution up to an important normalization factor,
operates as a weighting factor on all possible states, filtering or transforming (patterns of) input firings
into output firings. ‘‘Information’’ is a concept well defined in terms of the probability eigenfunctions of
electrical-chemical activity of this Lagrangian. The path-integral formulation presents an accurate intu-
itive picture of an initial probability distribution of patterns of firings being filtered by the (exponential of
the) Lagrangian, resulting in a final probability distribution of patterns of firing.

B. Microscopic neurons

1. General description

Figure 1(a) illustrates the microscopic neuronal interaction scale, on the order of several microme-
ters. Neocortical neurons typically have many dendrites that receive quanta of chemical postsynaptic
stimulation from many other neurons. The distribution of quanta transmitted across synapses takes place
on the scale of 10−2 µm, as illustrated in the inset of Fig. 1(a*). Each quantum has thousands of
molecules of chemical neurotransmitters that affect the chemically gated postsynaptic membrane. Chemi-
cal transmissions in the neocortex are believed to be either excitatory (E), such as glutamic acid, or
inhibitory (I ), such asγ aminobutyric acid. There exist many transmitters as well as other chemicals that
modulate their effects, but it is assumed that after millions of synapses between hundreds of neurons are
av eraged over, then it is reasonable to ascribe a distribution functionΨ with a mean and variance forE
andI interneuronal interactions.

While some neuroscientists do not accept the assumption that simple algebraic summation of exci-
tatory depolarizations and inhibitory hyperpolarizations at the base of the inner axonal membrane deter-
mines the firing depolarization response of a neuron within its absolute and relative refractory
periods [72], still many other neuroscientists agree that this assumption is reasonable when describing the
activity of large ensembles of neocortical neurons, each one typically having many thousands of synaptic
interactions.

This same averaging procedure makes it reasonable to ascribe a distribution functionΓ with a mean
and variance forE and I intraneuronal interactions. A GaussianΓ is taken to describe the distribution of
electrical polarizations caused by chemical quanta impinging on the postsynaptic membrane. These
polarizations give a resultant polarization at the base of the neuron, the axon [extension in Fig. 1(a) cut by
the double broken line]. The base of the axon of a large fiber may be myelinated. However, smaller neu-
rons typically lack these distinguishing features. Experimental techniques are not yet sufficiently
advanced to attempt the explicit averaging procedure necessary to establish the means and variances ofΨ
andΓ, and their parameters,in vivo. Differential attenuations of polarizations from synapses to the base
of an axon are here only phenomenologically accounted for by including these geometric and physiologi-
cal effects intoΓ.
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With a sufficient depolarization of approximately 10 to 20 mV at the soma, within an absolute and
relative refractory period of approximately 5 msec, an action potential is pulsed down the axon and its
many collaterals, affecting voltage-gated presynaptic membranes to release quanta of neurotransmitters.
Not detailed here is the biophysics of membranes, of thickness≈ 5 × 10−3 µm, composed of biomolecu-
lar leaflets of phospholipid molecules [91-93]. At present,Ψ and Γ are taken to approximate this bio-
physics for use in macroscopic studies. The formalism adopted in this study is capable of using new
microscopic functional dependences, gleaned from other experimental or theoretical investigations, and
cranking them through to obtain similar macroscopic descriptions. Chemical independences of excitatory
depolarizations and inhibitory hyperpolarizations are well established in the neocortex, and this indepen-
dence is retained throughout this study.

It should be noted that experimental studies initially used to inferΨ andΓ (e.g., at neuromuscular
junctions) were made possible by deliberately reducing the number of quanta by lowering external cal-
cium concentrations [94,95].Ψ was found to be Poissonian, but in that system, where hundreds of quanta
are transmittedin vivo, Ψ may well be otherwise; for example, Gaussian with independent mean and vari-
ance. Current research suggests a binomial distribution, having a Poisson limit [14,96,97]. Note that
some investigators have shown a Bernoulli distribution to be more accurate in some cases [14,97,98], and
that the very concept of quantal transmission, albeit that good fits to experimental data are achieved with
this concept, is under review. In the neocortex, probably small numbers of quanta are transmitted at
synapses, but other effects, such as nonuniformity and nonstationarity of presynaptic release sites, and
nonlinear summation of postsynaptic potentials, may detract from a simple phenomenological Poisson
description [72]. This short description serves to point out possible differences inΨ resulting from many
sources. However, the derivation of synaptic interactions given here makes it plausible that for reasonable
neuronal parameters, the statistical folding ofΨ andΓ is essentially independent of the functional form
assumed forΨ, just requiring specification of its numerical mean and variance.

The result of this analysis is to calculate the transition probability of the firing of neuronj, pσ j
,

given its interaction with its neighbors that also may fire or not fire. The result is given as the tabulated
error function. Within the range where the total influences of excitatory and inhibitory firings match and
exceed the average threshold potential of a given neuron, the probability of that neuron firing receives its
major contribution to increase from 0 towards 1. A step function derived as tanhFG is defined by the
‘‘threshold factor’’ F j . That is, forFG >> 1, tanhFG → 1, while forFG << 1, tanhFG → − 1, and so the
threshold region of−1 < FG < 1  sensitively controls this important tanhFG contribution to the drifts, the
driving terms, in the Lagrangian. The mesoscopic development discussed below retains this sensitivity.

This is similar to the mathematical result obtained by others [99-101] who have modeled the neo-
cortex after magnetic systems [35]. However, the following is derived more generally, and has the neural
parameters more specifically denoted with different statistical significances given toΨ andΓ, as described
above.

2. Conditional probability

Consider 102 < N < 103 neurons, labeled byk, interacting with a given neuronj. Each neuron may
contribute many synaptic interactions to many other neurons. A neuron may have as many as 104 − 105

synaptic interactions. Within timeτ n ≈ 5 msec,Ψ is the distribution ofq quanta of chemical transmitter
released from neuronk to neuronj (k ≠ j) with meana jk , where

a jk = A jk(σ k + 1)/2 + B jk . (20)

A jk is the conductivity weighting transmission of polarization, dependent onk firing,

σ k =




1,

−1,

k fires,

k does not fire
(21)

and B jk is a background including some nonsynaptic and long-range activity. Of course,A and B are
highly complicated functions ofkj. This definition ofσ k permits a decomposition ofa jk into two differ-
ent physical contributions. At this point there is a reasonable analogy to make with magnetic systems,
whereσ k might represent a unit spin. However, the details of the interactions between neurons differ
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from those between magnetic spins, and this greatly affects such comparisons.

Within the scope of the assumption that postsynaptic potential responses from numbers of presy-
naptic released quanta add algebraically, a Gaussian process is taken to represent this response for each
quantum released. Application of the central limit theorem [102] then yields, for anyq quanta, a Gaus-
sian processΓ for imparting a potentialW jk to neuronj:

Γ = (2πqφ2
jk)−1

2 exp[−(W jk − qv jk)2]/(2qφ2
jk),

q−>0
lim Γ ≡ δ (W jk), (22)

where the polarizationv jk can be positive (excitatoryE) or neg ative (inhibitoryI ), and the Diracδ func-
tion,

δ (Z ) = (2π)−1
∞

−∞
∫ dQ exp(iQZ ) ,  (23)

represents a well-behaved, strongly peaked distribution.

The probabilityS jk of developingW jk from k is

S jk =
∞

q=0
Σ ΓΨ . (24)

The probabilityS j of developing potentialW j from all N neurons is

S j = ∫ . . . ∫ dW j1
. . .dW jN S j1

. . .S jNδ (W j −
k
ΣW jk). (25)

The conditional probabilityp+ j of neuronj firing if W j > V j , the threshold ofj, is

p+ j =
∞

V j

∫ dW j S j . (26)

At this stage it is possible to include the probability of not firing by defining

pσ j
=





p+ j , σ j = +1

p− j , σ j = −1,
(27)

by replacing

V j → σ jV j ,

Q → σ jQ . (28)

Poissonian Ψ. For a jk small, takeΨ as a Poisson with mean and variancea jk :

Ψ = exp(−a jk)(a jk)q/q!. (29)

The above yields

pσ j
=

∞

V j

∫ dW j(2π)−1
∞

−∞
∫ dQ exp(iQW j)

×exp { −
k
Σ a jk [1 − exp(−iσ jQv jk − Q2φ2

jk /2)] } . (30)

An extremum approximation is now valid: The main contribution topσ j
comes from nonoscillatory con-

tributions from the second exponential above, where its argument has a minimum, rendering it Gaussian.
Using
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φ jk < |v jk | << V j ≤ W j , (31)

pσ j
may be calculated as

pσ j
= π−1

2

∞

(σ j F j√ π/2)
∫ dz exp(−z2)

= 1
2 [1 − erf(σ j F j√ π/2)],

F j =
V j −

k
Σ a jk v jk

((π
k ′
Σ a jk ′(v

2
jk ′ + φ2

jk ′)))
1
2

. (32)

‘‘erf ’’ is the tabulated error function, simply related to the ‘‘normal probability function.’’ [102]FG
j is a

‘‘threshold factor,’’ aspσ j
increases from 0 to 1 between∞ >σ j F j > − ∞ sharply within the range of

F j ≈ 0.

Gaussian Ψ. The mean of a Poisson distribution ofq successes is

a jk = ψ e , (33)

e is the large number of repetitions of an ‘‘experiment,’’ likely correlated with the number of synaptic
knobs [14,96], andψ is the small probability of success, the average probability of release of one quan-
tum. For largea jk , a GaussianΨ′ representingΨ is defined with meana jk and variancea jk(1 −ψ ) [102],

Ψ′ =
[2a jk(1 −ψ )]−1

2 exp[−(q − a jk)2/(2a jk(1 −ψ ))]
∞

−[a jk /(2(1−ψ )]
1
2

∫ dz exp(−z2)

. (34)

For a large number of closely spaced values ofq, we can replace the sum by an integral,

q
Σ →

∞

0
∫ dq . (35)

Similar to the above derivation using the PoissonianΨ, we derive

v2
jk ′ → (1 −ψ )v2

jk ′ . (36)

Arbitrary Ψ. Examination of this derivation shows that we get the same result from the folding of
Γ andΨ, for a wide range of reasonableΨ peaked nearq = a jk . If

|σ j F j | < 1, (37)

then an asymptotic expression forpσ j
is

pσ j
≈

exp(−σ j F j)

exp F j + exp(−F j)
. (38)

This form of pσ j
exposes the linear dependence of the argument onσ j andF j . Note that tanh(2z/√ π) is

quite a good approximation to erf (z). Using the notation (z, tanh , erf), obtain: (0., 0. , 0.), (.01, .0113 ,
.0113), (.1, .1124 , .1125), (.5, .5111 , .5205), (1., .8105 , .8427), (2., .9783 , .9953), (2.5, .9929 , .9996), (
∞, 1. , 1.). For smallz obtain:

tanh(2z/√ π) = (2/√ π)(z − z3/2. 36+ z5/4. 63− z7/8. 98± . . .)

erf(z) = (2/√ π)(z − z3/3 + z5/10 − z7/42 ± . . .). (39)
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C. Mesoscopic domains

1. General description

As is found for most nonequilibrium systems, e.g., for lasers, chemical systems, fluids, and ecologi-
cal systems [1,8], a mesoscopic scale is required to formulate the statistical mechanics of the microscopic
system, from which the macroscopic scale can be developed [1]. The neocortex is particularly interesting
in this context in that a clear scale for the mesoscopic system exists, both anatomically (structurally) and
physiologically (functionally). ‘‘Minicolumns’’ of aboutN≈110 neurons (about 220 in the visual cortex)
comprise modular units vertically oriented relative to the warped and convoluted neocortical surface
throughout most, if not all, regions of the neocortex [59,61,62,64,103,104]. Clusters of about 100 neu-
rons have been deduced to be reasonable from other considerations as well [43]. Since the short-ranged
interactions between neurons take place within∼ 1 mm, which is the extent of a ‘‘macrocolumn’’ compris-
ing ∼ 103 minicolumns ofN ∗ ≈105 neurons, and since macrocolumns also exhibit rather specific informa-
tion-processing features, this theory has retained the divergence-convergence of macrocolumn--
minicolumn, efferent-afferent interactions by considering domains of minicolumns as having similar
synaptic interactions within the extent of a macrocolumn. This macrocolumnar-averaged minicolumn is
designated in this theory as a ‘‘mesocolumn.’’

This being the observed situation, it is interesting thatN≈102 is just the right order of magnitude to
permit a formal analysis using methods of mathematical physics just developed for statistical systems in
the late 1970s [27,30].N is small enough to permit nearest-neighbor interactions to be formulated, such
that interactions between mesocolumns are small enough to be considered gradient perturbations on oth-
erwise independent mesocolumnar firing states. This is consistent with rather continuous spatial gradient
interactions observed among columns [105], and with the basic hypothesis that nonrandom differentiation
of properties among broadly tuned individual neurons coexists with functional columnar averages repre-
senting superpositions of patterned information [106]. This is a definite mathematical convenience; other-
wise, a macrocolumn of∼ 103 minicolumns would have to be described by a system of minicolumns with
up to 16th-order next-nearest neighbors. (Consider 1000 minicolumns spread out in a two-dimensional
grid about 33 by 33 minicolumns, and focus attention on the center minicolumn.) Also,N is large
enough to permit the derived binomial distribution of afferent minicolumnar firing states to be well
approximated by a Gaussian distribution, a luxury not afforded an ‘‘average’’ neuron, even in this other-
wise similar physical context. Finally, mesocolumnar interactions are observed to take place via one to
several relays of neuronal interactions, so that their time scales are similarlyτ ≈ 5 − 10 msec.

Even after statistically shaping the microscopic system, the parameters of the mesoscopic system
are still macrocolumnar-averaged synaptic parameters, i.e., reflecting the statistics of millions of synapses
with regard to their chemical and electrical properties. Explicit laminar circuitry, and more complicated
synaptic interactions, e.g., dependent on all combinations of presynaptic and postsynaptic firings, can be
included without loss of detailed analysis [15].

The mathematical development of mesocolumns establishes a mesoscopic LagrangianL, which
may be considered as a ‘‘cost function’’ with variablesMG , ṀG , and∇ MG , and with parameters defined
by the macrocolumnar-averaged chemical-electrical entities developed below. (See Fig. 2.)

The Einstein summation convention is used for compactness, whereby any index appearing more
than once among factors in any term is assumed to be summed over, unless otherwise indicated by verti-
cal bars, e.g., |G|. The mesoscopic probability distributionP is given by the product of microscopic prob-
ability distributionspσ i

, constrained such that the aggregate mesoscopic excitatory firingsM E= Σ j ∈ E σ j ,
and the aggregate mesoscopic inhibitory firingsM I = Σ j ∈ I σ j .

P =
G
Π PG [MG(r; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 j ∈ E

Σ σ j − M E (r; t + τ )



δ



 j ∈ I
Σ σ j − M I (r; t + τ )





N

j
Π pσ j
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≈
G
Π (2πτ gGG)−1/2 exp(−Nτ LG) ,  (40)

where the final form is derived using the fact thatN > 100. G represents contributions from bothE andI
sources. This defines the Lagrangian, in terms of its first-moment driftsgG , its second-moment diffusion
matrix gGG′ , and its potentialV ′, all of which depend sensitively on threshold factorsFG ,

P≈(2πτ)−1/2g1/2 exp(−Nτ L) ,

L = (2N )−1(ṀG − gG)gGG′(ṀG′ − gG′) + MG JG /(2Nτ ) − V ′ ,

V ′ =
G
ΣV ′′ G

G′(ρ∇ MG′)2 ,

gG = −τ −1(MG + N G tanhFG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1N Gsech2FG

g = det(gGG′) ,

FG =
(V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′)

((π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)))1/2
,

aG
G′ =

1

2
AG

G′ + BG
G′ , (41)

where AG
G′ and BG

G′ are macrocolumnar-averaged interneuronal synaptic efficacies,vG
G′ andφG

G′ are aver-
aged means and variances of contributions to neuronal electric polarizations, and nearest-neighbor inter-
actionsV ′ are detailed in other SMNI papers [14,16].MG′ and N G′ in FG are afferent macrocolumnar
firings, scaled to efferent minicolumnar firings byN /N ∗ ∼ 10−3, whereN ∗ is the number of neurons in a
macrocolumn. Similarly,AG′

G andBG′
G have been scaled byN ∗ /N ∼ 103 to keepFG invariant. This scaling

is for convenience only. This mathematical description defines the mesocolumn concept introduced previ-
ously.

Figure 2.

At this stage, severe approximation in modeling is typically required in order to proceed towards
solutions. However, advantage can be taken of experimentally observed columnar structure to first
attempt to analytically scale the neuronal system into mesoscopic domains that are still relatively micro-
scopic compared to the macroscopic regions to be described [59-61,63,64,88]. For purposes of macro-
scopic description, the minicolumnar structure effectively spatially averages the neuronal interactions
within one to several firing periods.

The following development is proposed, which: (1) reasonably includes and averages over millions
of synaptic interactions that exist between groups of hundreds of neurons, (2) analytically establishes the
integrity of columnar domains and specifies their interactions, and (3) prepares the formulation of (1) and
(2) to foresee their analytic inclusion into studies of macroscopic regions.

For purposes of detailing anatomical or physiological properties of neurons, it is simply incorrect to
postulate an ‘‘average’’ neuron. However, for the purpose of macroscopic brain function, when consider-
ing millions of neurons, we repeat that it is reasonable to at least respect the incredibly similar modular
structure present in all regions of the neocortex [59,61,62,64,103,104], still allowing for the differentia-
tion among the laminar structure of individual modules and among neurons active at different temporal
and spatial scales.
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The neocortex has about 5× 1010 neurons distributed rather uniformly over approximately 5× 108

minicolumns. (The visual cortex has double this density.) Within these minicolumns, a ‘‘vertical’’ struc-
ture is defined perpendicular to six highly convoluted laminae of total thickness≈ 2. 5× 103 µm, princi-
pally by the efferent pyramidal cells. They exhibit vertical apical bundling of their dendrites in the upper
laminae, and some of their recurrent axonal collaterals also ascend to upper laminae. A number of other
fusiform, Martinotti, and stellate cells (granule cells in the sensory cortex and basket cells in the motor
cortex) also contribute to this vertical organization. In general, laminae I to IV are afferent and laminae V
and VI are efferent [70].

