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1. Introduction

A plausible model of the statistical mechanics of neocortical interactions (SMNI), spans several
important neuroscientific phenomena including phenomena measured by electroencephalography (EEG)
(Ingber, 1982; Ingber, 1983; Ingber, 1984; Ingber, 1985a; Ingber, 1985b; Ingber, 1991; Ingber, 1992;
Ingber, 1994; Ingber, 1995a; Ingber and Nunez, 1990). Fitted SMNI functional forms to EEG data may
help to explicate some underlying biophysical mechanisms responsible for the normal and abnormal
behavioral states being investigated.

Section 2 gives a “top down” description of the present paradigm generally accepted by people in
the EEG world. This description of EEG phenomena at the scale of centimeters is the focal point of the
SMNI development. Section 3 giv es an outline of the SMNI “bottom up” development across multiple
scales. At each of the scales developed by SMNI, it is reasonable to look for experimental phenomena to
at least check the systematics of this development. Section 4 describes the description of short-term
memory capacity by SMNI columnar dynamics. Section 5 describes the systematics of EEG by early
SMNI theory at larger scales. Section 6 describes some recent work fully developing nonlinear
probability distributions to fit EEG data. Section 7 describes some mathematical and numerical aspects of
the SMNI development that are not only useful for SMNI but also have quite generic utility in other
disciplines. Section 8 is the conclusion, highlighting the utility of SMNI for EEG studies.

2. SMNI Rationale—“Top Down”

In order to detail a model of EEG phenomena, it is useful to seek guidance from “top-down”
models; e.g., the nonlinear string model representing nonlinear dipoles of neuronal columnar activity, a
paradigm currently accepted by the EEG community (Ingber and Nunez, 1990; Nunez, 1981).

2.1. Noninvasive Recordings of Brain Activity

There are several noninvasive experimental or clinical methods of recording brain activity, e.g.,
electroencephalography (EEG), magnetoencephalography (MEG), magnetic resonance imaging (MRI),
positron-emission tomography (PET), and single-photon-emission-computed tomography (SPECT).
While MRI, PET, and SPECT offer better three-dimensional presentations of brain activity, EEG and
MEG offer superior temporal resolutions on the order of neuronal relaxation times, i.e., milliseconds.
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Recently, it also has been shown under special experimental conditions that EEG and MEG offer
comparable spatial resolutions on the order of several millimeters; a square millimeter is the approximate
resolution of a macrocolumn representing the activity of approximately 105 neurons (Cohen et al, 1990).
This is not quite the same as possessing the ability to discriminate among alternative choices of sets of
dipoles giving rise to similar electric fields.

2.2. EEG Electrodes

A typical map of EEG electrode sites is given in Fig. 1. Many neuroscientists are becoming aware
that higher electrode densities are required for many studies. For example, if each site in this figure
represented 5 closely spaced electrodes, a numerical Laplacian can be calculated to represent this site.
Such Laplacian techniques may offer relatively reference-free recordings and better estimates of localized
sources of activity.

Figure 1

2.3. EEG Po wer Spectra

Limiting cases of linear (macroscopic) theories of intracortical interaction predict local wav e
phenomena and obtain dispersion relations with typical wav e numbers k = 10 to 100 cm−1 and dominant
frequencies in the general range of human spontaneous EEG (1-20 Hz). However, human scalp potentials
are spatially filtered by both distance and tissue between cortical current sources and surface electrodes so
that scalp EEG power is attenuated to about 1%.

Fig. 2 gives a high resolution estimate of spectral density function |Φ(k , ω )|2 for EEG recorded from
an awake human subject (eyes closed) using 16 scalp recording sites over the right hemisphere: (a) mu
rhythm at 8.0 Hz; (b) alpha rhythm at 9.5 Hz from the same 1 minute record. The alpha mode (9.5 Hz) is
consistent with standing wav es, whereas the mu mode (8.0 Hz) is more consistent with posterior to
anterior traveling wav es (ky) across the electrode array.

Figure 2

2.4. Single Electrode Recording of Dipole Activity

As illustrated in Fig. 3, macrocolumns may be considered as “point sources” of dipole-like
interactions, mainly due to coherent current flow of top-layer afferent interactions to bottom-layer efferent
interactions (Nunez, 1990). However, there is a problem of non-uniqueness of the electric potential that
arises from such source activity. Laplacian measurements can help to address this problem.