However, ‘‘horizontal’’ dendritic basal arborizations (treelike structures) of the pyramidal cells, tan-
gential to the laminae, horizontal axonal collaterals of the pyramidal cells, and horizontal processes of
stellate, Martinotti, and neonatal horizontal cells, all impart horizontal stratification to columnar interac-
tions. Therefore, although the columnar concept has anatomical and physiological support, the mini-
columnar boundaries are not so clearly defined [107]. If this stratification and other long-ranged afferent
input to groups of minicolumns are incorporated, then it is possible that future work may have to define a
physiological unit that encompasses a mesocolumn consisting of one to perhaps several minicolumns out-
putting to a macrocolumar extent. This study formalizes these circumstances by defining a mesocolumn
with extent greater than 102 µm, as an intermediate integral physiological unit encompassing one mini-
column. [See Fig. 1(b).] Dynamic nearest-neighbor interactions between mesocolumns are analytically
defined by their overlapping neuronal interactions, in accordance with the observed horizontal columnar
stratifications outlined above. [See Fig. 1(b’).] This approach permits future analytic modifications, as
differences between inter- and intra-minicolumnar interactions and circuitries become experimentally
clarified.

The resulting picture of columnar interactions is relatively simpler than a mass of interacting neu-
rons, but not so simple to the point of uselessness. A collection of average excitatory and inhibitory neu-
ronal firings, as depicted in Fig. 1(a’), now define a continuum of mesocolumnar firings. A zero-order
binomial distribution is easily intuited: LetG denoteE or I firings. Using the magnetic analogy, consider
E as a spin-up andI as a spin-down magnet. A column ofN G neurons can have a total firing ofNnG ,
within timeτ , wherenG is the fraction firing, ranging by 2’s between−N G ≤ NnG ≤ N G . (Count firing as
+1, nonfiring as −1.) For convenience, assumeNnG > 0, which arises fromNnG firings plus
1
2 (N G − NnG) cancelling pairs of firings and nonfirings. This gives a total of
1
2 (N G − NnG) + NnG = 1

2 (N G + NnG) firings andN G − 1
2 (N G + NnG) nonfirings. The degeneracy fac-

tor, as a function of the firing rateNnG , is the number of waysN G neurons can produce a given firing pat-
tern, i.e., the binomial distribution. Note that the binomial coefficient is unity for states of all firing or all
nonfiring, and peaks asN G!/[(N G /2)!]2 ≈ 2NG+1

2 (πN G)−1
2 for NnG =0. In the rangeNnG ≈ 0, there is

maximal degeneracy of information encoded by mesocolumnar firings. This argument analytically articu-
lates the meaning of ‘‘neuronal degeneracy’’ and also of the ubiquitous, often ambiguous ‘‘average neu-
ron.’’ Howev er, reasonable properties of mesocolumns, not of average neurons, are developed here for
macroscopic study.

The properly calculated distribution contains nearest-neighbor mesocolumnar interactions
expressed as spatial-derivative correction terms. This verifies that in macroscopic activity, where patterns
of mesocolumnar firing vary smoothly over neighboring mesocolumns, it is consistent to approximate
mesocolumnar interactions by including only second-order gradient correction terms. We calculate
macroscopic states of mesocolumnar firings, which are subject to these constraints. Excitatory and
inhibitory sensitivity to the neuronal parameters survives, similar to the sensitivity encountered by single
neurons.

Nearest-neighbor interactions are ‘‘induced’’ between minicolumns in the following way. The bulk
of short-ranged interactions engaging the neurons in a minicolumn do not take place within the minicol-
umn, but rather within a spatial extent the size of a macrocolumn, comprising roughly 1000 minicolumns.
If we consider the area of influence of a minicolumn as extending out to a macrocolumn’s reach, then the
area of interactions engaged by nearest-neighbor minicolumns has an offset circle of influence [16]. (See
Fig. 3.) Therefore, within one or two epochs spanning the refractory periods of a typical neuron, i.e.,
including the absolute refractory time after a firing during which no new spikes can be generated, and the
relative refractory period during which spikes can be produced only at a decreased sensitivity [71],
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interactions engaged by a given minicolumn can be extended out to areas of influence engaged by their
nearest neighbors. This is what physically is being calculated by a careful mathematical treatment of
overlapping interactions. In this manner, microscopic degrees of freedom of many types of neurons
(many of which are only crudely classified by the above definitions), synapses, neurotransmitters, cellular
architecture, and circuitries, may be practically weighted and averaged for macroscopic considerations.

Figure 3.

In the steps described above, the mesocolumnar conditional probability that a given mesocolumn
will fire is calculated, given its direct interactions with other mesocolumns just previously fired. Thus a
transition rate from one state of mesocolumnar firing to another state closely following the first state is
obtained. A string, or path of these conditional probabilities connects the mesocolumnar firings at one
time to the firing at any time afterwards. Many paths may link the same initial and final state. In this way
the long-time conditional probability of all possible mesocolumnar firings at any giv en time is obtained.
A Lagrangian is thereby derived which explicitly describes the time evolution of the neocortical region in
terms of its initial distribution of firings, and expressed in terms of its mesoscopic order parameters which
retain a functional form derived from microscopic neuronal interactions. A major benefit derived from
this formalism is a variational principle that permits extrema equations to be developed. This also makes
it possible to draw analogies to the ‘‘orienting field’’ and ‘‘temperature’’ of other collective systems.

2. Mesocolumns

Define a mesocolumn as a domain withN neurons, with stochastic memoryτ approximately equal
to 1 to severalτ n, the total refractory period of a typical neuron. Denote by indicesE and I two chemi-
cally and anatomically independent firing fields;G denotes either field. For this study we do not consider
dynamic synaptic modifications, which typically take place as a result of one to many epochs of macro-
scopic temporal activity effecting such plastic changes [87]. Therefore, take as independent of spacetime,

|v jk |, φ jk → vG
G′ , φG

G′ ,

V j , A jk , B jk → V G , AG
G′ , BG

G′ ,

1
2 AG

G′ + BG
G′ = aG

G′ . (42)

The greater importance ofI synapses (circuitry, proximity to soma) increases effective inhibitoryv jk and
a jk . Take

k
Σ v jk A jk ≈

G′
Σ vG

G′ A
G
G′ N

G′ ,

vG
E = −vG

I > 0 ,

N = N E + N I . (43)

Define NnG(r), a mesocolumn centered at the two-dimensional pointr, as the mesocolumnar aver-
age ofσ j . [See Figs. 1(b) and 1(b’).] Derive the conditional probabilityPG [MG(r; t + τ )|MG(r ′; t)] for
the firing transition to mesocolumnMG(r; t + τ ) ≡ NnG(r) at time t + τ , from all contributing meso-
columnsMG(r ′; t) ≡ NmG(r ′) associated with neuronsσ k at time t. MG represents contributions from
both M E andM I in FG

j :

G
Π PG [MG(r; t + τ )|MG(r ′; t)] =

σ j=±1
Σ δ (

j ∈ E
Σ σ j − NnE )δ (

j ∈ I
Σ σ j − NnI )

N

j
Π pσ j

. (44)

For r = r ′, the result of the mesoscopic averaging of independentE and I fields is easily intuited, as
explained above: The contribution ofN G av eraging±1 firings to establish a firingNnG has degeneracy
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



N G

1
2 (N G + nG N )





=
N G!

(( 1
2 (N G + nG N )))!(( 1

2 (N G − nG N )))!

−N G ≤ NnG = MG ≤ N G . (45)

A binomial distribution ofNnG is therefore anticipated, weighted by the averaged firing probability, with

FG
j → typical FG . (46)

However, the nearest-neighbor interactions must be calculated more precisely. Calculate

PG [MG(r; t + τ )|MG(r ′; t)] = (2π)−1
∞

−∞
∫ dQG exp(iNnGQG)

NG

j=1
Π CG

j ,

CG
j { FG

j [MG(r + ε )] } = cosh(FG
j + iQG)sechFG

j , r + ε = r ′ . (47)

ExpandCG
j aboutNnG(r), using directional derivativesD1,2

ε̂ ,

CG
j ≈ [1 + |ε |D1

ε̂ + 1
2 |ε |2D2

ε̂ ]CG(r),

ε̂ = ε /|ε | = (r ′ − r)/|r ′ − r| ,  (48)

retaining only first- and second-order derivatives ofM E andM I , and obtain

PG [MG(r; t + τ )|MG(r; t)] = (2π)−1
∞

−∞
∫ dQG exp(iNnGQG)[cosh(FG + iQG)sechFG ]NG

×
NG

j=1
Π(1 + dFG

j1K1 + dFG
j2K2),

K1 = sinh(iQG)sech(FG + iQG)sechFG ,

K2 = − 2K1 tanhFG , (49)

wheredFG
j1 anddFG

j2 are more involved algebraic expressions given in the SMNI literature [14].

To zero order, neglectK1 andK2 terms, express coshNG
as a sum of exponentials, expand as a bino-

mial, carry out the∫ dQG , and obtain

PG
0 [MG(t + τ )|MG(t)] = (1 + f G)−NG 


N G

λ G


( f G)λ G

,

f G = exp(−2FG),

λ G = [[ 1
2 (NnG + N G)]], (50)

where λ G is the greatest integer in the double brackets on the right-hand side. This is the anticipated
binomial distribution with mean

< λ G >0= N G exp(−FG)/[(exp(FG) + exp(−FG)],

< NnG >0= −N G tanhFG , (51)

and variance

< λ G λ G′ >0 − < λ G >0< λ G′ >0=
1

4
δ G

G′ N
Gsech2FG . (52)
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ThusnG andmG are defined as mesocolumnar averaged neurons, with their anticipated zero-order statisti-
cal firing weights. This explicitly demonstrates how sensitive <NnG >0 is to changes in sign of the
threshold factorFG in the step function tanhFG : tanh(±∞) = ±1, tanh(±1)= ±0. 76, tanh(0)=0. As
expected, in the absence of interactions, settingBG

G′ =0 and withNmG = − N G , then <NnG >0 = − N G ; no
firing occurs. As <NnG >0 ≥ 0 maintains <NnG >0 > − N G for all NmG , BG

G′ may be taken to simulate
nonsynaptic influences onNnG .

Consistency of the above scheme requires a definition of this long-wav elength scale. The condi-
tions placed on the above calculation are evaluated to be essentially

1 > (ρ∇ MG)2/(24N ), (53)

where ρ is the spatial extent of a minicolumn, which is consistent with this macroscopic
development [16]. That is, we can consistently define a nearest-neighbor mesocolumnar potential to take
into account interactions across thousands of minicolumns since the spatial changes in firings across mini-
columns are effectively small enough to permit this perturbative procedure. Calculations confirm the con-
sistency of this derivation of intercolumnar interactions with experimental observations.

The prototypical diffusion system describes Brownian motion, wherein the stochastic memory of
the macroscopic system depends only on the immediate past history of the system at one specified unit of
earlier time, and in a linearly functional manner [1,2]. Here, theG-space diffusion is expressed by a non-
linear dependence on this past firing state, and the stochastic memory must be carefully defined. Real-
space diffusion is represented by the gradient couplings. These fluctuations are physically important for
various excitations and possible critical behavior of second-order phase transitions between ordered and
disordered states, e.g., as in magnetic systems [4,108].

Figures 1(c) and 1(c’) illustrate how the mesocolumnar structure is a substrate for activity persisting
for hundreds of milliseconds over a spatial region containingΛ ≈ 5 × 105 mesocolumns, spanning≈ 10−2

of a total cortical area of 4× 1011 µm2. Extended regional activity is possible, whereby conglomerates of
10 to 30 regions may interact [59].

3. Mesocolumnar short-time propagator

To first order indF , the distribution functionp, of a giv en state of firingNnG occurring given the
earlier stateMG , can be defined in terms of variables that facilitate this development. For largeN G and
N G FG , this binomial distribution is asymptotically Gaussian [102]:

PG [MG(t + τ )|MG(t)] = (2πτ g′GG)
1
2 exp(−Nτ LG),

L′G = N−1[(NnG − MG)/τ − g′G ]2/(2g′GG),

g′G = −τ −1[MG + N G(1 + dFG) tanhFG ],

g′GG = τ −1N G(1 + dFG)sech2FG , (54)

where no sum is implied over repeated indices, and we useL′ to denote that we have not yet expanded the
dF terms.

Define time epochst in units ofτ , the total mesocolumnar refractory period, in terms of integer
s ≥ 0, from an initial timet0:

ts = sτ + t0 . (55)

For large time epochs to be considered, a continuum differential time scale is defined bydt ≤τ . Within τ ,
consistent with this long-time development and consistent with the previous mesocolumnar averaging of
neuronal interactions, define

L′G = N−1(ṀG − g′G)2/(2g′GG),

τ ṀG = τ dMG /dt = NnG − MG . (56)
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Then the Markovian mesocolumnar short-time propagator, the conditional probabilityp, is dev eloped for
short timesθ ≈ τ relative to any fixed timet:

p[M(t + θ ), t + θ ] = (2πθ)−1 ∫ dM(t)g′(t)1/2 exp { − N S[M(t + θ ), M(t)] } p[M(t), t],

dM = dM E dM I ,

g′ = (detg′)−1 = (g′EE g′ II )−1 , (57)

andS is defined by requiring that the system evolve by the principle of maximal probability:

S = min
t+θ

t
∫ dt ′ L′[Ṁ(t ′), M(t ′)],

L′ = L′E + L′ I . (58)

For smallθ , relative to the long times considered, withN >> 1, contributions top at t + θ are heavily
weighted within

|∆MG | = |MG(t + θ ) − MG(t)| <θ
1
2 , (59)

and therefore the quadratiċM terms inL′ must be carefully developed.

Finally, L′ is expanded aboutL, treatingdFG as perturbations.This yields Eq. (41) in terms ofV ′,
the nearest-neighbor potential.

4. Further development of mesocolumn model

As pointed out in this derivation [14,15], this microscopic scale itself represents a high aggregation
of submicroscopic scales, aggregating effects of tens of thousands of quanta of chemical transmitters as
they influence the 5× 10−3 µm scale of biomolecular leaflets of phospholipid molecules. This micro-
scopic scale has been aggregated up to the mesoscopic scale, again using the general property of probabil-
ity distributions, that the aggregated distributionPq of variableq is calculated from the joint distribution
Pq1q2

of underlying variablesq1 andq2,

Pq(q) = ∫ dq1dq2Pq1q2
(q1, q2)δ ((q − (q1 + q2))) .  (60)

To summarize up to this point, the mathematical development of mesocolumns establishes a meso-
scopic LagrangianL, defining the short-time probability distribution of firings in a minicolumn, com-
posed of∼ 102 neurons [59,61,62,64,103,104,109], given its just previous interactions with all other neu-
rons in its macrocolumnar surround.

P =
G
Π PG [MG(r; t + τ )|MG(r ′; t)]

=
σ j
Σδ



 jE
Σσ j − M E (r; t + τ )





δ


 jI
Σσ j − M I (r; t + τ )





N

j
Π pσ j

≈
G
Π (2πτ gGG)−1/2 exp(−Nτ LG) ,

P≈(2πτ)−1/2g1/2 exp(−Nτ L) ,  (61)

where L is defined in terms of its drift, diffusion, and potential, all of which depend sensitively on the
threshold factorFG ,
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FG =
V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′

{ π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′)} 1/2
. (62)

In the first SMNI papers, long-ranged interactions were included inL by adding potential terms simulat-
ing these constraints, i.e., addingJG MG to L, whereJG was numerically adjusted to account for these
interactions.

In order to more properly include long-ranged fibers, so that interactions among macrocolumns
may be included in the numerical studies, theJG terms are dropped, and more realistically replaced by a
modified threshold factorFG ,

FG =
V G − a|G|

G′ v|G|
G′ N G′ −

1

2
A|G|

G′ v|G|
G′ MG′ − a‡|G|

G′ v|G|
G′ N‡|G|′ −

1

2
A‡|G|

G′ v|G|
G′ M‡G′

((π[(v|G|
G′ )

2 + (φ|G|
G′ )

2](a|G|
G′ N G′ +

1

2
A|G|

G′ MG′ + a‡|G|
G′ N‡G′ +

1

2
A‡|G|

G′ M‡G′)))1/2
,

A‡I
E = A‡E

I = A‡I
I = B‡I

E = B‡E
I = B‡I

I = 0 ,

a‡E
E =

1

2
A‡E

E + B‡E
E . (63)

Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have
been added, whereN‡E might be on the order of 10% ofN ∗ : Nearly every pyramidal cell has an axon
branch that makes a cortico-cortical connection; i.e., the number of cortico-cortical fibers may be as high
as 1010 [45].

At this point, attention is also drawn to the similar algebraic structure of the threshold factors in
Eqs. (32) and (63), illustrating common forms of interactions between their entities, i.e., neurons and
columns of neurons, respectively. The nonlinear threshold factors are defined in terms of electrical-chem-
ical synaptic and neuronal parameters all lying within their experimentally observed ranges.

The net short-time probability distribution can be folded over and over (multiplied) in time incre-
ments∆t to yield a path-integral algorithm for calculating the long-time probability distribution [27].
This result depends on the use of the Markov property of our distribution, wherein the short-time evolu-
tion of the system at timet + τ depends only on the state of the system at timet. For example, in a very
compacted notation, labelingu intermediate time epochs bys, i.e., ts = t0 + s∆t, in the limitsu → ∞ and
∆t → 0, and assumingMt0 = M(t0) andMt = M(t ≡ tu+1) are fixed,

P[Mt |Mt0] = ∫ . . . ∫ dMt−∆t dMt−2∆t
. . .dMt0+∆t

×P[Mt |Mt−∆t ]P[Mt−∆t |Mt−2∆t ] . . . P[Mt0+∆t |Mt0] ,

P[Mt |Mt0] = ∫ . . . ∫ DM exp

−

u

s=0
Σ ∆t Ls




,

DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s∆t)−1/2dMs . (64)

Similarly, the short-time probability distributionP can be folded over and over at each pointr, to giv e a
field-theoretic Lagrangian,L(r, t). The above ‘‘prepoint-discretization’’ representation ofL derived for
the neocortex, e.g.,gG

s = gG [MG(t0 + s∆t)], disguises the Riemannian geometry induced by the noncon-
stant metricgGG′ , discussed further below.

D. Macroscopic development



Statistical Mechanics of Neocortical ... -22- Lester Ingber

1. General description

Inclusion of all the above microscopic and mesoscopic features of the neocortex permits a true non-
phenomenological Gaussian-Markovian formal development for macroscopic regions encompassing∼
5 × 103 macrocolumns of spatial extent∼ 5 × 109 µm2, albeit one that is still highly nonlinear and
nonequilibrium. The development of mesocolumnar domains presents conditional probability distribu-
tions for mesocolumnar firings with spatially coupled nearest-neighbor interactions. The macroscopic
spatial folding of these mesoscopic domains and their macroscopic temporal folding of tens to hundreds
of τ , with a resolution of at leastτ /N [16], yields a true path-integral formulation, in terms of a macro-
scopic Lagrangian possessing a variational principle for most-probable firing states. At this point in for-
mal development, no continuous-time approximation has yet been made; this is done, with clear justifica-
tion, only for some applications discussed below. Much of this algebra is greatly facilitated by, but does
not require, the use of Riemannian geometry to develop the nonlinear means, variances, and ‘‘potential’’
contributions to the Lagrangian [27].

This formalism can also be recast in several other representations [27], perhaps more familiar to
other investigators, and sometimes more useful for particular calculations. For example, a Hamiltonian
formulation can be obtained, one that does not permit simple ‘‘energy’’-type conservation approxima-
tions, but one that does permit the usual time-evolution picture. The time-dependent differential macro-
scopic probability distribution, or ‘‘propagator,’’ is found to satisfy a true Fokker-Planck second-order
partial-differential equation, expressing the rate of change of the distribution as the sum of contributions
from nonlinear drifts and diffusion in the space ofE and I firings. With respect to a reference stationary
state, a well-defined information, or ‘‘entropy,’’ can be formulated. Also, a set of Langevin rate equations
for E andI firings can be obtained, expressing the rate of change of firings as the sum of drifts and multi-
plicative noise. The most-probable firing states derived variationally from the path-integral Lagrangian
represent a reasonable average over the noise in the Langevin system; the noise cannot be indiscriminately
neglected. Because of the presence of multiplicative noise, the Langevin system differs in its Itoˆ (pre-
point) and Stratonovich (midpoint) discretizations. Furthermore, there exists a midpoint-discretized
covariant description, in terms of the Feynman LagrangianLF , which is defined such that (arbitrary) fluc-
tuations occur about solutions to the Euler-Lagrange variational equations. In contrast, the usual Itoˆ and
corresponding Stratonovich discretizations are defined such that the path integral reduces to the Fokker-
Planck equation in the weak-noise limit. These points are discussed further below, and more explicitly
derived in Appendix A.

2. Regional short-time propagator

Define theΛ-dimensional spatial vector̃Ms at timets,

M̃s = { Mν
s = Ms(r

ν ); ν = 1,. . . , Λ } ,

Mν
s = { MGν

s ; G = E, I } . (65)

For macroscopic space-time considerations, mesoscopicρ (spatial extent of a minicolumn) andτ scales
are measured bydr anddt. In the continuum limits ofr andt,

MGν
s → MG(r, t), ṀGν

s → dMG /dt,

(MG,ν +1 − MGν )/(rν +1 − rν ) → ∇ r MG . (66)

The previous development of mesocolumnar interactions via nearest-neighbor derivative couplings per-
mits the regional short-time propagatorP̃ to be developed in terms of the LagrangianL [110]:

P̃(M̃) = (2πθ)−Λ/2 ∫ d M̃ gΛ/2 exp[−N S̃(M̃)] P̃(M̃),

S̃ = min
t+θ

t
∫ dt ′L[Ṁ(t ′), M(t ′)],
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L = ΛΩ−1 ∫ d2r L , (67)

whereΩ is the area of the region considered, and

ΛΩ−1 ∫ d2r = ΛΩ−1 ∫ dx dy =
ρ→0

Λ→∞
lim

Λ

ν =1
Σ . (68)

The Euler-Lagrange (EL) equations, giving the extrema <<MG >>, are obtained fromδ S̃ =0 [111].
The Einstein convention is used to designate summation over repeated indices, and the following notation
for derivatives is used:

(. . .):z = d(. . .)/dz, z = { x, y } ,

(. . .),G = ∂(. . .)/∂MG ,

(. . .),Ġ = ∂(. . .)/∂(dMG /dt),

(. . .),G:z
= ∂(. . .)/∂(dMG /dz),

(. . .),∇ G = x̂∂(. . .)/∂(dMG /dx) + ŷ∂(. . .)/∂(dMG /dy). (69)

The EL equations are:

δ L = 0,

δG L = L,G −∇ ⋅ L,∇ G −L,Ġ:t = 0,

∇ ⋅ L,∇ G = L,G:z:z

= (L,G:z
,G′ )MG′

:z + (L,G:z
,G′:z )MG′

:zz,

L,Ġ:t = (L,Ġ ,G′ )ṀG′ + (L,Ġ ,Ġ′ )M̈G′ . (70)

This exhibits the extremum condition as a set of 12 first-order differential equations in the 12 variables{
MG , ṀG , M̈G , MG

:z, MG
:zz } in r − t = (x, y, t) space, with coefficients nonlinear inMG .

3. Regional long-time propagator

With P̃ properly defined by this space-time mesh, a path-integral formulation for the regional long-
time propagator at timet = (u + 1)θ + t0 is developed:

P̃[M̃(t)] d M̃(t) = ∫ . . . ∫ DM̃ exp(−N
t

t0
∫ dt ′L),

P̃[M̃(t0)] = δ (M̃ − M̃0),

DM̃ =
u+1

s=1
Π

Λ

ν =1
Π

E,I

G
Π(2πθ)−1

2 (gν
s )1/4dMGν

s . (71)

Note that, even forNτ L ≈ 1, N
t

t0
∫ dt ′ L is very large for macroscopically large time (t − t0) and macro-

scopic sizeΛ, demonstrating how extrema ofL define peaked maximum probability states. This
derivation can be viewed as containing the dynamics of macroscopic causal irreversibility, wherebyP̃ is
an unstable fixed point about which deviations from the extremum are greatly amplified [112].
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4. Riemannian geometry

A series of papers has recognized that a few of the most popular Riemannian-geometric transforma-
tion properties possessed by physics systems might be advantageous for a theory of cortical interactions,
i.e., most specifically in the cerebellum, and they hav e gone further to postulate this geometry as the
essential component of their theory [113-115].

As developed most notably by Einstein [116], Riemannian geometry has been firmly established as
a necessary component of the foundations of physics. There are still two viable camps of opinions, con-
sidering this geometry itself as a basic foundation [117], or considering the physical entities on which its
transformations operate as the basic foundation [118]. However, there is unanimous agreement that Rie-
mannian geometry is an essential theoretical construct to explain some observed physical phenomena.
The existence of Riemannian geometry also is a natural mathematical consequence of properties pos-
sessed by quite general stochastic systems, including those models of neural systems assumed or endorsed
by most investigators [119]. These properties have been stressed in the SMNI series of papers.

It is the purpose here to stress these general properties, and to make the short but important obser-
vation that there is indeed mathematical support on which to conjecture possible neural mechanisms that
might exist as a result of invariance under Riemannian-geometric transformations. This observation then
leads us back to the spirit, if not the essence, of other neuroscience investigators. However, whereas they
hypothesize a Riemannian metricbetween cortical regions, SMNIderives a Riemannian metricwithin
each cortical region, quite a physical distinction.

Corresponding to the differential-operator ordering problem in the Fokker-Plank equation is the dis-
cretization problem in the path integral and in the Langevin rate equations, both of which are equivalent
mathematical representations of the Fokker-Plank equation [27,29-31,120,121]. An overview of these
equations is required to at least note where the Riemannian geometry enters. Appendix A provides a brief
derivation.

Consider a multivariate system with variance a general nonlinear function of the variables. The
Einstein summation convention helps to compact the equations, whereby repeated indices in factors are to
be summed over.

The Itô(prepoint) discretization for a system of stochastic differential equations is defined by

ts ∈ [ts, ts + ∆t] ≡ [ts, ts+1] ,

M(ts) = M(ts) ,

dM(ts)/dt = M(ts+1) − M(ts) .  (72)

The stochastic equations are then written as

dMG /dt = f G + ĝG
i η i ,

i = 1,. . . , Ξ ,

G = 1,. . . , Θ , (73)

whereΞ and Θ are the (arbitrary) ranges ofi and G, respectively. These equations might be used to
describe the stochastic firing of mesocolumns, or if scaled byN−1, they could be used to describe ‘‘aver-
age’’ neurons. Once parameters are fit to data, as we report here using the integral probability distribution
representation below, these equations can be used to construct a brain simulation, e.g., to study the influ-
ence of changing contexts that cannot be so well incorporated into these equations.

The operator ordering (of the∂/∂MG operators) in the Fokker-Planck equation corresponding to
this discretization is

∂P

∂t
= VP +

∂(−gG P)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ ,
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gG = f G +
1

2
ĝG′

i
∂ĝG

i

∂MG′ ,

gGG′ = ĝG
i ĝG′

i . (74)

where a ‘‘potential’’V is present in some systems, e.g., sometimes used to explicitly include boundary
conditions. Above, a potential term was derived to describe nearest-neighbor interactions. As described
below, this partial-differential representation is very useful in determining the stability and duration of
STM.

The Feynman Lagrangian corresponding to this Fokker-Planck and set of Langevin equations may
be written in the midpoint discretization, corresponding to

M(ts) =
1

2
[M(ts+1) + M(ts)] . (75)

This discretization defines a covariant LagrangianLF that possesses a variational principle for arbitrary
noise, and that explicitly portrays the underlying Riemannian geometry induced by the metric tensorgGG′ ,
calculated to be the inverse of the covariance matrixgGG′ :

P = ∫ . . . ∫ DM exp

−

u

s=0
Σ ∆t LFs




,

DM = g1/2
0+

(2π∆t)−Θ/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

ι =1
Σ ∆MG

ι s , MG
0 = MG

t0 , MG
u+1 = MG

t ,

LF =
1

2
(dMG /dt − hG)gGG′(dMG′ /dt − hG′) +

1

2
hG

;G + R/6 − V ,

(. . .),G =
∂(. . .)

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(ts), ts] = det(gGG′)s , gs+ = gs[MG
s+1, ts] ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) ,  (76)

whereR is the Riemannian curvature, and we also have explicitly noted the discretization in the mesh of
MG

ι s by ι . If M is a field, e.g., also dependent on a spatial variablex discretized byν , then the variables
MG

s is increased toMGν
s , e.g., as we have prescribed for the macroscopic neocortex. The termR/6 in LF

includes a contribution ofR/12 from the WKB approximation to the same order of (∆t)3/2 [27].

A prepoint discretization for the same probability distributionP gives a much simpler algebraic
form,



Statistical Mechanics of Neocortical ... -26- Lester Ingber

M(ts) = M(ts) ,

L =
1

2
(dMG /dt − gG)gGG′(dMG′ /dt − gG′) − V , (77)

but the LagrangianL so specified does not satisfy a variational principle useful for moderate to large
noise; its associated variational principle only provides information useful in the weak-noise limit [122].
The neocortex presents us with a system of moderate noise. Still, this prepoint-discretized form has been
quite useful in all systems examined thus far, simply requiring a somewhat finer numerical mesh. Note
that although integrations are indicated over a huge number of independent variables, i.e., as denoted by
dMGν

s , the physical interpretation afforded by statistical mechanics makes these systems mathematically
and physically manageable.

It must be emphasized that the output need not be confined to complex algebraic forms or tables of
numbers. BecauseLF possesses a variational principle, sets of contour graphs, at different long-time
epochs of the path-integral ofP, integrated over all its variables at all intermediate times, give a visually
intuitive and accurate decision aid to view the dynamic evolution of the scenario. For example, this
Lagrangian approach permits a quantitative assessment of concepts usually only loosely defined.

Concept Lagrangian equivalent

Momentum ΠG =
∂LF

∂(∂MG /∂t)

Mass gGG′ =
∂LF

∂(∂MG /∂t)∂(∂MG′ /∂t)

Force
∂LF

∂MG

F = ma δ LF = 0 =
∂LF

∂MG
−

∂
∂t

∂LF

∂(∂MG /∂t)

(78)

These physical entities provide another form of intuitive, but quantitatively precise, presentation of these
analyses [38].

Using the Lagrangian formulation, a systematic numerical procedure has been developed for fitting
parameters in such stochastic nonlinear systems to data using methods of very fast simulated
re-annealing [58], and then integrating the path integral using a non-Monte Carlo technique especially
suited for nonlinear systems [123-125]. This methodology has been applied with success to military
modeling [36,126] and to financial markets [41,42], and we will be using it in this neocortical system to
correlate EEG to behavioral states [24].

The key issue is that Riemannian geometry is not required to derive the mathematics of multiplica-
tive Gaussian-Markovian systems. More interestingly, after this derivation, it can be demonstrated that
the space of random variables actually induces a Riemannian geometry, obtained explicitly by simply (in
hindsight) reorganizing terms in their defining equations. Then, the differential and path-integral repre-
sentations can be rewritten only in terms of functionsf (M) of random variablesM that are tensor invari-
ant under quite generally nonlinear point transformations, i.e.,M ′ = M ′(M).

The derived probability distribution also is invariant under an equivalence class of discretizations or
‘‘look both ways’’ interpretations, or any shade in between. This is not the same as incorporatingbona
fide physical delays, e.g., those that can give rise to EEG wav e propagation, in local circuits as empha-
sized in SMNI, or in long-ranged circuits [46].

The possibility of rewriting any theory or model of neural systems, which can be described by mul-
tiplicative Gaussian-Markovian dynamics, into an algebraic form invariant under Riemannian-geometric
transformations, does not require that neural systems develop or elect mechanisms to take advantage of
these transformations. However, the most obvious candidate for a physical consequence of invariance
under such transformations is the informationϒ, dev eloped in SMNI, sometimes loosely referred to as the
‘‘entropy’’ of the system. The invariance ofϒ implies that, although different cortical regions may have
different anatomical features and superficially appear to have quite different sets of firing states, they may
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indeed share, encode, or decode the same information using their own specific anatomy and physiology to
develop their own sets of firing states, related to each other by (nonlinear) transformations.

This possibility is in the original spirit of other authors, who were attracted to the use of Rieman-
nian geometry to explain how information in sensory regions might be transmitted to motor regions, albeit
that their neural properties differ in many respects. SMNI develops columnar interactions, and here too it
has been tempting to conjecture that local and global processing of columnar firing patterns is enhanced,
if not primarily effected, by transmitting blocks of information that are invariant under nonlinear transfor-
mations of firing states.

Ultimately, these issues must be decided by experiment. There is presently no evidence, pro or con,
to bear on the issue of the explicit Riemannian-geometric nature of information processing of neural fir-
ings. In principle, this could be accomplished by numerically fitting neuronal firing data to Lagrangians
describing regions behaviorally proven to be processing similar information, similar to fits to data pro-
posed for other artificial intelligence systems [127].

5. Information, potential, and long-ranged interactions

There have been attempts to use information as an index of EEG activity [128,129]. However,
these attempts have focused on the concept of “mutual information” to find correlations of EEG activity
under different electrodes. The SMNI approach at the outset recognizes that, for most brain states of late
latency, at least a subset of regions being measured by several electrodes is indeed to be considered as one
system, and their interactions are to be explicated by mathematical or physical modeling of the underlying
neuronal processes. Then, it is not relevant to compare joint distributions over a set of electrodes with
marginal distributions over individual electrodes. The concept of information, as expressed below, may
yet prove to be auseful valid measure to compare different subjects within certain categories.

With reference to a steady stateP(M̃), when it exists, an analytic definition of the information gain
ϒ̂ in stateP̃(M̃) is defined by [1,130]

ϒ̂[ P̃] = ∫ . . . ∫ DM̃ P̃ ln(P̃/P), (79)

where again a path integral is defined such that all intermediate-time values ofM̃ appearing in the folded
short-time distributions̃P are integrated over. This is quite general for any system that can be described
as Gaussian-Markovian [66], ev en if only in the short-time limit, e.g., the SMNI theory. (As time evolves,
the distribution likely no longer behaves in a Gaussian manner, and the apparent simplicity of the short-
time distribution must be supplanted by numerical calculations.) Althoughϒ̂ is well defined and useful
for discussing macroscopic neocortical activity, it may not be as useful for all applications. Certainly
many important local changes of information effected by the neocortical system are a function of the
microscopic degrees of freedom already averaged over for the purposes of this study. Howev er, it should
also be noted that the path integral represents an enormous number of spatial-temporal degrees of freedom
of the mesoscopic system. For example, even neglecting specific coding of presynaptic and postsynaptic
membranes, detailed neuronal circuitry, and the dynamics of temporal evolution, in a hypothetical region
of 109 neurons with 1013 synapses: considering each synapse as only conducting or not conducting, there
are≈ exp(7× 1012) possible synaptic combinations; considering only each neuron as firing or not firing,
there are≈ exp(7× 108) neuronal combinations; considering only each mesocolumn as having integral fir-
ings between−100 and 100, there are≈ exp(5× 107) mesocolumnar combinations.

The minimization ofϒ̂ with respect toP̃, with M̃ constrained to its (possibly multivalued) mean
trajectory <M̃ >, is formalized by the use of Lagrange parametersJG . This results in the Legendre trans-
form of ln P̃ [131], and is equivalent to the generating functionalϒ defined in the presence of extrinsic
sourcesJG [121,130]. In the neocortex, some of theseJG sources were used to specify firing constraints
imposed on a given region of mesocolumns from long-ranged extrinsic or inter-regional afferents, e.g.
from ipsilateral association, contralateral commissural, and thalamocortical processes:

ϒ̂[[min { P̃[< M̃ >J ] } ]] = ϒ[< M̃ >J ]

= − ln P̃(J) + ∫ dt ∫ d2r < M̃
G >J JG , (80)
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whereP̃(J) is calculated by replacingL by LJ :

LJ = L + MG JG /(2Nτ ). (81)

If J is distributed, thenDJ measures effects onLJ . A Hamiltonian representation, includingJG ṀG

interactions, is also readily derived [132]. This may be useful for describing long-ranged constraints that
directly affect rates of change of columnar firings. As noted above, more recent work proposes that the
long-ranged fibers be incorporated directly into theFG threshold factors, by including them initially in
the microscopic derivation [23,24].

ϒJ=0 is a proper potential, i.e., it possesses free-energy-like properties, having a true minimum
about (<M̃ >J − << M̃ >>), where <<M̃ >> is the extremum ofL obtained by maximizing̃P(M̃) [133].
Its lowest-order approximateϒ(0) gives the mean-field approximation:

ϒ(0) = S̃(< M̃ >). (82)

T , defined as the ‘‘kinetic-energy’’dF-independent part ofL, is scale independent ofN . There-
fore, the small scale of the neocortical system, about which the system fluctuates, is derived to beN−1, the
inverse of the number of neurons in a mesocolumn. This is interpreted as the effective ‘‘temperature’’ or
inherent noise of the system. Thus, STM defines a rather ‘‘hot’’ and volatile system, wherein the relevant
activity takes place on the same order asN−1. By contrast, some long-term-memory calculations
described below [15] are consistent with the interpretation of transpiring at a much lower temperature tak-
ing place in a locally more stable environment.

E. Relevance of chaos
Given the context of current studies in complex nonlinear systems [134], the question can be asked:

What if EEG has chaotic mechanisms that overshadow the above stochastic considerations? The real
issue is whether the scatter in data can be distinguished between being due to noise or chaos. In this
regard, we note that several studies have been proposed with regard to comparing chaos to simple filtered
(colored) noise [134,135]. Since we have previously derived the existence of multiplicative noise in neo-
cortical interactions, then the previous references must be generalized, such that we must investigate
whether EEG scatter can be distinguished from multiplicative noise.