Figure 3

2.5. EEG of Mechanical String

A model of data processed over many electrodes is the mechanical string. The mechanical string
has linear properties and is connected to local nonlinear oscillators. Local cortical dynamics in dipole
layers is here considered analogous to the nonlinear mechanical oscillators which influence global modes.
Macroscopic scalp potentials are analogous to the lower modes of string displacement.

For purposes of illustration, e.g., as in Fig. 4, a linear string with attached oscillators, e.g., nonlinear
springs may be compared to a one-dimensional strip of neocortex.

Figure 4
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2.6. String Equation

The equation describing the string displacement Φ is

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ [ω 2
0 + f(Φ)]Φ = 0 ,  (1)

for a linear array (length L) of sensors (electrodes) of size s. Wa ve-numbers in the approximate range
π
L

≤ k ≤
π
s

(2)

can be observed. If the center to center spacing of sensors is also s, L = Ms, where M = (number of
sensors - 1), k = 2nπ /R for n = {1, 2, 3, . . . } (string forms closed loop), and sensors span half the string
(brain), L = R/ 2, then

1 ≤ n ≤ M (3)

for some maximum M, which is on the order of 3 to 7 in EEG studies using 16 to 64 electrodes in two-
dimensional arrays on the cortical surface.

For scalp recordings, the wav enumber restriction is more severe. For example, a typical
circumference of the neocortex following a coordinate in and out of fissures and sulci is R = 100 cm
(about 50 cm along the scalp surface). If EEG power is mostly restricted to k < 0. 5  cm−1, only modes
n < 4 are observed, independent of the number of electrodes.

Theory should be able to be similarly “filtered,” e.g., in order to properly fit scalp EEG data.

2.7. String Observables

The string displacement (potential within the cortex) is given by

Φ(x, t) =
∞

n=1
Σ Gn(t ) sin knx ,  (4)

but the observed Φ is given by

Φ†(x, t) =
M

n=1
Σ Gn(t ) sin knx .  (5)

As can be seen here, it has been noted that spatial filtering may also induce temporal filtering of EEG
(Nunez and Srinivasan, 1993).

In the linear case, where f(Φ) = 0 (equal linear oscillators to simulate local circuit effects in cortical
columns), then

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ ω 2
0Φ = 0 ,

Φ =
∞

n=1
Σ An cos ωnt sin knx ,

ω 2
n = ω 2

0 + c2k2
n , (6)

giving a dispersion relation ωn(kn). For the nonlinear case, f(Φ) ≠ 0, the restoring force of each spring is
amplitude-dependent. In fact, local oscillators may undergo chaotic motion.

What can be said about

Φ†(x, t) =
M

n=1
Σ Gn(t ) sin knx ,  (7)

the macroscopic observable displacement potential on the scalp or cortical surface?

It would seem that Φ† should be described as a linear or quasi-linear variable, but influenced by the
local nonlinear behavior which crosses the hierarchical level from mesoscopic (columnar dipoles) to
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macroscopic.

How can this intuition be mathematically articulated, for the purposes of consistent description as
well as to lay the foundation for detailed numerical calculations?

3. SMNI Development—“Bottom Up”

In order to construct a more detailed “bottom-up” model that can give reasonable algebraic
functions with physical parameters to be fit by data, a wealth of empirical data and modern techniques of
mathematical physics across multiple scales of neocortical activity are developed up to the scale described
by the top-down model. At each of these scales, reasonable procedures and submodels for climbing from
scale to scale are derived. Each of these submodels were tested against some experimental data to see if
the theory was on the right track.

For example, at the mesoscopic scale consistency of SMNI was checked with known aspects of
visual and auditory short-term memory (STM), e.g., the 4±2 and 7±2 STM capacity rules, respectively,
the detailed duration and stability of such states, and the primacy versus recency rule of error rates of
learned items in STM (Ingber, 1984; Ingber, 1985b; Ingber, 1994).

At the macroscopic scale SMNI consistency was checked with most stable frequencies being in the
high alpha to low beta range, and the velocities of propagation of information across minicolumns being
consistent with other experimental data (Ingber, 1983; Ingber, 1985a).

More recently, SMNI has demonstrated that the currently accepted dipole EEG model can be
derived as the Euler-Lagrange equations of an electric-potential Lagrangian, describing the trajectories of
most likely states, making it possible to return to the “top-down” EEG model, but now with a derivation
and detailed structure given to the dipole model (Ingber, 1991; Ingber and Nunez, 1990). The SMNI
approach of fitting scaled nonlinear stochastic columnar activity directly to EEG data goes beyond the
dipole model, making it possible to extract more signal from noise.

3.1. Scales Illustrated

Illustrated in Fig. 5 are three biophysical scales of neocortical interactions: (a)-(a*)-(a’) microscopic
neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. In (a*) synaptic interneuronal
interactions, averaged over by mesocolumns, are phenomenologically described by the mean and variance
of a distribution Ψ (Ingber, 1982; Korn et al, 1981; Perkel and Feldman, 1979). Similarly, in (a)
intraneuronal transmissions are phenomenologically described by the mean and variance of Γ.
Mesocolumnar averaged excitatory (E) and inhibitory (I) neuronal firings are represented in (a’). In (b)
the vertical organization of minicolumns is sketched together with their horizontal stratification, yielding
a physiological entity, the mesocolumn. In (b’) the overlap of interacting mesocolumns is sketched. In
(c) macroscopic regions at the scale recognized as dipole sources of neocortex are illustrated as arising
from many mesocolumnar domains. These are the regions designated for study here. (c’) sketches how
regions may be coupled by long-ranged interactions.

Figure 5

3.2. SMNI vs Artificial Neural Networks

A quite different approach to neuronal systems is taken by artificial neural networks (ANN) (Hertz
et al, 1991). Both ANN and SMNI structures are represented in terms of units with algebraic properties
greatly simplifying specific realistic neuronal components. Of course, there is a clear logical difference
between considering a small ensemble of simple ANN units (each unit representing an “average” neuron)
to study the properties of small ensembles of neurons, versus considering distributions of interactions
between model neurons to develop a large ensemble of units (each unit representing a column of neurons)
developed by SMNI to study properties of large ensembles of columns.

Unlike SMNI, ANN models may yield insights into specific mechanisms of learning, memory,
retrieval, information processing among small ensembles of model neurons, etc. However, consider that
there are several million neurons located under a cm2 area of neocortical surface. Current estimates are
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that 1 to several percent of coherent neuronal firings account for the amplitudes of electric potential
measured on the scalp. This translates into measuring firings of hundreds of thousands of neurons as
contributing to activity measured under a typical electrode. Even when EEG recordings are made directly
on the brain surface, tens of thousands of neurons are contributing to activity measured under electrodes.
ANN models cannot approach the order of magnitude of neurons participating in phenomena at the scale
of EEG, just as neither ANN nor SMNI can detail relatively smaller scale activity at the membrane or
atomic levels. Attempts to do so likely would require statistical interpretations such as are made by
SMNI; otherwise the output of the models would just replace the data collected from huge numbers of
neuronal firings—a regression from 20th century Science back to Empiricism. Thus, as is the case in
many physical sciences, the SMNI approach is to perform prior statistical analyses up to the scale of
interest (here at EEG scales). The ANN approach must perform statistical analyses after processing its
units.

While ANN models use simplified algebraic structures to represent real neurons, SMNI models
develop the statistics of large numbers of realistic neurons representing huge numbers of synaptic
interactions—there are 104 to 105 synapses per neuron. Furthermore, unlike most ANN approaches,
SMNI accepts constraints on all its macrocolumnar averaged parameters to be taken from experimentally
determined ranges of synaptic and neuronal interactions (Braitenberg, 1978; Shepherd, 1979;
Sommerhoff, 1974; Vu and Krasne, 1992); there are no unphysical parameters. The stochastic and
nonlinear nature of SMNI development is directly derived from experimentally observed synaptic
interactions and from the mathematical development of observed minicolumns and macrocolumns of
neurons (Fitzpatrick and Imig, 1980; Goldman and Nauta, 1977; Hubel and Wiesel, 1962; Hubel and
Wiesel, 1977; Imig and Reale, 1980; Jones et al, 1978; Mountcastle, 1978). SMNI has required the use of
mathematical physics techniques first published in the late 1970’s in the context of developing an
approach to multivariate nonlinear nonequilibrium statistical mechanics (Dekker, 1980; Grabert and
Green, 1979; Graham, 1977a; Graham, 1977b; Langouche et al, 1982; Schulman, 1981).

Table I summarizes the comparison between the SMNI and ANN approaches.