A simple, coarse criteria used to determine whether chaos occurs in a dynamical system is to exam-
ine the nature of propagation of uncertainty, i.e., the variance. As an example of applying the above
framework, in our analysis of military exercise data [36], we were able to fit the short-time attrition
epochs (determined to be about 5 minutes from mesh considerations determined by the nature of the
Lagrangian) with short-time nonlinear Gaussian-Markovian probability distributions with a resolution
comparable to the spread in data. When we performed the long-time path-integral numerical calculations
from some point (spread) at the beginning of the battle, we found that we could readily find a form of the
Lagrangian that made physical sense and that also fit the multivariate variances as well as the means at
each point in time of the rest of the exercise interval. I.e., there was not any degree of hypersensitivity to
initial conditions that prevented us from ‘‘predicting’’ the long-time means and variances of the system.
Of course, since the system is dissipative, there is a strong tendency for all moments to diminish in time,
but in fact this exercise was of sufficiently modest duration (typically 1 to 2 h) that variances did increase
somewhat during the middle of the battle.

In summary, this battalion-regiment scale of battle does not seem to possess chaos. Similar to seri-
ous work undertaken in several fields [135,136], here too, the impulse to identify ‘‘chaos’’ in a complex
system has been premature. It is not supported by the facts, tentative as they are because of sparse data.
Of course, some other combat conditions might show some elements of chaos in some spatial-temporal
domain, and then the resolution of the analysis would determine the influence of that chaos in that sce-
nario.

Similar caution should be exercised regarding neocortical interactions. A more purposeful project
is to compare stochastic with deterministic models of data. Today much attention is turning to the use of
deterministic chaotic models for short-time predictions of systems. For example, if only short-time pre-
dictions are required, and if a deterministic chaotic model could well describe stochastic data within these
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epochs, then this model might be more computationally efficient instead of a more ‘‘correct’’ stochastic
model, which would be necessary for long-time predictions. The scales of time involved are of course
system dependent, and the deterministic chaotic modeling of data is still in its infancy [137].

Similarly, the above SMNI-derived distributions can be used to help determine if chaos is a viable
mechanism in EEG. While these studies are concerned with neocortical interactions, it is of interest to
note a series of experimental and theoretical studies of nonlinear dynamics of the olfactory bulb in small
mammals, in which distinctive EEG patterns on the bulb surface are shown to be associated with specific
odors [138-140]. These studies demonstrating chaos are very much model dependent, and as such it is
only fair to present the models as possessing chaos, not necessarily the actual physical system.

For example, it has been widely noted that the correlation dimension of data is difficult to calculate;
perhaps it is often not even a well-founded concept, e.g., since the EEG of event-related potentials is
likely nonstationary and very much context and subject dependent [141]. Its calculation, e.g., using the
popular Grassberger-Procaccia algorithm [142], even when supplemented with finer statistical tests [143]
and noise reduction techniques [144], may prove fruitful, but likely only as a sensitivity index relative to
shifting contexts and complementary to other models of EEG data.

IV. VERIFICATION OF SMNI

A. Short-term memory

1. General description

The most detailed and dramatic application of the theory outlined here is to predict stochastic
bounds for the phenomena of human STM capacity during focused selective attention [16,18,145-147],
transpiring on the order of tenths of a second to seconds, limited to the retention of 7± 2 items [148].
This is true even for apparently exceptional memory performers who, while they may be capable of more
efficient encoding and retrieval of STM, and while they may be more efficient in ‘‘chunking’’ larger pat-
terns of information into single items, nevertheless they also are limited to a STM capacity of 7± 2
items [149]. This ‘‘rule’’ is verified for acoustical STM, but for visual or semantic STM, which typically
require longer times for rehearsal in an hypothesized articulatory loop of individual items, STM capacity
appears to be limited to two to four [150]. This STM capacity-limited chunking phenomenon also has
been noted with items requiring varying depths and breadths of processing [145-147,151,152]. Another
interesting phenomenon of STM capacity explained by this theory is the primacy versus recency effect in
STM serial processing, wherein first-learned items are recalled most error-free, with last-learned items
still more error-free than those in the middle [153].

The basic assumption being made is that a pattern of neuronal firing that persists for manyτ cycles
is a candidate to store the ‘‘memory’’ of activity that gav e rise to this pattern. If several firing patterns can
simultaneously exist, then there is the capability of storing several memories. The short-time probability
distribution derived for the neocortex is the primary tool to seek such firing patterns. Since this distribu-
tion is exponentially sensitive to (minus) the Lagrangian functionL, it is more convenient to deal directly
with L, whereby its minima specify the most likely states that can be sustained at a given time. Then,
several important features of these patterned states can be investigated, as is done for other physical
systems [1], e.g., the evolution of these states, the ‘‘time of first passage’’ to jump from one state to
another state, hysteresis between states that have different depths (values of the Lagrangian at these local
minima), the stability of each state under external forces, etc.

We define the ‘‘stationary’’ (sometimes referred to as the ‘‘uniform’’) Lagrangian,L, by setting to
zero all temporal and spatial derivatives ofMG , e.g., as appearing in Eq. (61). Contour plots of the sta-
tionary Lagrangian,L, for typical synaptic parameters balanced between predominately inhibitory and
predominately excitatory firing states are examined at many scales when the background synaptic noise is
only modestly shifted to cause both efferent and afferent mesocolumnar firing states to have a common
most-probable firing, centered atM*G = MG = 0 [16]. Within the range of synaptic parameters consid-
ered, for values ofτ L∼ 10−2, this ‘‘centering’’ mechanism causes the appearance of from 5 to 10 or 11
extrema for values ofτ L on the order of∼ 10−2. The centering mechanism is achieved by modestly
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shifting BG
G′ to cause (V G − a|G|

G′ v|G|
G′ N G′) to go to zero, thereby driving the threshold factorFG to zero.

(Note that atFG = 0, the mesoscopic derivation of GaussianL breaks down, so that we can only consider
a finite region, heavily weighted byN , about this point.) In the absence of external constraints and this
centering mechanism, no stable minima are found; i.e., the system either shuts down, with no firings, or it
becomes epileptic, with maximal firings at the upper limits of excitatory or of excitatory and inhibitory
firings. The appearance of these extrema due to the centering mechanism is clearly dependent on the non-
linearities present in the derived Lagrangian, stressing competition and cooperation among excitatory and
inhibitory interactions at columnar as well as at neuronal scales. (See Fig. 4.)

Figure 4.

It must be stressed that these numbers of minima are determined when the resolution of the con-
tours is commensurate with the resolution of columnar firings, i.e., on the order of five to ten neuronal fir-
ings per columnar mesh point. If the resolution is forced to go down to one neuronal firing per columnar
mesh point, then typically only about half these minima are found. The coarser resolution, in fact, is the
one appropriate for numerical solution of the derived time-dependent path integral: Most important contri-
butions to the probability distributionP come from ranges of the time sliceθ and the ‘‘action’’N L, such
thatθ N L ≤ 1. By considering the contributions to the first and second moments of∆MG for small time
slicesθ , conditions on the time and variable meshes can be derived [123]. The time slice is determined
by θ ≤ (N L)−1 throughout the ranges ofMG giving the most important contributions to the probability
distributionP. The variable mesh, a function ofMG , is optimally chosen such that∆MG is measured by
the covariancegGG′ (diagonal in the neocortex due to the independence ofE and I chemical interactions)
or ∆MG ∼ (gGGθ )1/2 in the notation of the SMNI papers. ForN ∼ 102 andL∼ 10−2/τ , it is reasonable to pick
θ∼ τ . Then it is calculated that optimal meshes are∆M E ∼ 7 and∆M I ∼ 4, essentially the resolutions used
in the coarse contour plots.

Since the extrema of the Lagrangian appear to lie fairly well along a line in the two-dimensional
MG space, and since coefficients of slowly varyingdMG /dt terms in the nonstationaryL are noted to be
small perturbations onL [15], a solution to the stationary probability distribution was hypothesized to be
proportional to exp(−Φ/D), whereΦ = CN2L, the diffusionD = N /τ , andC is a constant. Surprisingly,
at least until more recent research has shown the generality of such results [154], along the line of the
extrema, forC≈1, this is determined to be an accurate solution to the full two-dimensional Fokker-Planck
equation [18]. A weak-noise high-barrier regime defined by∆Φ/D > 1, where∆Φ is the difference inΦ
from minima to maxima, can be assumed for further analyses [155]. This is extremely useful, as a linear
stability analysis shows that stability with respect to mesocolumnar fluctuations induced by several neu-
rons changing their firings is determined by the second derivatives of−Φ [156]; here this just measures
the parabolic curvature ofL at the extrema. Thus, all the extrema of the stationary Lagrangian are deter-
mined to be stable minima of the time-dependent dynamic system. Note however, that it is unlikely that a
true potential exists over allMG space [122,157].

This stationary solution is also useful for calculating the time of first passage,tvp, to fluctuate out of
a valley in one minimum over a peak to another minimum [156]. It turns out that the values ofτ L∼ 10−2

for which the minima exist are just right to givetvp on the order of tenths a second for about nine of the
minima when the maximum of 10 to 11 are present. The other minima givetvp on the order of many sec-
onds, which is large enough to cause hysteresis to dominate single jumps between other minima [16].
Thus, 7± 2 is the capacity of STM, for memories or new patterns that can be accessed in any order during
tenths of a second, all as observed experimentally [149]. When the number of neurons per minicolumn is
taken to be∼ 220, modeling the visual neocortex [16], then the minima become deeper and sharper, con-
sistent with sharper depth of processing, but several minima become isolated from the main group. This
effect might be responsible for the lowering of STM capacity for visual processing, as mentioned above.
I.e., the statistical time of passage between clusters becomes many hours, longer than STM, while the
time between minima within a cluster, now with only 2 to 4 minima per cluster, is on the order of tenths
of a second, as observed. This effect also serves to illustrate that the ‘‘practical’’ number of emergent
mesoscopic stable states does not necessarily increase with an increasing number of microscopic units.
(See Fig. 5.)
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Figure 5.

This estimate of the number of minima involves a very sensitive calculation. That is, ifN were a
factor of 10 larger, or ifτ L∼ 0. 1 at the minima, thentvp is on the order of hours instead of seconds,
becoming unrealistic for STM durations. Alternatively, iftvp were much smaller, i.e., less than∼ 5τ , this
case would be inconsistent with observed time scales necessary for formation of any memory trace [158].
In this context, it is noted that the threshold factor of the probability distribution scales as (N ∗ N )1/2,
demanding that both the macrocolumnar divergence and minicolumnar convergence of mesocolumnar fir-
ings be tested by these calculations.

These results pose serious problems for other models, such as ‘‘mean-field’’ theories or reductionist
doctrines. The mean-field approach essentially setsN = 1, andN ∗ is effectively taken by some investiga-
tors to be∼ 105, the size of a macrocolumn, but others even consider it to be as large as∼ 1010, the total
number of neurons in the neocortex. The reductionist doctrine claims that only circuitries among a few to
several neurons are responsible for a specific pattern of neocortical function, and this effectively sets
N ≈ N ∗ , on the order of a few neurons. It is hard to understand how both the capacity and duration of
STM can be explained by these other models, even assuming they were or could be derived with realistic
synaptic interactions and correct statistical dynamics.

The statistical nature of this storage and processing also explains the primacy versus recency effect:
The deepest minima of the Lagrangian are more likely accessed than the others of this probability distri-
bution, and these valleys are sharper than the others. I.e., they are more readily accessed and sustain their
patterns against fluctuations more accurately than the relatively more shallow minima. The more recent
memories or newer patterns may be presumed to be those having synaptic parameters more recently tuned
and/or more actively rehearsed. Thus, both the nonlinearities and the statistical nature of this theory are
tested by STM capacity. These insights have helped to correct the notions of some experimentalists who
claimed they could not find this effect in the visual cortex: Their experimental paradigms were testing the
visual cortex using rules of auditory capacity ( 7± 2), and therefore they were washing out this effect.

These calculations give experimental support to the derivation of the mesoscopic probability distri-
bution, yielding similar algebraic structures of the threshold factors in Eqs. (32) and (63), illustrating
common forms of interactions between their entities, i.e., neurons and columns of neurons, respectively.
The nonlinear threshold factors are defined in terms of electrical-chemical synaptic and neuronal parame-
ters all lying within their experimentally observed ranges.

2. STM calculation

Three cases of neuronal firings were considered [16]. Since STM duration is still long relative toτ ,
stationary solutions ofL, derived from L in Eq. (61), were investigated to determine how many stable
minima, << MG >>, may simultaneously exist within this duration. Also, individual mesocolumns were

studied. I.e., take the uniform limit oḟM
G

= 0 = ∇ MG . Although theṀ
G

= 0 limit should only be taken
for the midpoint-discretized LagrangianLF , this is a small difference here [16].

A model of dominant inhibition describes how minicolumnar firings are suppressed by their neigh-
boring minicolumns. For example, this could be effected by developing nearest-neighbor (NN) meso-
columnar interactions [15], but here the averaged effect is established by inhibitory mesocolumns (IC) by
setting AI

E = AE
I = 2AE

E = 0. 01N * /N . Since there appears to be relatively littleI − I connectivity, set
AI

I = 0. 0001N * /N . The background synaptic noise is taken to beBE
I = BI

E = 2BE
E = 10BI

I = 0. 002N * /N .
As minicolumns are observed to have∼ 110 neurons (the visual cortex appears to have approximately
twice this density) [59], and as there appear to be a predominance ofE over I neurons [46], here take
N E = 80 andN I = 30. UseN * /N = 103, JG = 0 (absence of long-ranged interactions), andV G , vG

G′ , and
φG

G′ as estimated previously, i.e.,V G = 10 mV, |vG
G′ | = 0. 1 mV, φG

G′ = 0. 1 mV. The ‘‘threshold factors’’
FG

IC for this IC model are then

F E
IC =

0. 5M I − 0. 25M E + 3. 0

π1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,
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F I
IC =

0. 005M I − 0. 5M E − 45. 8

π1/2(0. 001M I + 0. 1M E + 11. 2)1/2
. (83)

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly
the ‘‘step functions’’ tanhFG

IC in gG(t) changeMG(t) to MG(t + θ ). F I
IC will cause afferentM I to fire for

most of its values, asM I ∼ − N I tanhF I
IC will be positive for most values ofMG in F I

IC, which is already
weighted heavily with a term -45.8. Looking atF E

IC, it is seen that the relatively high positive values of
efferentM I require at least moderate values of positive efferentM E to cause firings of afferentM E .

The calculations presented here support the contention that the neocortex functions at multiple hier-
archies. While specific long-term memory (LTM) information is most likely coded at the microscopic
neuronal level, the mesoscopic scale most likely provides the context for multiple most-probable firing
patterns which process STM and which facilitate plastic synaptic encoding of LTM [15]. E.g.,τ L can
range from 0 to values greater than 103 [14,15]. However, realistic constraints on STM duration dictate
that only values ofτ L ≤ 0. 04 are of interest here. Detailed mesoscalar calculations demonstrate that only
this range exhibits sufficient nonlinear structure to support STM phenomena.

It is discovered that more minima ofL are created, or ‘‘restored,’’ if the numerator ofFG contains
terms only inMG , tending to centerL aboutMG = 0. Of course, any mechanism producing more as well
as deeper minima is statistically favored. However, this particular ‘‘centering’’ mechanism has plausible
support:MG(t + τ ) = 0 is the state of afferent firing with highest statistical weight. I.e., there are more
combinations of neuronal firings,σ j = ±1, yielding this state than any otherMG(t + τ ); e.g.,
∼ 2NG+1/2(πN G)−1/2 relative to the statesMG = ±N G . Similarly, M *G(t) is the state of efferent firing with
highest statistical weight. Therefore, it is natural to explore mechanisms that favor common highly
weighted efferent and afferent firings in ranges consistent with favorable firing threshold factorsFG≈0.
Another effect of this centering mechanism apparently is to shift minima ofL

G
closer together, permitting

them to often cooperate instead of compete.

Detailed calculations demonstrate that eitherL
E

or L
I

separately typically give rise to more multi-
ple minima,≈10, than permitted by their sumL at this resolution. This ‘‘loss’’ of minima apparently is an
interesting consequence ofE − I competition at the mesoscopic scale.On one hand, sinceL

G
scales as

N G /N for relatively large MG , L
E

dominates due to the larger M E in its meangE . On the other hand, for
relatively small MG , gG typically is small if there are several multiple minima inL

G
, since most of the

minima are found to cluster about the origin.Therefore,L
G

scales as (N G)−1 from the variances (gGG)−1,
andL

I
dominates for smallMG .

The centering effect of the IC model of dominant inhibition, labeled here as the IC′ model, is quite
easy for the neocortex to accommodate. For example, this can be accomplished simply by readjusting the
synaptic background noise fromBG

E to B′GE ,

B′GE =
V G − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

E vG
E N E

vG
E N G

(84)

for both G = E and G = I . This is modified straightforwardly when regional influences fromM‡E are
included, as in in Eq. (63). In general,BG

E andBG
I (and possiblyAG

E and AG
I due to actions of neuromod-

ulators, andJG or M‡E constraints from long-ranged fibers) are available to force the constant in the
numerator to zero, giving an extra degree(s) of freedom to this mechanism. (IfB′GE would be negative,
this leads to unphysical results in the square-root denominator ofFG . Here, in all examples where this
occurs, it is possible to instead find positiveB′GI to appropriately shift the numerator ofFG .) In this con-
text, it is experimentally observed that the synaptic sensitivity of neurons engaged in selective attention is
altered, presumably by the influence of chemical neuromodulators on postsynaptic neurons [159].

By this centering mechanism,B′EE = 1. 38 andB′ II = 15. 3, andFG
IC is transformed toFG

IC′ ,
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F E
IC′ =

0. 5M I − 0. 25M E

π1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

F I
IC′ =

0. 005M I − 0. 5M E

π1/2(0. 001M I + 0. 1M E + 20. 4)1/2
. (85)

Note that, aside from the enforced vanishing of the constant terms in the numerators ofFG
IC′ , the only

other change inFG
IC′ relative toFG

IC is to moderately affect the constant terms in the denominators. This
increases the number of minima ofτ LIC′ to 4. The two minima clustered close to the origin are no longer
discernible forτ LIC′ > 0. 03.

The other ‘‘extreme’’ of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (EC) by using the same parameters{ BG

G′ , vG
G′ ,φG

G′ , AI
I } as in the

IC model, but settingAE
E = 2AI

E = 2AE
I = 0. 01N * /N . This yields

F E
EC =

0. 25M I − 0. 5M E − 24. 5

π1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,

F I
EC =

0. 005M I − 0. 25M E − 25. 8

π1/2(0. 001M I + 0. 05M E + 7. 24)1/2
. (86)

The negative constant in the numerator ofF I
EC inhibits afferentM I firings. Although there is also a neg-

ative constant in the numerator ofF E
EC, the increased coefficient of M E (relative to its corresponding

value inF E
IC), and the fact thatM E can range up toN E = 80, readily permits excitatory firings throughout

most of the range ofM E . This permits three minima.