Table I

3.3. Microscopic Neurons

A derivation has been given of the physics of chemical inter-neuronal and electrical intra-neuronal
interactions (Ingber, 1982; Ingber, 1983). This derivation generalized a previous similar derivation (Shaw
and Vasudevan, 1974). The derivation yields a short-time probability distribution of a given neuron firing
due to its just-previous interactions with other neurons. Within τ j∼5−10 msec, the conditional probability
that neuron j fires (σ j = +1) or does not fire (σ j = −1), given its previous interactions with k neurons, is

pσ j
≈ Γ  Ψ ≈

exp(−σ jFj)

exp(Fj) + exp(−Fj)
,

Fj =
Vj −

k
Σ a∗

jkvjk

((π
k′
Σ a∗

jk′(vjk′
2 + φ jk′

2)))1/2
,

ajk =
1

2
Ajk(σk + 1) + Bjk . (8)

This particular derivation assumed that simple algebraic summation of excitatory depolarizations
and inhibitory hyperpolarizations at the base of the inner axonal membrane determines the firing
depolarization response of a neuron within its absolute and relative refractory periods (Shepherd, 1979).
Many other neuroscientists agree that this assumption is reasonable when describing the activity of large
ensembles of neocortical neurons, each one typically having many thousands of synaptic interactions.
Recently, explicit experimental evidence has been found to support this premise (Jagadeesh et al, 1993).
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Γ represents the “intra-neuronal” probability distribution, e.g., of a contribution to polarization
achieved at an axon given activity at a synapse, taking into account averaging over different neurons,
geometries, etc. Ψ represents the “inter-neuronal” probability distribution, e.g., of thousands of quanta of
neurotransmitters released at one neuron’s postsynaptic site effecting a (hyper-)polarization at another
neuron’s presynaptic site, taking into account interactions with neuromodulators, etc. This development
is true for Γ Poisson, and for Ψ Poisson or Gaussian.

Vj is the depolarization threshold in the somatic-axonal region, vjk is the induced synaptic
polarization of E or I type at the axon, and φ jk is its variance. The efficacy ajk, related to the inverse
conductivity across synaptic gaps, is composed of a contribution Ajk from the connectivity between
neurons which is activated if the impinging k-neuron fires, and a contribution Bjk from spontaneous
background noise.

Even at the microscopic scale of an individual neuron, with soma ≈ 10 µm, this conceptual
framework assumes a great deal of statistical aggregation of molecular scales of interaction, e.g., of the
biophysics of membranes, of thickness ≈ 5 × 10−3 µm, composed of biomolecular leaflets of phospholipid
molecules (Caillé et al, 1980; Scott, 1975; von der Heydt et al, 1981).

3.4. Mesoscopic Aggregation

This microscopic scale itself represents a high aggregation of sub-microscopic scales, aggregating
effects of tens of thousands of quanta of chemical transmitters as they influence membrane scales at
5 × 10−3 µm. This microscopic scale is aggregated up to the mesoscopic scale (Ingber, 1981; Ingber,
1982; Ingber, 1983), using

Pq(q) = ∫ dq1dq2Pq1q2
(q1, q2)δ [q − (q1 + q2)] .

The SMNI approach can be developed without recourse to borrowing paradigms or metaphors from
other disciplines. Rather, in the course of a logical, nonlinear, stochastic development of aggregating
neuronal and synaptic interactions to larger and larger scales, opportunities are taken to use techniques of
mathematical physics to overcome several technical hurdles. After such development, advantage can be
taken of associated collateral descriptions and intuitions afforded by such mathematical and physics
techniques as they hav e been used in other disciplines, but paradigms and metaphors do not substitute for
logical SMNI development.

3.5. Mesoscopic Interactions

For the purposes of mesoscopic and macroscopic investigation, this biological picture can be cast
into an equivalent network. However, some aspects must not be simply cast away. At the microscopic
scale, we retain independence of excitatory (E) and inhibitory (I) interactions, and the nonlinear
development of probability densities. At the mesoscopic scale, we include the convergence and
divergence of minicolumnar and macrocolumnar interactions, and use nearest-neighbor (NN) interactions
to summarize interactions of up to 16th order in next-nearest neighbor interactions. At the macroscopic
scale, we include long-ranged interactions as constraints on mesocolumns.