Applying the centering mechanism to EC,B′EI = 10. 2 andB′ II = 8. 62. The net effect inFG
EC′ , in

addition to removing the constant terms in the numerators ofFG
EC, is to change the constant terms in the

denominators: 12.3 inF E
EC is changed to 17.2 inF E

EC′ , and 7.24 inF I
EC is changed to 12.4 inF I

EC′ . Now
six prominent minima are possible along a line throughMG = 0, and two others are atMG = ±N G . Each
pair of minima above and below the M I = 0 axis merge into single minima forτ LEC′ > 0. 02, and these
lose resolution forτ LEC′ > 0. 03.

Now it is natural to examine a balanced case intermediate between IC and EC, labeled BC. This is
accomplished by changingAE

E = AI
E = AE

I = 0. 005N * /N . This yields

F E
BC =

0. 25M I − 0. 25M E − 4. 50

π1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
BC =

0. 005M I − 0. 25M E − 25. 8

π1/2(0. 001M I + 0. 050M E + 7. 24)1/2
. (87)

Three minima are possible, on the boundaries ofMG space.

Applying the centering mechanism to BC,B′EE = 0. 438 andB′ II = 8. 62. The net effect inFG
BC′ , in

addition to removing the constant terms in the numerators ofFG
BC, is to change the constant terms in the

denominators: 8.30 inF E
BC is changed to 7.40 inF E

BC′ , and 7.24 inF I
BC is changed to 12.4 inF I

BC′ . Now
ten minima are possible. The nine minima along the diagonal line lose resolution forτ LBC′ > 0. 01 above
M I = 0 and forτ LBC′ > 0. 02 below M I = 0.

The effects of using the full Feynman LagrangianLF were considered, including all the Rieman-
nian and other nonlinear corrections, discussed below. The net effect is to slightly raise the threshold at
which minima dissipate, to aboutτ LBC′ ≥ 0. 03, which is relevant for the duration of STM, discussed sub-
sequently. Howev er, note that the minima structure is essentially the same. (See Fig. 4.)

To demonstrate that multiple minima are not an effect of nonlinearities induced by the denomina-
tors of FG , the net effect in LBC′ by dropping theMG terms in the denominators ofFG

BC′ is such that the
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valleys of minima are only slightly increased. However, these denominators are still important contribu-
tions derived from synaptic interactions. E.g., even with the MG terms dropped, the denominators con-
tribute factors of∼ 1/5 toFG

BC′ .

If N * is scaled larger or smaller, this effectively scalesAG
G′ = A*G

G′ N * /N and BG
G′ = B*G

G′ N * /N , dis-
turbing the relatively sensitive balance that permits a few percent of efferent firings to affect their affer-
ents. Then, the number of possible minima is typically reduced to one or two. IfN is scaled larger or
smaller, the number of minima is altered and the duration of STM is affected, as discussed subsequently.
However, for N still in the range of a few hundred, the number of possible minima is not severely
reduced. The caseN = 220, e.g., the visual cortex was considered: For model BC′, the number of promi-
nent minima found is 11, but they form clusters, with higher peaks between clusters than between minima
within a cluster. Note that the largerN sharpens the minima and therefore the resolution of visual infor-
mation processing. (See Fig. 5.)

Note that the sharpness of the tanhFG step-function contribution to the mean firing is sensitive to a
factor of N

1
2 in FG . Additionally, the strength of coupling between mesocolumns scales asN3/2. Thus

the neuronal size of mesocolumns directly affects the breadth and depth of the information processing
capability of the neocortex. It is interesting to note that the human visual cortex, which may be assumed
to require the finest tuning in the neocortex, is unique in having twice the number of neurons per minicol-
umn than other regions of the neocortex [59].

These results are unchanged qualitatively for modest changes of any neocortical parameters. How-
ev er, it is reasonable to conjecture that more drastic abnormal changes in the neocortical parameters might
severely reduce the number of minima. This conjecture is based on calculations whereinFG do not pos-
sess the relatively sensitive balances allowing a few percent of efferent neurons to control firings in their
afferent neurons. In calculations using these unrealistic or abnormal parameters only one or two minima
survive.

3. STM stability and duration

The calculation of stability and time of duration in most likely states of firing starts by using the dif-
ferential-equation Hamiltonian formulation of the path-integral Lagrangian, called the Fokker-Planck
equation. For future reference, when EEG’s are discussed below in the context of considering a given
local minimum, note that the time-dependent differential macroscopic probability distributionP̃ = Πr P,
or ‘‘propagator,’’ is found to satisfy a true Fokker-Planck equation, but one with nonlinear drifts and diffu-
sions in the space ofE andI firings. The Fokker-Planck equation for the regionΩ is

∂P̃

∂t
≈Ω−1 ∫ d2r[

1

2
(gGG′ P̃),GG′ − (gG P̃),G + NV ′ P̃] ,

(. . .),G ≡ ∂(. . .)/∂MG . (88)

The true Fokker-Planck equation is actually more general, e.g., if long-ranged spatial structures are
included, where the independent variablesMG are fields which themselves may depend on space and time
coordinates. The above equation is derived in the nearest-neighbor approximation from the general equa-
tion using functional derivatives [16],

∂(. . .)/∂MG → δ (. . .)/δ MG ,

δ (. . .)/δ MG = (. . .),G − ∇ i(. . .),∇ iG + ∇ 2
i (. . .),∇ 2

i G , (89)

where we have used the compacted notation introduced previously [16].

An estimate of a stationary solutionPstat to the Fokker-Planck differential equation for the probabil-
ity distributionP of MG firings for an uncoupled mesocolumn, i.e.,V ′ = 0, is given by the stationary limit
of the short-time propagator,

Pstat≈Nstatg
1/2 exp(−CNτ L) ,
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g = det(gGG′)−1 ≡ det(gGG′) = gEE gII , (90)

whereNstat andC are constant factors. An estimate of the approximation made is estimated by seeking
values of constantsC, such that the stationary Fokker-Planck equation is satisfied exactly. Contour plots
of C versusMG demonstrate that there exists real positiveC which may only range from∼ 10−1 to ∼ 1, for
which there exists unbroken contours ofC which pass through or at least border the line of minima [18].
At each pointMG , this leaves a quadratic equation forC to be solved. Dropping theg1/2 factor results in
C not being real throughout the domain ofMG .

Thus we have defined a solution with potentialN2L = ∫ A dM , drift A, and diffusionN /τ . Stability

of transient solutions, defined forδ MG about a stationary state by

δ ṀG≈ − A,Gδ MG = −N2L,GGδ MG , (91)

is therefore equivalent to << M >> being a minimum ofL.

Since the minima of the Lagrangian lie deep in a valley along a line, the time for first passage,tvp,
is estimated in analogy to a one-dimensional system as [156]

tvp≈πN−2[|L,GG′(<< M >>p)| L,GG′(<< M >>v)]−1/2

×exp { CNτ [L(<< M >>p) − L(<< M >>v)] } , (92)

where << M >>v is the minimum at the valley of L in question, and << M >>p is the maximum at a peak
separating two minima. These equations are reasonable but crude estimates, and future numerical work
must be done to detail the extent of their validity.

The exponential factor can be quite large in some instances, and quite small in others. As noted
previously [15], differences inL from valleys to peaks are still large relative to the Riemannian correction
terms and relative to differential spatial-temporal contributions, thereby permitting this simpler analysis.
However, values ofτ L at maxima separating the far minima may be greater than 1, thereby yielding a
very largetvp, typical of many physical systems undergoing hysteresis [15]. Relaxation timestr about
this stationary state are estimated by |gG

,G |−1 [156], and are on the order ofτ .

For changes∆Z in synaptic parametersZ = { A*
jk , B*

jk ,V j , v jk ,φ jk , N *G } that transpire within a
∆t of several tenths of a second to seconds, e.g., during typical attention spans, hysteresis is more proba-
ble than simple jumps between minima if the following inequalities are satisfied. These estimates neces-
sarily require more details of the system in addition totr andtvp [156]:





tr ∆t N2∆L,G

∆Z





−1
N

2
>>

∆Z

∆t
>>





Nτ tvp ∆L

∆Z





−1

. (93)

For ∆Z approximately corresponding to a significant increase in the synaptic efficacy of one neuron per
minicolumn, this typically leads to

∆Z

tr
>>

∆Z

∆t
>>

∆Z

tvp
, (94)

where the last inequality may or may not hold, depending on the value oftvp.

Therefore, it is possible for hysteresis to be highly more probable than simple jump behavior to
another firing state. This provides a mechanism whereby an extended temporal firing pattern of informa-
tion can be processed beyond the time scale of relaxation periods, e.g., reverberation among several local
minima. It is to be expected that the effects ofJG(r; t) on ∆Z (r; t) create more complex examples of spa-
tial-temporal hysteresis. These sustaining mechanisms may serve to permit other biochemical processes
to store information for longer time periods as stable synaptic modifications, e.g., LTM. As detailed
previously [15], changes in synaptic parameters∆Z may duplicate the effects ofJG , providing a mecha-
nism whereby columnar firings encode long-range firing constraints. If this encoding of firing patterns
can establish itself on short enough time scales, then columnar coding of long-range firings could be a
precursor mechanism initiating the centering mechanism above, especially across large regions of the
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neocortex. Then, there would be a more uniform gradation of mechanism(s) establishing STM and LTM.

However, to address the issue of limited capacity of STM, it is reasonable to require that within
time spans of tenths of a second to tens of seconds, simple jumps among minima are more probable than
hysteresis. This permits all minima to be readily accessible during STM duration, in any ordering [149],
at least more so than if hysteresis were more probable. In agreement with this empirical requirement, as
detailed in the previous studies, it is found thatτ [L(<< M >>p) − L(<< M >>v)]∼ 0. 01—0. 03 for these
models using empirical values for synaptic parameters. Then for |τ L,GG′ |∼ 10−3, tvp∼ 10τ —100τ , on the
order of several tenths of a second to a second. Use of the full Feynman LagrangianLF increasestvp
slightly. For these relatively shorttvp the second inequality above isviolated, and simple jumps are more
probable than hysteresis, as required for STM.

Under conditions of serial processing, the deeper valleys of L representing the more likely firing
states will be occupied first. In all cases considered here, some valleys are deeper than the others. This
implies that the last several items in STM should be harder to encode (learn) and retain, with the possible
exception of the last one or two items, which represent the most recent shifting of firing patternsMG to
these minima << M >>v of L. These conclusions are consistent with empirical observations, and are
obtained independent of any other rehearsal mechanisms that may exist.

Calculations in these models establish that the prefactor most often is∼ τ . Howev er, points close to
the cornersMG = ±(N E , N I ) hav e much more rapid variations. Therefore, minima at these corners, even
whenτ L(<< M >>p)∼ 0. 01—0. 03, because of their sharp peaks, typically havetvp on the order of tens of
seconds to jump to minima clustered on the diagonal. This is within the range where hysteresis is more
probable for these minima.Therefore, minima at the corners ofMG space most likely do not contribute
to STM, bringing the number of available minima down to 7± 2 as empirically observed.

B. EEG dispersion relations

1. General description

Linear expansions about specific extrema, specified by the Euler-Lagrange variational equations,
permit the development of stability analyses and dispersion relations in frequency-wav e-number
space [14,15,17]. Of course, such linear expansions are justified only after the nonlinear problem, e.g.,
such as that encountered for STM, is solved for locations of minima. It is noted in this regard that the cor-
responding wav e propagation velocities pace interactions over sev eral minicolumns, in order to be of
magnitude sufficient to permit simultaneous information processing within∼ 10−1 sec with interactions
mediated by long-ranged fibers possessing much greater propagation velocities∼ 600−900 cm/sec [17].
E.g., detailed auditory and visual processing can feed information to the association cortex where it can
be processed simultaneously, possibly giving feedback to the primary sensory regions. The propagation
velocities calculated by SMNI,∼ 1 cm/sec, also are consistent with observed movements of attention [160]
and of hallucinations [161] across the visual field. This strongly suggests that nearest-neighbor meso-
columnar interactions as developed here are an important mechanism in these movements. These veloci-
ties scale strongly with the values ofMG minima, increasing with their distance fromMG ∼ 0, the range of
maximal firing combinations. This effect remains to be further investigated; the appropriate calculations
should test the nearest-neighbor spatial dependence of the SMNI theory.

These mesoscopic dispersion relations also are consistent with global macroscopic dispersion rela-
tions derived and fitted to EEG data [46], yielding oscillatory solutions consistent with theα rhythm, i.e.,
ω ≈ 102 sec−1, equivalent toν = ω/(2π) ≈ 16 cps (Hz). This suggests that these complementary local and
global theories may be confluent, considered as a joint set of dispersion relations evolving from the deter-
ministic limit of a joint Lagrangian, referred to as the ‘‘equations of motion,’’ but linearly simplified in
neighborhoods of minima of the stationary Lagrangian.

Other researchers have dev eloped quite different approaches to investigating macroscopic neocorti-
cal activity, e.g., stressing that systematics of rhythmic EEG (α rhythm, sleepδ , etc.) can be modeled by
resonant modes of macroscopic dipole-layered firing patterns of the neocortex [46,48,49,52]. These reso-
nances, in linearized coupled excitatory-inhibitory spatial-temporal integral equations describing dipole-
layered sources, give rise to a macroscopic dispersion relation relating firing frequencies to spatial wav e
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vectors, consistent with experimental observations. While many other investigators also accept dipole
layers to model EEG activity, at least to the extent of recognizing activity perpendicular to laminae, they
also demonstrate that there are respectable candidates for mechanisms that might fundamentally be
responsible for macroscopic activity, other than those proposed here which detail synaptic dynamics of
mesocolumnar interactions [11,162-167]. For example, given the present lack of experimental knowl-
edge, it is possible to formulate macroscopic neocortical activity in terms of statistics of either membrane
or synaptic microscopic neuronal activities, albeit that these two are obviously dependent on each
other [168]. Therefore, the results of this statistical theory derived earlier [17] might be interpreted either
as suggesting that mesocolumnar activity instigates macroscopic activity, or rather as suggesting that
mesocolumnar activity strongly interacts with ongoing macroscopic activity that is instigated or sustained
by other mechanisms.

The two approaches outlined above, i.e., local mesocolumnar versus global nonmesocolumnar, giv e
rise to the important alternative conjectures suggested previously in this paper. Other studies also have
proposed that EEG may be due to a combination of short-ranged and long-ranged interactions, which
combine to form a single dispersion relation with multiple branches [44].

It is plausible that studies of the origin of rhythmic EEG will give direct insight into related mecha-
nisms underlying evoked potentials. However, in contrast to theα rhythm and other gross EEG phenom-
ena being gauges of general alertness to process information, the time-locked averaged evoked potentials
appear to be a gauge of more selective attention to information being processed. Therefore, to derive a
plausible picture of the nature of evoked potentials, it is more likely that more details of local interaction
among columnar interactions must be included, such as those given below.

The first SMNI approach to scalp EEG assumed that the Euler-Lagrange variational limit of the
stochastic Lagrangian was a suitable averaging procedure over masses of neurons contributing to this rela-
tively coarse spatial phenomenon [17].

It should be noted that at this point in the development of our ‘bottom-up’’ description we have
overlapped with our initial ‘‘top-down’’ description as described in Sec. II, and therefore have provided a
relatively first-principles approach to better understand these issues. We also show that most likely trajec-
tories of the mesoscopic probability distribution, representing averages over columnar domains, give a
description of the systematics of macroscopic EEG in accordance with experimental observations.

2. Euler-Lagrange variational equations

This calculation begins by considering the LagrangianLF , the Feynman midpoint-discretized
Lagrangian. The Euler-Lagrange variational equation associated withLF leads to a set of 12 coupled
first-order differential equations, with coefficients nonlinear inMG , in the 12 variables {
MG , ṀG , M̈G , ∇ MG , ∇ 2MG } in (r; t) space. In the neighborhood of extrema << MG >>, LF can be
expanded as a Ginzburg-Landau polynomial, i.e., in powers ofM E andM I . To inv estigate first-order lin-
ear oscillatory states, only powers up to 2 in each variable are kept, and from this the variational principle
leads to a relatively simple set of coupled linear differential equations with constant coefficients:

0 = δ LF = LF ,Ġ:t − δG LF

≈ − f |G|M̈
|G| + f 1

G ṀG¬

− g|G|∇
2M |G| + b|G|M

|G| + b MG¬
, G¬ ≠ G ,

(. . .),Ġ:t = (. . .),ĠG′ Ṁ
G′ + (. . .),ĠĠ′ M̈

G′ ,

MG = MG− << MG >> , f 1
E = − f 1

I ≡ f . (95)

These equations are then Fourier transformed and the resulting dispersion relation is examined to
determine for which values of the synaptic parameters and of the normalized wav e-numberξ , the conju-
gate variable tor, can oscillatory states,ω(ξ ), persist. E.g., solutions are sought of the form

MG = ReMG
oscexp[−i(ξ ⋅ r − ωt)] ,



Statistical Mechanics of Neocortical ... -38- Lester Ingber

MG
osc(r, t) = ∫ d2ξ dω M̂

G
osc(ξ ,ω) exp[i(ξ ⋅ r − ωt)] . (96)

For instance, a typical example is specified by extrinsic sourcesJE = −2. 63 and JI = 4. 94,
N E = 125, N I = 25, V G = 10 mV, AG

E = 1. 75, AG
I = 1. 25, BG

G′ = 0. 25, andvG
G′ = φG

G′ = 0. 1 mV. The
synaptic parameters are within observed ranges [72], and theJG ’s are just those values required to solve
the Euler-Lagrange equations at the selected values ofMG . The global minimum is atM E = 25 and
M I = 5. This set of conditions yields (dispersive) dispersion relations

ωτ = ± { − 1. 86+ 2. 38(ξ ρ )2; −1. 25i + 1. 51i(ξ ρ )2 } , (97)

whereξ = |ξ |. The propagation velocity defined bydω/dξ is ∼ 1 cm/sec, taking typical wav enumbersξ to
correspond to macrocolumnar distances∼ 30ρ. Calculated frequenciesω are on the order of EEG fre-
quencies∼ 102 sec−1, equivalent toν = ω/(2π)= 16 cps (Hz). These mesoscopic propagation velocities
permit processing over sev eral minicolumns∼ 10−1 cm, simultaneous with the processing of mesoscopic
interactions over tens of centimeters via association fibers with propagation velocities∼ 600−900 cm/sec.
I.e., both intraregional and interregional information processing can occur within∼ 10−1 sec. Note that
this propagation velocity is not ‘‘slow’’: Visual selective attention moves at∼ 8 msec/deg [160], which is∼
1/2 mm/sec, if a macrocolumn of∼ mm2 is assumed to span 180 deg. This suggests that nearest-neighbor
interactions play some part in disengaging and orienting selective attention.

C. Calculating synaptic modifications
Perturbations of the synaptic and neuronal parameters used in SMNI present an approach to the dis-

cussion of plastic synaptic modifications. These changes are associated with new firing minima and their
associated sets of eigenfunctions, related to learning new sets of information. This is especially true dur-
ing development of synaptic formation, at a rate determined by successive small increments of these per-
turbations. Changes in the coefficients of gradient couplings also represent shifts in oscillatory states and
in the degree of interaction between columnar firings.

To further clarify this methodology, an explicit calculation is given, demonstrating how a small
increment of extrinsically imposed firing activity can be learned and stored as plastic synaptic modifica-
tions. Moderate changes in efficacies of even one neuron per mesocolumn give rise to moderate changes
in macroscopic activity; therefore, macroscopic measurements can, in this theory, be sensitive to some
microscopic details of neocortical interactions. Although most researchers believe that long-term potenti-
ation (LTP) at synaptic sites is responsible for long-term memory (LTM) phenomena, they still are not as
certain whether these changes take place predominantly at the presynaptic or postsynaptic sites [169].
Therefore, the SMNI study described below [15], looking at induced mesocolumnar effects from these
alternative mechanisms, is still relevant.

Consider the change in probability of firing of neuronj, pσ j
, associated with modifications of the

neuronal parameters. Changes can occur in some parametersZ , where

Z ∈ { A∗
jk , B∗

jk , v jk ,φ jk } , (98)

which lead to

∆Z ∈ {  ∆ A∗
jk , ∆B∗

jk , ∆v jk , ∆φ jk } . (99)

Now consider changes∆Z in these parametersZ that can be independent or proportional to the
(repeated) firing of neuron(s) postsynaptically (j) or presynaptically (k).

∆Z = ∆Z1 + σ k∆Z2 + σ kσ j∆Z3 + σ j∆Z4 . (100)

All these∆Z effects collect to modify the threshold factorF j derived for unit microscopic neuronal firing,

F j → F j ′ = F j + (∆F j1 + ∆F j2) + σ j(∆F j3 + ∆F j4) ,

∆F j1,2,3,4= (∂F /∂Z j1,2,3,4)∆Z j1,2,3,4 . (101)

To order∆F j1,2,3,4, so that the normalization of probabilityp+ + p− = 1 is preserved,pσ j
is modified as
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pσ j
→ pσ j

′ =
exp(σ j F j ′′ )

expF j ′′′ + exp(−F j ′′′ )
,

F j ′′ = F j + ∆F j1 + ∆F j2 + (∆F j3 + ∆F j4) tanhF j ,

F j ′′′ = F j + ∆F j1 + ∆F j2 + ∆F j3 + ∆F j4 . (102)

(This form of pσ j
′ corrects that given in a previous paper [15], changing the sign of the tanh term and

removing this factor inF j ′′′ , thereby insuring that probability is conserved to order∆Z .)

Thus, the change in response of a single neuron associated with its synaptic modifications is a
highly nonlinear function of the synaptic parameters{ Z , ∆Z } . Nonlinearities persist even after meso-
columnar averaging, but then, because of the derived variational principle, explicit calculations can be
performed to portray most-probable changes in patterns of columnar firings associated with changes in
the Lagrangian:

LF → LF + ∆LF≈LF +
Z
Σ ∂LF

∂Z
∆Z . (103)

To emphasize the point that linear-response models of neuronal activity should be scrutinized with
respect to the underlying biophysics and mathematics, which they are assuming to be linear, the following
equation is shown to represent the first-order change inL associated with modifications of only the
columnar averaged efficaciesAG

G′ , where sums are to taken only overG′ terms:

∆L = ∆FG(2N G Nτ )−1 { [(N G)2 + (τ ṀG + MG)2] sinh(2FG) + 2N G(τ ṀG + MG) cosh(2FG) }

−∆AG
G′(∂V ′′ G

G′ /∂AG
G′)(ρ∇ MG′)2 ,

∆FG = −(2FG
d )−1∆AG

G′ [v
G
G′(MG′ + N G′) + π(vG

G′
2 + φG

G′
2
)(MG′ + N G′)FG /(2FG

d )] ,

FG
d = [π(vG

G′
2 + φG

G′
2
)(AG

G′ M
G′ /2 + aG

G′ N
G′)]1/2 ,

∆AG
G′ = ∆AG

G′1 + ∆AG
G′2 + (∆AG

G′3 + ∆AG
G′4) tanhFG . (104)

Examining∆AG
G′ , it is clear that even after mesocolumnar averaging, groups of synaptic modifica-

tions dependent on postsynaptic firings can be discerned from groups of modifications independent of this
activity, by the additional tanhFG factor. Howev er, since

σ k(1 + σ k) = 1 + σ k , (105)

mesocolumnar averaging washes out discrimination of∆AG
G′1,3 from ∆AG

G′2,4 unless these possess addi-
tional distinguishing functional features. Similar calculations are proposed to further investigate phenom-
ena as encountered in habituation [170].

For instance, a system considered wasN E = 125, N I = 25, V G = 10 mV, AG
E = 1. 25, AG

I = 1. 75,
BG

G′ = 0. 25,vG
G′ = φG

G′ = 0. 1 mV, andJG = 0 (no long-ranged connectivity) [15]. This system was synap-
tically modified about its most probable firing state by∆AEG

E3 = −0. 01 tanhFG , e.g., numerically equiv-
alent to a substantial change inA jk of oneE neuron per mesocolumn in a region. Then, the change in the
uniform Lagrangian was

τ ∆L≈ − 4. 87× 10−4 + 3. 99× 10−6(M E− << M E >>)

−9. 80× 10−5(M I − << M I >>) .  (106)

The shifts in the most-probable firing state << MG >> associated with this synaptic modification are
observed to be algebraically equivalent, within a constant increment toL, to those that could also have
been caused by extrinsic stimulations measured byJE /(2τ N ) = 3. 99× 10−6 and
JI /(2τ N ) = −9. 80× 10−5. This shifts << MG >> and L, (<< M E >> , << M I >> , L),
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(89. 02, 23. 14; 1. 59× 10−3) → (89. 20, 23. 19;−3. 25× 10−4) .  (107)

Changes in the coefficients of spatial derivatives [(∇ M E )2||(∇ M I )2] are

[−5. 33× 10−5||9. 65× 10−4] → [−5. 72× 10−5||9. 65× 10−4] .  (108)

Changes in the coefficients of temporal derivatives [(Ṁ E )2: (Ṁ I )2: : Ṁ E : Ṁ I ] are

[4. 81× 10−5: 1. 09× 10−3: : 5. 38× 10−4: −6. 14× 10−4]

→ [4. 82× 10−5: 1. 10× 10−3: : 5. 43× 10−4: −5. 28× 10−4] .  (109)

From the Euler-Lagrange equations,ωτ is shifted,

± { 0. 392i − 1. 68i(ξ ρ )2; 1. 01i − 0. 541i(ξ ρ )2 }

→ ±  { 0. 396i − 1. 79i(ξ ρ )2; 1. 01i − 0. 550i(ξ ρ )2 } . (110)

These numerical estimates suggest that the sensitivity of mesocolumnar statistics to microscopic dynam-
ics barely might be within the present range of experimental determination, e.g., to changes induced by
small clusters of neurons. This calculation also represents an explicit demonstration of how extrinsic con-
straints on firing patterns can be learned and coded by plastic synaptic modifications. In general, there
exist (a set of) synaptic modifications∆Z (r; t ′) that reproduce the most probable firing states <<M̃(t ′) >>
induced byJG(r; t ′).

Given the above, a precise scenario of neocortical information processing is thereby detailed, from
coding of long-ranged firings from stimuli external to a macrocolumn by short-ranged mesocolumnar fir-
ings, to STM storage via hysteresis, and to LTM storage via plastic deformation [15]. This scenario
enables SMNI to place some statistical bounds on such mechanisms. For example, as calculated in detail,
some STM items can be held for long enough epochs via hysteresis [15,16], from which plastic synaptic
changes can be used to store these in LTM [15]. In contrast to the appearance of multiple minima in the
interior of MG space under conditions of realistic but sensitive adjustment of synaptic interactions, which
are candidates for multiple STM [16], typically one or at most a few minima appear at the corners ofMG

space. This typically occurs when the system likely has minima outside the physical boundary. These
boundary states correspond to allG neurons collectively firing or not firing [15]. When these corner min-
ima are present, they are typically much deeper than those found for the interior minima, corresponding to
longer-lived states with properties of hysteresis rather than simple jumps. These corner minima are there-
fore candidates for LTM phenomena. Similar properties of corner minima in simpler models of the neo-
cortex hav e been shown to satisfy properties desirable for multistable perception and for collective com-
putational properties [171].

V. DIRECT FIT OF SMNI TO EEG

A. Data collection
The project uses the collection of EEG spontaneous and averaged evoked potential (AEP) data from

a multi-electrode array under a variety of conditions. We are fitting data being collected at several centers
in the United States, sponsored by the National Institute on Alcohol Abuse and Alcoholism (NIAAA)
project [172,173]. Another paper to appear in the neuroscience literature will address issues of neurosci-
entific and clinical import. These experiments, performed on carefully selected sets of subjects, suggest a
genetic predisposition to alcoholism that is strongly correlated to EEG AEP responses to patterned tar-
gets.

For the purposes of this paper, it suffices to explain that we fit data obtained from 19 electrode sites
on each of 49 subjects, of which 25 are considered to be high risk with respect to a propensity to alco-
holism, and 24 are considered to be low risk. Each subject participated in EEG-monitored pattern-match-
ing tasks. The time epoch during which the P300 EP exists was extracted (the P300 EP is named for its
appearance over 300 msec after an appropriate stimulus), yielding 191 time epochs of 5.2 msec for each
of the above circumstances. Each set of 192 pieces of data is obtained by having the subject perform
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similar pattern-matching tasks, e.g., about 100 such tasks, time-locking the EEG responses to the initia-
tion of the task, and averaging over the set of tasks for each time epoch.

B. Algebraic development
We take Eq. (10) as the basic probability distribution to fit this data. This can be developed

straightforwardly usingδ (Z ), given in Eq. (23), andP[MG(t + τ )|MG(t)], given in Eq. (41).

Alternately, advantage can be taken of the prepoint discretization. We also take advantage of and
extend the results gained for the STM analysis discussed previously. Accordingly, we assume a linear
relationship (about minima to be fit to data) between theMG firing states and the measured scalp potential
Φν , at a giv en electrode siteν representing a macroscopic region of neuronal activity:

Φν − φ = aM E + bM I , (111)

where { φ, a, b } are constants determined for each electrode site. In the prepoint discretization, the
postpointMG(t + ∆t) moments are given by

m ≡< Φν − φ >= a < M E > +b < M I >

= agE + bgI ,

σ 2 ≡< (Φν − φ)2 > − < Φν − φ >2= a2gEE + b2gII , (112)

where theMG-space driftsgG , and diffusionsgGG′ , hav e been derived above. Note that the macroscopic
drifts and diffusions of theΦ’s are simply linearly related to the mesoscopic drifts and diffusions of the
MG ’s. For the prepointMG(t) firings, we assume the same linear relationship in terms of{ φ, a, b } .

The data we are fitting are consistent with invoking the “centering” mechanism discussed above.
Therefore, for the prepointM E (t) firings, we also take advantage of the parabolic trough derived for the
STM Lagrangian, and take

M I (t) = cM E (t) ,  (113)

where the slopec is determined for each electrode site. This permits a complete transformation fromMG

variables toΦ variables.

Similarly, as appearing in the modified threshold factorFG given in Eq. (63), each regional influ-
ence from electrode siteµ acting at electrode siteν , giv en by afferent firingsM‡E , is taken as

M‡E
µ→ν = dν M E

µ (t − Tµ→ν ) ,  (114)

wheredν are constants to be fitted at each electrode site, andTµ→ν is the delay time estimated for inter-
electrode signal propagation, based on current anatomical knowledge of the neocortex and of velocities of
propagation of action potentials of long-ranged fibers, typically on the order of one to several multiples of
τ = 5 msec. Some terms in whichd directly affects the shifts of synaptic parametersBG

G′ when calculating
the centering mechanism also contain long-ranged efficacies (inverse conductivities)B∗ E

E ′ . Therefore, the
latter were kept fixed with the other electrical-chemical synaptic parameters during these fits. In future
fits, we will experiment taking theT ’s as parameters.

This defines the conditional probability distribution for the measured scalp potentialΦν ,

Pν [Φν (t + ∆t)|Φν (t)] =
1

(2πσ2∆t)1/2
exp(−Lν ∆t) ,

Lν =
1

2σ 2
(Φ̇ν − m)2 , (115)

wherem andσ have been derived just above. As discussed above in defining macroscopic regions, the
probability distribution for all electrodes is taken to be the product of all these distributions:

P =
ν
Π Pν ,
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L =
ν
Σ Lν . (116)

Note that we are also strongly invoking the current belief in the dipole or nonlinear-string model.
The model SMNI, derived forP[MG(t + ∆t)|MG(t)], is for a macrocolumnar-averaged minicolumn;
hence we expect it to be a reasonable approximation to represent a macrocolumn, scaled to its contribu-
tion to Φν . Hence we useL to represent this macroscopic regional Lagrangian, scaled from its meso-
scopic mesocolumnar counterpartL. Howev er, the above expression forPν uses the dipole assumption to
also use this expression to represent several to many macrocolumns present in a region under an elec-
trode: A macrocolumn has a spatial extent of about a millimeter. A scalp electrode has been shown just
recently, under extremely favorable circumstances, to have a resolution as small as several millimeters,
directly competing with the spatial resolution attributed to magnetoencephalography; often most data rep-
resents a resolution more on the order of up to several centimeters, many macrocolumns. Still, it is often
argued that typically only several macrocolumns firing coherently account for the electric potentials mea-
sured by one scalp electrode [51]. Then, we are testing this model to see if the potential will scale to a
representative macrocolumn. The results presented here seem to confirm that this approximation is in fact
quite reasonable.

As noted in a previous SMNI paper [16], the structure of STM survives an approximation setting
MG = 0 in the denominator ofFG , after applying the “centering” mechanism. To speed up the fitting of
data in this first study, this approximation was used here as well.

The resolution of this model is certainly consistent with the resolution of the data. For example, for
the nonvisual neocortex, taking the extreme of permitting only unit changes inMG firings, it seems rea-
sonable to always be able to map the observed electric potential valuesΦ from a given electrode onto a
mesh a fraction of 4N E N I ≈ 104.

C. Numerical methodology
Coarse statistical fits first identify major correlated electrode sites within each class of behavioral

activity. Then, the macrocolumnar-averaged synaptic parameters in the nonlinear string model, including
long-ranged interactions between these electrode locations, are fit to the EEG data within in each class
using methods of simulated annealing [58]. Recently, two major computer codes have been developed,
which are key tools for the use of this approach.

The first code, very fast simulated reannealing (VFSR) [58], fits short-time probability distributions
to observed data, using a maximum likelihood technique on the “effective” Lagrangian (including the
exponential prefactor). This algorithm has been developed to fit observed data to a large class of theoreti-
cal cost function over aD-dimensional parameter space [58], adapting for varying sensitivities of parame-
ters during the fit. The annealing schedule for the ‘‘temperatures’’ (artificial fluctuation parameters)Ti
decrease exponentially in ‘‘time’’ (cycle number of iterative process)k, i.e.,Ti = Ti0 exp(−ci k

1/D).

Heuristic arguments have been developed to demonstrate that this algorithm is faster than the fast
Cauchy annealing [174],Ti = T0/k, and much faster than Boltzmann annealing [175],Ti = T0/ ln k. To be
more specific, thek th estimate of parameterα i,

α i
k ∈ [ Ai, Bi] ,  (117)

is used with the random variablexi to get the (k + 1)th estimate,

α i
k+1 = α i

k + xi(Bi − Ai) ,

xi ∈ [−1, 1] . (118)

The generating function is defined as

gT (x) =
D

i=1
Π 1

2 ln(1+ 1/Ti)(|xi| + Ti)
≡

D

i=1
Π gi

T (xi) ,

Ti = Ti0 exp(−ci k
1/D) .  (119)
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The cost functionC used here is defined by

C = Ldt +
1

2
ln(2πdt) − ln(g) ,  (120)

where the LagrangianL and the determinant of the metricg have been defined previously.

The second code develops the long-time probability distribution from the Lagrangian fit by the first
code. A robust and accurate histogram-based (non-Monte Carlo) path-integral algorithm to calculate the
long-time probability distribution has been developed to handle nonlinear Lagrangians [123-125], which
was extended to two-dimensional problems [36].

The histogram procedure recognizes that the distribution can be numerically approximated to a high
degree of accuracy as sum of rectangles at pointsMi of heightPi and width∆Mi. For convenience, just
consider a one-dimensional system. The above path-integral representation can be rewritten, for each of
its intermediate integrals, as

P(M ; t + ∆t) = ∫ dM ′[g1/2
s (2π∆t)−1/2 exp(−Ls∆t)]P(M ′; t)

= ∫ dM ′G(M , M ′; ∆t)P(M ′; t) ,

P(M ; t) =
N

i=1
Σ π(M − Mi)Pi(t) ,

π(M − Mi) =







1 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

0 ,  otherwise .
(121)

This yields

Pi(t + ∆t) = Tij(∆t)P j(t) ,

Tij(∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ M j+∆M j /2

M j−∆M j−1/2
dM ′G(M , M ′; ∆t) .  (122)

Tij is a banded matrix representing the Gaussian nature of the short-time probability centered about the
(varying) drift.

This histogram procedure has been extended to two dimensions, i.e., using a matrixTijkl [36].
Explicit dependence ofL on time t also can be included without complications. We hav e recently
extended it to an arbitrary number of dimensions, but care must be used in developing the mesh in∆MG ,
which is dependent on the diffusion matrix. Presently, this constrains the dependence of the covariance of
each variable to be a (nonlinear) function of that variable, in order to present a straightforward rectangular
underlying mesh.

Since integration is inherently a smoothing process [42], fitting data with the short-time probability
distribution, effectively using an integral over this epoch, permits the use of coarser meshes than the cor-
responding stochastic differential equation. For example, the coarser resolution is appropriate, typically
required, for numerical solution of the time-dependent path integral. Similar to the discussion above for
STM, by considering the contributions to the first and second moments of∆Φ for small time slicesθ , con-
ditions on the time and variable meshes can be derived [123]. The time slice essentially is determined by
θ ≤ Lν

−1, whereLν is the uniform electric-potential Lagrangian, withdΦ/dt = 0, throughout the ranges
of Φ giving the most important contributions to the probability distributionP. Thus,θ is roughly mea-
sured by the diffusion divided by the square of the drift. Here, an upper bound can be calculated by look-
ing at the averages over all time epochs of the drifts and diffusions under each electrode, yielding a mean
ratio typically on the order of 1 to 10. The 5.2-msec sampling rate of our data is certainly less than thisθ .
This might seem to be too fine a temporal mesh for purposes of doing the path integral, but that calcula-
tion would have to weigh heavily the most likely trajectories, not a mean over averaged EP observed data.
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The boundary conditions for the mesocolumnar probability distribution are reflecting at the four
walls confining−N G ≤ MG ≤ N G . This methodology readily permits such inclusion in its numerical
implementation and we have performed such calculations in other systems using the method of
images [12], which has proven to be about as accurate as boundary element methods for the systems
investigated [36]. These also can be incorporated into the cost function being fit, but since we have
invoked the centering mechanism, favoring interior minima, and to increase the speed of our runs, we did
not put the boundary conditions into the fits reported below.