3.6. Mathematical Development

A derived mesoscopic Lagrangian LM defines the short-time probability distribution of firings in a
minicolumn (Mountcastle, 1978), composed of ∼102 neurons, given its just previous interactions with all
other neurons in its macrocolumnar surround. G is used to represent excitatory (E) and inhibitory (I)
contributions. G designates contributions from both E and I.

The Lagrangian, essentially equal to the kinetic energy minus the potential energy, to first order in
an expansion about the most likely state of a quantum or stochastic system, gives a global formulation and
generalization of the well-known relation, force equals mass times acceleration (Feynman et al, 1964). In
the neocortex, the velocity corresponds to the rate of firing of a column of neurons, and a potential is
derived which includes nearest-neighbor interactions between columns. The Lagrangian formulation also
accounts for the influence of fluctuations about such most likely paths of the evolution of a system, by use
of a variational principle associated with its development. The Lagrangian is therefore often more useful
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than the Hamiltonian, essentially equal to the kinetic energy plus the potential energy, related to the
energy in many systems. This is especially useful to obtain information about the system without solving
the time-dependent problem; however, we also will describe neocortical phenomena requiring the full
solution.

For the purposes of this paper, the essential technical details to note are that a conditional
probability of columnar firing states is exponentially sensitive to a “Lagrangian” function, L. The
Lagrangian is a nonlinear function of a “threshold factor”, FG, itself a nonlinear function of firings MG.
Columnar firings may be simply represented; e.g., a set of 80 excitatory firings may be represented as
ME = −80 if all are not firing, ME = 0 if half are firing, or ME = 80 if all are firing.

PM =
G
Π PG

M[MG(r ; t + τ )|MG(r′; t)]

=
σ j

Σ δ


 jE
Σσ j − ME(r ; t + τ )




δ



 jI
Σσ j − MI(r ; t + τ )





N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG

M) ,

PM≈(2π τ )−1/2g1/2 exp(−Nτ LM) ,

LM = LE
M + LI

M = (2N)−1(Ṁ
G − gG)gGG′(Ṁ

G′ − gG′) + MGJG/(2Nτ ) − V′ ,

V′ =
G
Σ V′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + NG tanh FG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1NGsech2FG ,

g = det(gGG′) ,

FG =
(VG − a

|G|
G′ v

|G|
G′ N

G′ −
1

2
A

|G|
G′ v

|G|
G′ M

G′)

((π [(v
|G|
G′ )

2 + (φ |G|
G′ )

2](a
|G|
G′ N

G′ +
1

2
A

|G|
G′ M

G′)))1/2
,

aG
G′ =

1

2
AG

G′ + BG
G′ , (9)

where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies, vG
G′ and φ G

G′ are averaged
means and variances of contributions to neuronal electric polarizations. MG′ and NG′ in FG are afferent
macrocolumnar firings, scaled to efferent minicolumnar firings by N/N * ∼10−3, where N * is the number
of neurons in a macrocolumn, ∼105. Similarly, AG′

G and BG′
G have been scaled by N * /N∼103 to keep FG

invariant. This scaling is for convenience only, and does not affect any numerical details of calculations.
JG are Lagrange multipliers, originally introduced to include constraints imposed by long-ranged
interactions, but further SMNI development makes these unnecessary.

3.7. Inclusion of Macroscopic Circuitry

The most important features of this development are described by the Lagrangian LG in the negative
of the argument of the exponential describing the probability distribution, and the “threshold factor” FG in
the means and variances, describing an important sensitivity of the distribution to changes in its variables
and parameters.
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To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, the JG terms can be dropped, and more realistically replaced by a modified
threshold factor FG,

FG =
(VG − a

|G|
G′ v

|G|
G′ N

G′ −
1

2
A

|G|
G′ v

|G|
G′ M

G′ − a‡E
E′ vE

E′N
‡E′ −

1

2
A‡E

E′ vE
E′M

‡E′)

((π [(v
|G|
G′ )

2 + (φ |G|
G′ )

2](a
|G|
G′ N

G′ +
1

2
A

|G|
G′ M

G′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
,

a‡E
E′ =

1

2
A‡E

E′ + B‡E
E′ . (10)

This is further modified for use in mesoscopic neural networks (MNN) discussed below.

Here, afferent contributions from N‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons,
have been added, where N‡E might be on the order of 10% of N∗: Of the approximately 1010 to 1011

neocortical neurons, estimates of the number of pyramidal cells range from 1/10 to 2/3. Nearly every
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 1010.