D. Present results
For this first study, we used some current knowledge of the P300 EP phenomena to limit ourselves

to just five electrodes per subject, corresponding to hypothesized fast and slow components of P300. The
first component appears to be generated along the brain midline, from frontal (Fz) to central (Cz) to pari-
etal (Pz) areas; a delay time of one 5.2-msec epoch was assumed for each relay. The slow component
appears to be generated from Pz, branching out to lateral areas P3 and P4; a delay time of two 5.2-msec
epochs was assumed for each branch. Since P300 has such a quite broad rise, peak, and decay over a
large fraction of a second, regional delays are not expected to be very important here. Data currently
being collected on more stringent time-locked STM tasks are expected to provide stronger tests of the
importance of such delays. Furthermore, the relative lack of sensitivity of fits to such delays here sug-
gests that volume conductance effects are large in these data, and Laplacian techniques to localize EEG
activities are required to get more electrode-specific sensitivity to such delays. However, the main empha-
sis here is to determine whether SMNI is consistent with EEG data collected under conditions of selective
attention, and these results appear to be quite strong.

The P300 EP, so named because of its appearance over 300 msec after an appropriate stimulus, has
been demonstrated to be negatively correlated (reduction in amplitude and delay) with a number of psy-
chiatric diseases, e.g., schizophrenia and depression, and typically is most active at sites Pz, P3 and
P4 [176]. Here, the suggestion is that there also is some correlation with some precursor activity at Fz
and Cz.

Thus, in this paper we are reporting fits to 46,550 pieces of data. As described above inthe section
deriving P[Φ(t + ∆t)|Φ(t)], we have: four parameters at site Fz, corresponding to coefficients{ φ, a, b, c
} ; five parameters at Cz,{ φ, a, b, c, dFz→Cz } ; five parameters at Pz,{ φ, a, b, c, dCz→Pz } ; five parame-
ters at P3, { φ, a, b, c, dPz→P3 } ; and five parameters at P4,{ φ, a, b, c, dPz→P4 } . This represents a
24-parameter fit for 950 points of data (each electrode offset by two points to account for delays) for each
of 49 subjects.

The VFSR runs took several CPU hours each on a personal Sun SPARCstation 2 (28.5 MIPS, 21
SPECmarks) running under GNU g++, a C++ compiler developed under the GNU project at the Mas-
sachusetts Institute of Technology, which proved to yield faster runs than using Sun’s bundled non-ANSI
C, depending on how efficiently the simulated annealing run could sense its way out of local minima.
Runs were executed for inclusion of delays between electrodes, as discussed above. All runs reported
here were completed in approximately 400 CPU hours. Typically, at least one to three significant-figure
consistencies between finer resolution runs per parameter were obtained by exiting the global simulated
annealing runs after either two sets of 100 acceptances or 20,000 trials led to the same best estimate of the
global minima. Each trial typically represented a factor of 3 to 5 other generated sets of randomly
selected parameters, which did not satisfy the physical constraints on the electrode sets of{ MG } , {
M ∗ E } and the centering mechanism (which required calculation of new synaptic parameters{ BG

G′ } for
each new set of regional connectivity parameters{ d } ). Some efficiency was gained by using the means
and extremes of the observed electric potentials as a guide for the ranges of the sets of intercept parame-
ters { φ } .

Then, several more significant-figure accuracy was obtained by shunting the code to a local fitting
procedure, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [177], where it either exited natu-
rally or was forcefully exited, saving the lowest cost function to date, after exceeding a limit of 1000 func-
tion calls. The local BFGS runs enforced the above physical constraints by adding penalties to the cost
functions calculated with trial parameters, proportional to the distance out of range.
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These sets of EEG data were obtained from subjects while they were reacting to pattern-matching
tasks requiring varying states of selective attention taxing their short-term memory. To test the assump-
tions made in the model, after each subject’s data set was fitted to its probability distribution, the data
were again filtered through the fitted Lagrangian, and the mean and mean-square values ofMG were
recorded as they were calculated fromΦ above. The average values from the 49 subjects, each in turn
representing averages over 190 points of collected EEG data and the standard deviations were calculated
simply from { [< (MG)2 > − < MG >2]n/(n − 1)} 1/2, wheren = 49. Table I gives the means and standard
deviations of the effective firings,MG , aggregated from all subjects under each electrode, and the weight
d of the regional (time-delayed) inputsM ∗ E . Also given for the firings under each electrode are the
means and standard deviations of the standard deviations aggregated from all time epochs from each sub-
ject; these may give some insights into correlations of different states of selective attention with respect to
coherency and stability of columnar firings. The weightsd, as with the synaptic parameters affected by
the centering mechanism, are the same across time epochs for a given subject, and therefore do not have
any dispersion as reported for the firings. Indeed, althoughMG were permitted to roam throughout their
physical ranges of±N E = ±80 and±N I = ±30 (in the nonvisual neocortex as is the case for all these
regions), their observed effective (regional- and macrocolumnar-averaged) minicolumnar firing states
were observed to obey the centering mechanism. I.e., this numerical result is consistent with the assump-
tion thatMG ≈ 0 ≈ M ∗ E in FG .

Table I.

Based on psychiatric and family-history evaluations, these 49 subjects were classified into two
groups, as possibly having high-risk and low-risk genetic propensities to alcoholism. The high-risk group
was composed of 25 subjects, and the low-risk group was composed of the remaining 24 subjects. Tables
II and III give the same statistics as in Table I, for each subgroup.

While neuroscientists are very hopeful that such discrimination is possible on the basis of EEG, not
all research laboratories have been able to produce such evidence. It seems that the long time epochs
spanning P300, e.g., the 1-sec epoch fitted in Table I, are just not selective enough of features occurring
within about 1/2 second. When the smaller epoch is examined, occurring at a different temporal location
within the 1-sec epoch for each subject, some distinguishing P300 patterns appear to emerge between
low-risk and high-risk groups [178]. The SMNI approach is seen as a viable approach to interpret these
correlations into physical variables reflecting neocortical activity.

Figure 6 gives one of the 49 sets of data fit here. This P300 is particularly well synchronized and
well defined with respect to the five electrodes. The first two dips are known as N100 and N200; the first
broad peak afterwards is the P300. It is believed that the P300 shape may be an indication of the genetic
marker for alcoholism. Since all genes are not dominant, assuming such genetic markers for alcoholism
exist, even properly classified low-risk or high-risk subjects need not possess the discriminating EEG
trace. In fact, quite a few of these 49 subjects have such similar patterns of data that they could well be
classified in either group if the only criterion were their EEG. A larger subject sample is required to dis-
cern if P300 can be a correct identifier of such behavioral traits. Then, it still remains to be proved that
such statistical calculations as presented here can establish quantitative norms for these two groups.

Figure 6.

The results in Tables II and III reflect the lack of correlation observed between EEG recordings and
behavioral states when the temporal epoch used is too wide, as was generally done in earlier EEG studies.
Here, this calculation is offered as a control. We are performing fits on the 1/2-sec epochs containing the
selected P300 features that may give tighter correlations, and these will be reported at a later date.

Based on the plots and numerical calculations performed in this study, it is the opinion of this
author, not necessarily shared by other neuroscientists, that the high degree of synchrony of almost equal
wave-forms of AEP, especially of N100 and N200, at these several electrode sights is actually due to vol-
ume conductance effects [51] that are swamping the underlying local activity at each electrode. I.e., each
electrode is effectively recording an average global response, a known circumstance which can be caused
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by several effects. If true, then if the recording of more localized activity is desired, Laplacian techniques,
e.g., derived from clusters of five closely-spaced electrodes, are required.

Independent of the circumstances of this suggestion, the conclusions drawn here, regarding the
SMNI description of EEG under conditions of selective attention, are not radically altered since we still
are fitting the SMNI model to valid EEG AEP data. The approach here has been used to investigate the
consistency of SMNI with previous STM studies using this theory. The 1-sec epoch does signify a period
of relatively intense selective attention, and it is of interest to see if this is consistent with the SMNI cen-
tering mechanism. This has been accomplished independent of the success of finding EEG correlates of
genetic predispositions to alcoholism.

Table II.

Table III.

In the context of current paradigms of neuroscience, and in the context of appreciating that SMNI
offers statistical bounds on neocortical interactions, i.e., not necessarily offering specific neuronal mecha-
nisms correlated to specific brain states, this information addresses “connectivity” and “coherency.” Con-
nectivity is simply addressed by examining the bottom third set of rows of numbers in each table, where
the coefficientsd of regional influences are given. Coherency is addressed in an approximate way, by
examining the last two rows of numbers in each table, where a measure of the variance of the mean firings
and connectivity and the variances among these means can be obtained. I.e., it might be assumed that the
degree of selective attention is related to the degree of connectivity and to the degree of focus of firing
states.

As just discussed, comparison of the data in Tables II and III shows no statistical differences
between these groups in terms of the physical SMNI model. However, even within these wide statistical
margins, it is clear that the values of the columnar firings, permitted to roam throughout their physical
ranges during the fitting procedure, do in fact cluster according to the centering mechanism derived above
in the context of STM. While it is premature to speculate on the relevance of these differences between
these two subgroups, these data are offered here to demonstrate the kind of information this approach can
offer.

Again, it must be stressed that such nonlinear stochastic modeling may be essential in such noisy
systems, to first fit the functional nature of both the drifts and the diffusions, in order to then extricate
some distinguishing signatures of subsystems. Further work is in progress with variations of SMNI and
other models, to give some insights into just what nonlinear stochastic features are essential to fit such
EEG data.

This particular five-electrode circuitry may yet be amenable to our path-integral algorithm. Each
variable typically requires a mesh size that is a product of a postpoint mesh,∆, determined by the square
root of the (non-constant) diffusion, times 2∆′ + 1, where∆′ is the size of the off-diagonal prepoint taken
about the (non-constant) drift;∆′ is typically 3−7 to get good numerical accuracy. For five variables
requiring a product of all five∆ and∆′ values, this does not seem a reasonable calculation on today’s stan-
dard computers. However, here we really have five distributions of only one or two variables each of
which must be simultaneously propagated:P(Fz), P(Cz|Fz), P(Pz|Cz),P(P2|Pz), andP(P2|Pz). This
work is in progress.

These results, in addition to their importance in reasonably modeling EEG with SMNI, also have a
deeper theoretical importance with respect to the scaling of neocortical mechanisms of interaction across
disparate spatial scales and behavioral phenomena: As has been pointed out previously, SMNI has given
experimental support to the derivation of the mesoscopic probability distribution, yielding similar alge-
braic structures of the threshold factors in Eqs. (32) (63), illustrating common forms of interactions
between their entities, i.e., neurons and columns of neurons, respectively. The nonlinear threshold factors
are defined in terms of electrical-chemical synaptic and neuronal parameters all lying within their experi-
mentally observed ranges. It also was noted that the most likely trajectories of the mesoscopic probability
distribution, representing averages over columnar domains, give a description of the systematics of
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macroscopic EEG in accordance with experimental observations. In this section, we have demonstrated
that we can derive the macroscopic regional probability distribution, Eq. (115), as having the same func-
tional form as the mesoscopic Eq. (41), where the macroscopic drifts and diffusions of the potentials
described by theΦ’s are simply linearly related to the (nonlinear) mesoscopic drifts and diffusions of the
columnar firing states given by theMG ’s. Then, this macroscopic probability distribution gives a reason-
able description of experimentally observed EEG.

VI. CONCLUSION
We hav e outlined in some detail a reasonable approach to extract more ‘‘signal’’ out of the ‘‘noise’’

in EEG data, in terms of physical dynamical variables, than by merely performing regression statistical
analyses on collateral variables. To learn more about complex systems, we inevitably must form func-
tional models to represent huge sets of data. Indeed, modeling phenomena is as much a cornerstone of
20th century science as is collection of empirical data [179].

We hav e been able to fit these sets of EEG data taken during selective attention tasks, using parame-
ters either set to experimentally observed values, or being fitted within experimentally observed values.
The ranges of columnar firings are consistent with a centering mechanism derived for STM in earlier
papers.

The ability to fit data to these particular SMNI functional forms goes beyond nonlinear statistical
modeling of data. The plausibility of the SMNI model, as emphasized in this and previous SMNI papers,
as spanning several important neuroscientific phenomena, suggests that the fitted functional forms may
yet help to explicate some underlying biophysical mechanisms responsible for the normal and abnormal
behavioral states being investigated, e.g., excitatory and/or inhibitory influences, background electromag-
netic influences from nearby firing states (by using SMNI synaptic conductivity parameters in the fits).

There is much more work to be done. We hav e not yet addressed the “renormalization” issues
raised, which are based on the nature of EEG data collection and which are amenable to this framework.
While the fitting of these distributions certainly compacts the experimental data into a reasonable alge-
braic model, a prime task of most physical theory, in order to be useful to clinicians (and therefore to give
more feedback to theory) even more data reduction must be performed. We are experimenting with path-
integral calculations and some methods of “scientific visualization” to determine what minimal, or at least
small, set of “signatures” might suffice, which would be faithful to the data yet useful to clinicians. We
also are examining the gains that might be made by putting these codes onto a parallel processor, which
might enable real-time diagnoses based on noninvasive EEG recordings.

In order to detail such a model of EEG phenomena we found it useful to seek guidance from ‘‘top-
down’’ models; e.g., the nonlinear string model representing nonlinear dipoles of neuronal columnar
activity. In order to construct a more detailed ‘‘bottom-up’’ model that could give us reasonable algebraic
functions with physical parameters to be fit by data, we then needed to bring together a wealth of empiri-
cal data and modern techniques of mathematical physics across multiple scales of neocortical activity. At
each of these scales, we had to derive and establish reasonable procedures and submodels for climbing
from scale to scale. Each of these submodels could then be tested against some experimental data to see
if we were on the right track. For example, at the mesoscopic scale we checked the consistency of SMNI
with known aspects of visual and auditory short-term memory; at the macroscopic scale we checked con-
sistency with known aspects of EEG and the propagation of information across the neocortex. Here, we
have demonstrated that the currently accepted dipole EEG model can be derived as the Euler-Lagrange
equations of an electric-potential Lagrangian.

The theoretical and experimental importance of specific scaling of interactions in the neocortex has
been quantitatively demonstrated: We hav e shown that the explicit algebraic form of the probability distri-
bution for mesoscopic columnar interactions is driven by a nonlinear threshold factor of the same form
taken to describe microscopic neuronal interactions, in terms of electrical-chemical synaptic and neuronal
parameters all lying within their experimentally observed ranges; these threshold factors largely determine
the nature of the drifts and diffusions of the system. This mesoscopic probability distribution has success-
fully described STM phenomena and, when used as a basis to derive the most likely trajectories using the
Euler-Lagrange variational equations, it also has described the systematics of EEG phenomena. In this
paper, we hav e taken the mesoscopic form of the full probability distribution more seriously for
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macroscopic interactions, deriving macroscopic drifts and diffusions linearly related to sums of their
(nonlinear) mesoscopic counterparts, scaling its variables to describe interactions among regional interac-
tions correlated with observed electrical activities measured by electrode recordings of scalp EEG, with
apparent success. These results give strong quantitative support for an accurate intuitive picture, portray-
ing neocortical interactions as having common algebraic or physics mechanisms that scale across quite
disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among neu-
rons, columns of neurons, and regional masses of neurons.

It seems reasonable to speculate on the evolutionary desirability of developing Gaussian-Markovian
statistics at the mesoscopic columnar scale from microscopic neuronal interactions, and maintaining this
type of system up to the macroscopic regional scale. I.e., this permits maximal processing of
information [130]. There is much work to be done, but we believe that modern methods of statistical
mechanics have helped to point the way to promising approaches.
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APPENDIX A: DERIVATION OF PATH INTEGRAL
This appendix outlines the derivation of the path-integral representation of the nonlinear Langevin

equations, via the Fokker-Planck representation. This serves to point out the importance of properly treat-
ing nonlinearities, and to emphasize the deceptive simplicity of the Langevin and Fokker-Planck represen-
tations of stochastic systems. There are a few derivations in the literature, but the following blend seems
to be the most concise. All details may be found in the references given here [27,180-182].

The Stratonovich (midpoint discretized) Langevin equations can be analyzed in terms of the Wiener
processdW i, which can be rewritten in terms of Gaussian noiseη i = dW i/dt if care is taken in the
limit [27].

dMG = f G((t, M(t)))dt + ĝG
i ((t, M(t)))dW i ,

ṀG(t) = f G((t, M(t))) + ĝG
i ((t, M(t)))η i(t) ,

dW i → η i dt ,

M = { MG ; G = 1,. . . , Λ } ,

η = { η i; i = 1,. . . , N } .

ṀG = dMG /dt ,

< η j(t) >η = 0 ,

< η j(t),η j′(t ′) >η = δ jj′δ (t − t ′) ,  (A1)

η i represents Gaussian white noise, and moments of an arbitrary functionF(η ) over this stochastic space
are defined by a path-type integral overη i,

< F(η ) >η = N−1 ∫ Dη F(η ) exp



−

1

2

∞

t0
∫ dtη iη i





,

N = ∫ Dη exp



−

1

2

∞

t0
∫ dtη iη i





,

Dη =
v→∞
lim

v+1

α =0
Π

N

j=1
Π (2πθ)−1/2dW j

α ,

tα = t0 + αθ ,

1

2 ∫ dtη iη i =
1

2θ β
Σ

i
Σ (W i

β − W i
β−1)2 ,

< η i >η = 0 ,

< η i(t)η j(t ′) >η = δ ijδ (t − t ′) .  (A2)

Non-Markovian sourceŝη , and their influence throughout this development, can be formally treated
by expansions about the Markovian process by defining

< F(η̂ ) >η = N−1
ξ ∫ Dη̂ F exp


−

1

2 ∫ ∫ dtdt ′η̂ (t)∆−1
ξ (t − t ′)η̂ (t ′)


,
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∫ dt ∆−1
ξ (t − t ′)∆ξ (t ′ − t ′′ ) = δ (t − t ′′ ) ,  (A3)

with ξ defined as an interval centered about the argument of∆ξ . Lettingξ → 0 is an unambiguous proce-
dure to define the Stratonovich prescription used below.

In terms of a specific stochastic pathη , a solution to Eq. (A1), MG
η (t; M0, t0) with

MG
η (t0; M0, t0) ≡ M0, the initial condition on the probability distribution ofMη is

Pη [M , t|M0, t0] = δ ((M − Mη (t; M0, t0))) .  (A4)

Using the conservation of probability condition,

Pη ,t + (ṀG Pη ),G = 0 ,

(. . .),G = ∂(. . .)/∂MG ,

(. . .),t = ∂(. . .)/∂t , (A5)

the evolution ofPη is written as

Pη ,t [M , t|M0, t0] = { [− f G(t, M) − ĝ(t, M)η i]Pη } ,G . (A6)

To perform the stochastic average of Eq. (A6), the ‘‘functional integration by parts lemma’’ [29] is
used on an arbitrary functionZ (η ) [181],

∫ Dη
δ̂ Z (η )

δ̂ ηi
= 0 .  (A7)

Applied toZ = Z ′ exp(−
1

2 ∫
∞
t0

dtη iη i), this yields

< η i Z ′ >η =< δ Z ′/δ ηi >η . (A8)

Applying this toF̂(Mη ) = ∫ dM Pη F(M),

∫ dM
δ̂ Pη

δ̂ ηi
F(M) =

∂F̂(Mη )

∂MG
η

δ̂ MG
η

δ̂ ηi

= −
1

2 ∫ dM F(M)( ̂gG
j δ ij Pη ),G , (A9)

whereδ̂ designates functional differentiation. The last equation has used the Stratonovich prescription,

MG
η (t) = MG

0 + ∫ dt ′ Ĥ(t − t ′)Ĥ(t − t0)( f G + ĝG
i η i) ,

t ′→t−0
lim

δ̂ MG
η (t)

δ̂ ηi(t ′)
=

1

2
ĝG

j [t, Mη (t)]δij ,

Ĥ(z) =




1, z ≥ 0

0, z < 0 .
(A10)

Taking the averages <Pη ,t >η and <η i Pη >η , the Fokker-Planck is obtained from Eq. (A9). If
some boundary conditions are added as Lagrange multipliers, these enter as a ‘‘potential’’V , creating a
Schrödinger-type equation:

P,t =
1

2
(gGG′ P),GG′ − (gG P),G + VP ,

P =< Pη >η ,
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gG = f G +
1

2
ĝG′

i ĝG
i,G′ ,

gGG′ = ĝG
i ĝG′

i ,

(. . .),G = ∂(. . .)/∂MG . (A11)

Note thatgG replacesf G in Eq. (A1) if the Itô(prepoint discretized) calculus is used to define that equa-
tion.

To derive the path-integral representation of Eq. (A11), define operatorsM̂
G

, p̂G , andĤ ,

[M̂
G

, p̂G′ ] ≡ M̂
G

p̂G′ − p̂G′ M̂
G = iδ G

G′ ,

[M̂
G

, M̂
G′

] = 0 = [ p̂G , p̂G′ ] ,

P,t = −iĤ P ,

Ĥ = −
i

2
p̂G p̂G′ g

GG′ + p̂G gG + iV , (A12)

and define the evolution operatorU(t, t ′) in terms of ‘‘bra’’ and ‘‘ket’’ probability states ofM ,

M̂
G

|MG >= MG |MG > ,

p̂G |MG >= −i∂/∂MG |MG > ,

< M ′|M >= δ (M ′ − M) ,

< M |p >= (2π)−1 exp(ip ⋅ M) ,

P[M , t|M0, t0] =< M |U(t, t0)|M0 > ,

Ĥ(t ′)U(t ′, t) = iU(t ′, t),t ′ ,

U(t, t) = 1 ,

U(tρ , tρ−1)≈1 − iθ Ĥ(tρ−1) ,  (A13)

whereρ indexes units ofθ measuring the time evolution. This is formally integrated to give the path inte-
gral in the phase space (p, M),

P[Mt |M0] =
M(t)=Mt

M(t0)=M0

∫ DM Dp exp[
t

t0
∫ dt ′(ipG MG −

1

2
pG pG′ g

GG′ − ipG gG + V ) ]  ,

DM =
u→∞
lim

G
Π

u

ρ=1
Π dMG

ρ ,

Dp =
u→∞
lim

G
Π

u+1

ρ=1
Π (2π)−1dpGρ ,

tρ = t0 + ρθ . (A14)

The integral over eachdpGρ is a Gaussian and simply calculated. This gives the path integral in
coordinate spaceM , in terms of the prepoint discretized Lagrangian,
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P[Mt |M0] = ∫ DM
u

ρ=0
Π (2πθ)−Λ/2g(Mρ , tρ)1/2

×exp { −
1

2
θ gGG′(Mρ , tρ)[∆G

ρ /θ − gG(Mρ , tρ)]

×[∆G′
ρ /θ − gG′(Mρ , tρ)] + θV (Mρ , tρ) } ,

LI (ṀG , MG , t) =
1

2
(ṀG − gG)gGG′(ṀG′ − gG′) − V ,

g = det(gGG′) ,

gGG′ = (gGG′)−1 ,

∆G
ρ = MG

ρ+1 − MG
ρ . (A15)

This can be transformed to the Stratonovich representation, in terms of the Feynman LagrangianL
possessing a covariant variational principle,

P[Mt |M0] = ∫ DM
u

ρ=0
Π (2πθ)−Λ/2g(Mρ + ∆ρ , tρ + θ /2)1/2

×exp



−min

tρ+θ

tρ

∫ dt ′L((M(t ′), Ṁ(t ′), t ′))




, (A16)

where ‘‘min’’ specifies that Eq. (A11) is obtained by constrainingL to be expanded about thatM(t)
which makes the actionS = ∫ dt ′L stationary forM(tρ) = Mρ andM(tρ + θ ) = Mρ+1.

One way of proceeding is to expand Eq. (A15) and compare to Eq. (A16), but it is somewhat easier
to expand Eq. (A16) and compare to Eq. (A15) [182]. It can be shown that expansions to orderθ suffice,
and that∆2 = O(θ ).

Write L in the general form

L =
1

2
gGG′ Ṁ

G ṀG′ − hG ṀG + b

= L0 + ∆L ,

L0 =
1

2
gGG′((M(t), t))ṀG ṀG′ ,

gGG′((M(t), t)) = gGG′((M(t), t ′)) + gGG′,t ′((M(t), t ′))(t − t ′) + O(((t − t ′)2)) , (A17)

wherehG andb must be determined by comparing expansions of Eq. (A15) and Eq. (A16). Only theL0

term is dependent on the actualM(t) trajectory, and so
tρ+θ

tρ

∫ dt ∆L = (
1

4
gGG′,t∆G∆G′ − hG∆G −

1

2
hG,G′∆G∆G′ + θ b)|(M ,t) , (A18)

where ‘‘ |(M ,t)’’ implies evaluation at (M , t).

The determinantg is expanded as

g(M + ∆, t + θ /2)1/2≈g1/2(M , t) exp((
θ
4g

g,t +
1

2g
∆G g,G
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+
1

4g
∆G∆G′(g,GG′ + g−1g,G g,G′)))|(M ,t) . (A19)

The remaining integral overL0 must be performed. This is accomplished using the variational
principle applied to∫ L0 [180],

gGH M̈ H = −
1

2
(gGH ,K + gGK ,H − gKH ,G)Ṁ K Ṁ H ,

M̈ F = −ΓF
JK Ṁ J Ṁ K ,

ΓF
JK == gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

(
1

2
gGH ṀG Ṁ H ),t = 0 ,

t+θ

t
∫ L0dt≈

θ
2

gGH ṀG Ṁ H |(M ,t+θ ) . (A20)

Differentiating the second equation in Eq. (A20) to obtain
...
M , and expandingṀ(t + θ ) to third order inθ ,

Ṁ(t + θ ) = ((
1

θ
∆G −

1

2θ
ΓG

KL∆K ∆L +
1

6θ
(ΓG

KL,N + ΓG
AN Γ A

KL)∆G∆L∆N ))|(M ,t) . (A21)

Now Eq. (A16) can be expanded as

P[Mt |M0]dM(t) = ∫ DM
u

ρ=0
Π exp


−

1

2θ
gGG′(M , t)∆G∆G′ + B


,

DM =
u+1

ρ=1
Π g1/2

ρ
G
Π (2πθ)−1/2dMG

ρ . (A22)

Expanding expB to O(θ ) requires keeping terms of order∆, ∆2, ∆3/θ , ∆4/θ , and∆6/θ2. Under the path
integral, evaluated at (M , t), and using ‘‘=̇’’ to designate the order of terms obtained from

∫ d∆ ∆n exp(−
1

2θ
∆2),

[∆G∆H ]order = θ gGH ,

[∆G∆H ∆K ]order = θ (∆G gHK + ∆H gGH + ∆K gGH ) ,

[∆G∆H ∆A∆B]order = θ2(gGH gAB + gGAgHB + gGB gHA) ,

[∆A∆B∆C∆D∆E∆F ]order = θ3(gAB gCD gEF + 14 permutations) . (A23)

This expansion of expB is to be compared to Eq. (A15), expanded as

P[Mt |M0]dM(t)≈ ∫ DM
u

ρ=0
Π exp


−

1

2θ
gGG′∆G∆G′ 



×[1 + gGG′ g
G∆G′ + θV + O(θ3/2)] , (A24)

yielding identification ofhG andb in Eq. (A17),

hG = gGG′ hG′ = gG −
1

2
g−1/2(g1/2gGG′),G′ ,
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b =
1

2
hG hG +

1

2
hG

;G + R/6 − V ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

R = gJL RJL = gJL gFK RFJKL . (A25)

The result is

P[Mt |Mt0]dM(t) = ∫ . . . ∫ DM exp



−min

t

t0
∫ dt ′L




δ ((M(t0) = M0))δ ((M(t) = Mt)) ,

DM =
u→∞
lim

u+1

ρ=1
Π g1/2

G
Π (2πθ)−1/2dMG

ρ ,

L(ṀG , MG , t) =
1

2
(ṀG − hG)gGG′(ṀG′ − hG′) +

1

2
hG

;G + R/6 − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

g = det(gGG′) ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FK ΓN
JL − ΓM

FLΓN
JK ) .  (A26)

In summary, because of the presence of multiplicative noise, the Langevin system differs in its Itoˆ
(prepoint) and Stratonovich (midpoint) discretizations. The midpoint-discretized covariant description, in
terms of the Feynman Lagrangian, is defined such that (arbitrary) fluctuations occur about solutions to the
Euler-Lagrange variational equations. In contrast, the usual Itoˆ and corresponding Stratonovich dis-
cretizations are defined such that the path integral reduces to the Fokker-Planck equation in the weak-
noise limit. The termR/6 in the Feynman Lagrangian includes a contribution ofR/12 from the WKB
approximation to the same order of (∆t)3/2 [27].
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TABLE CAPTIONS
TABLE I. Means and standard deviations of averages over EEG recordings from 49 subjects, rep-

resenting 190 points of data per subject, are consistent with the centering mechanism during selective
attention tasks. Under each electrode the means and standard deviations ofMG are given. Also given for
each electrode are the means and standard deviations of the individual-subject standard deviations, here
labeled asσ , aggregated from each subject. The physical bounds for allM E under these nonvisual
regions are±N E = ±80. Also given are the weightsd of the regional time-delayed contributionsdM ∗ E .
The physical bounds for allM E and M ∗ E under these nonvisual regions are±N E = ±N ∗ E = ±80; the
physical bounds for allM I are±N I = ±30.

TABLE II. The same kind of information is presented as given in Table I; however, here the statis-
tics is developed from a subgroup of 25 subjects who were previously classified as being of high risk with
respect to having a genetic propensity to alcoholism.

TABLE III. The same kind of information is presented as given in Table I; however, here the statis-
tics is developed from a subgroup of 24 subjects who were previously classified as being of low risk with
respect to having a genetic propensity to alcoholism.
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FIGURE CAPTIONS
FIG. 1. Scales illustrated. Illustrated are three biophysical scales of neocortical interactions: (a),

(a* ), (a’) microscopic neurons; (b) and (b’) mesocolumnar domains; (c) and (c’) macroscopic regions. In
(a* ) synaptic interneuronal interactions, averaged over by mesocolumns, are phenomenologically
described by the mean and variance of a distributionΨ. Similarly, in (a) intraneuronal transmissions are
phenomenologically described by the mean and variance ofΓ. Mesocolumnar averaged excitatory (E)
and inhibitory (I ) neuronal firings are represented in (a’). In (b) the vertical organization of minicolumns
is sketched together with their horizontal stratification, yielding a physiological entity, the mesocolumn.
In (b’) the overlap of interacting mesocolumns is sketched. In (c) macroscopic regions of the neocortex
are depicted as arising from many mesocolumnar domains. These are the regions designated for study
here. (c’) sketches how regions may be coupled by long-ranged interactions.

FIG. 2. Minima structure of nonlinear Lagrangian. Examination of the minima structure of the
spatially averaged and temporally averaged Lagrangian provides some quick intuitive details about the
most likely states of the system. This is supported by further analysis detailing the actual spatial-temporal
minima structure. Illustrated is the surface of the static (time-independent) mesoscopic neocortical
LagrangianL over the excitatory-inhibitory firing plane (M E − M I ), for a specific set of synaptic parame-
ters. All points on the surface higher than 5× 10−3/τ have been deleted to expose this fine structure.

FIG. 3. Nearest neighbors. Nearest-neighbor interactions between mesocolumns are illustrated.
Afferent minicolumns of∼ 102 neurons are represented by the inner circles, and efferent macrocolumns of
∼ 105 neurons by the outer circles. Illustrated are the nearest-neighbor interactions between a mesocol-
umn, represented by the thick circles, and its nearest neighbors, represented by thin circles. The area out-
side the outer thick circle represents the effective number of efferent macrocolumnar nearest-neighbor
neurons. I.e., these neurons outside the macrocolumnar area of influence of the central minicolumn are
contacted through interactions with neurons in the central macrocolumn.

FIG. 4. Valleys of STM. Contours of the Lagrangian illustrate ‘‘valleys’’ that trap firing-states of
mesocolumns. (τ LBC can be as large as 103.) These valleys are candidates for short-term memories.
Detailed calculations support the identification of the inner valleys with stable short-term-memory states
having durations on the order of tenths of a second. (a) Contours for values less than 0.04 are drawn for
τ LBC, where BC designates the balanced case of firing states being at a moderate level of excitatory and
inhibitory firings. The M E axis increases to the right, from−N E = −80 to N E = 80. The M I axis
increases to the right, from−N I = −30 to N I = 30. In each cluster, the smaller values are closer to the
center. Note the absence of any closed contours in the interior space. (b) Contours for values less than
0.04 are drawn forτ LBC′ , where BC′ designates that the ‘‘centering mechanism’’ has been turned on. A
right brace} signifies enclosure of other nested closed contours above and to the left of this brace.

FIG. 5. Modeling the visual cortex STM. When N = 220, modeling the number of neurons per
minicolumn in the visual neocortex, then only clusters containing 2−4 up to 5−6 minima are found, con-
sistent with visual STM. These minima are narrower, consistent with the sharpness required to store
visual patterns.

FIG. 6. EEG traces. Illustrated is 1 sec of EEG data, time-locked to a particular stimulus pattern
and averaged over about 100 such events, from 5 electrodes, from a subject previously classified as high-
risk with respect to genetic propensity to alcoholism. The abscissa labels the index of each epoch; there
are 192 points of data for each electrode, and each time epoch represets 5.2 msec. The ordinate is the
amplitude of the “averaged epoch potential” in mV. The first dip, here at about epoch 18, is classified as
N100, occurring at about 100 msec after a stimulus pattern. The second dip, here at about epoch 30, is
classified as N200. The broad peak approximately centered about epoch 80 is the P300.
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Table I

Electrode MeanM E Standard DeviationM E Meanσ (M E) Standard Deviationσ (M E )
Fz 1.13661 3.8754 6.09339 5.30891
Cz -0.533493 4.83208 6.31146 5.59003
Pz -0.3158 3.87471 5.44242 5.50453
P3 -0.121703 10.1069 8.152 7.08701
P4 -0.0208276 7.47837 11.0526 7.04522

Electrode MeanM I Standard DeviationM I Meanσ (M I ) Standard Deviationσ (M I )
Fz 1.83249 7.11368 11.4131 2.71679
Cz 0.229446 5.89307 11.5578 2.68969
Pz -0.255393 6.37452 12.4699 2.86198
P3 -0.0234756 7.39736 10.5579 3.2693
P4 -0.0271411 6.25121 12.0525 2.52846

Electrode Meand Standard Deviationd
Fz → Cz 0.389722 0.291677
Cz→ Pz 0.377305 0.266958
Pz→ P3 0.536313 0.288519
Pz→ P4 0.485525 0.294742
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Table II

Electrode MeanM E Standard DeviationM E Meanσ (M E) Standard Deviationσ (M E )
Fz 0.340677 4.44151 5.87727 4.73137
Cz -0.0332101 4.4386 5.79371 4.79331
Pz 0.487081 4.02893 5.02483 5.99425
P3 -0.882276 4.32405 5.81738 5.59617
P4 -0.940474 8.48643 10.6133 6.98527

Electrode MeanM I Standard DeviationM I Meanσ (M I ) Standard Deviationσ (M I )

Fz 0.474634 7.11011 11.8372 2.27895
Cz 1.23924 5.45593 11.6565 2.96615
Pz 0.217116 6.45096 11.5355 2.966
P3 -1.61882 7.68062 10.8889 3.16314
P4 -0.334122 6.39578 12.2809 2.11318

Electrode Meand Standard Deviationd
Fz → Cz 0.391295 0.322489
Cz→ Pz 0.395463 0.254323
Pz→ P3 0.526201 0.286918
Pz→ P4 0.543161 0.282187
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Table III

Electrode MeanM E Standard DeviationM E Meanσ (M E) Standard Deviationσ (M E )
Fz 1.9657 3.05825 6.31853 5.94619
Cz -1.05462 5.25502 6.85079 6.37529
Pz -1.15213 3.60052 5.87741 5.03529
P3 0.670561 13.8703 10.5839 7.74884
P4 0.937138 6.29979 11.5102 7.2279

Electrode MeanM I Standard DeviationM I Meanσ (M I ) Standard Deviationσ (M I )
Fz 3.24693 6.98325 10.9714 3.096
Cz -0.822421 6.25717 11.4549 2.42812
Pz -0.747589 6.39397 13.4433 2.44476
P3 1.63834 6.85532 10.2132 3.40917
P4 0.292631 6.2177 11.8146 2.92689

Electrode Meand Standard Deviationd
Fz → Cz 0.388083 0.26272
Cz→ Pz 0.35839 0.283736
Pz→ P3 0.546846 0.295968
Pz→ P4 0.425487 0.301391
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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