3.8. Equivalent Nearest-Neighbor Interactions

Even representing a macrocolumn by 1000 minicolumnar interactions can become a formidable
task. Including all such minicolumnar interactions would require 16th-order next-neighbor interactions.
(Visualize a minicolumn in the center of a 33 × 33 grid of other minicolumns.) The numerical details of
SMNI and experimentally determined ranges of neuronal parameters justify a nearest-neighbor
approximation.

Nearest-neighbor (NN) interactions between mesocolumns are illustrated in Fig. 6. Afferent
minicolumns of ∼102 neurons are represented by the inner circles, and efferent macrocolumns of ∼105

neurons by the outer circles. Illustrated are the NN interactions between a mesocolumn, represented by
the thick circles, and its nearest neighbors, represented by thin circles. The area outside the outer thick
circle represents the effective number of efferent macrocolumnar nearest-neighbor neurons. This is the
number of neurons outside the macrocolumnar area of influence of the central minicolumn. This
approximation, albeit successful (Ingber, 1983), can be replaced by the more sophisticated MNN
algorithm (Ingber, 1992).

Figure 6

3.9. Minima Structure of Nonlinear Lagrangian

Examination of the minima structure of the spatially-averaged and temporally-averaged Lagrangian
provides some quick intuitive details about most likely states of the system. This is supported by further
analysis detailing the actual spatial-temporal minima structure. Illustrated in Fig. 7 is the surface of the
static (time-independent) mesoscopic neocortical Lagrangian L over the excitatory-inhibitory firing plane
(M

E − M
I
), for a specific set of synaptic parameters. All points on the surface higher than 5 × 10−3/τ have

been deleted to expose this fine structure.

Figure 7

4. SMNI Applications—STM

4.1. Derivation of Short-Term Memory (STM)

Within a time scale of several seconds, the human brain can store only about 7±2 auditory chunks
of information (Ericsson and Chase, 1982; Miller, 1956), modified as 4±2 chunks for visual memory
(Zhang and Simon, 1985). There is more awareness in the neuroscience community that phenomena such



SMNI - 9 -  Lester Ingber

as STM can have mechanisms at several neocortical scales (Eichenbaum, 1993).

At the mesoscopic scale, properties of STM— its capacity, duration and stability—have been
calculated, and found to be consistent with empirical observations (Ingber, 1984).

The maximum STM capacity, consistent with the 7 ± 2 rule, is obtained when a ‘‘centering
mechanism’’ is inv oked. This occurs when the threshold factor FG takes minima in the interior of MG

firing-space (i.e., not the corners of this space), as empirically observed. In the SMNI papers, the
background noise BG

G′ was reasonably adjusted to center FG, with JG = 0, but similar results could have
been obtained by adjusting the influence of the long-ranged fibers M‡G.

To derive this capacity rule of STM, choose empirical ranges of synaptic parameters corresponding
to a predominately excitatory case (EC), predominately inhibitory case (IC), and a balanced case (BC) in
between. For each case, also consider a ‘‘centering mechanism’’ (EC’, IC’, BC’), whereby some synaptic
parameter is internally manipulated, e.g., some chemical neuromodulation or imposition of patterns of
firing, such that there is a maximal efficiency of matching of afferent and efferent firings:

MG ≈ M∗G ≈ 0 .  (11)

This sets conditions on other possible minima of the static Lagrangian L.

4.2. Centering Mechanism

The centering effect is quite easy for the neocortex to accommodate. For example, this can be
accomplished simply by readjusting the synaptic background noise from BG

E to B′GE ,

B′GE =
VG − (

1

2
AG

I + BG
I )vG

I NI −
1

2
AG

E vG
E NE

vG
E NG

(12)

for both G = E and G = I.

This is modified straightforwardly when regional influences from M‡E are included, as used in
MNN. In general, BG

E and BG
I (and possibly AG

E and AG
I due to actions of neuromodulators, and JG or M‡E

constraints from long-ranged fibers) are available to force the constant in the numerator to zero, giving an
extra degree(s) of freedom to this mechanism. In this context, it is experimentally observed that the
synaptic sensitivity of neurons engaged in selective attention is altered, presumably by the influence of
chemical neuromodulators on postsynaptic neurons (Mountcastle et al, 1981).

The threshold factors greatly influence when and how smoothly the ‘‘step functions’’ tanh FG
IC in

gG(t ) change MG(t ) to MG(t + θ ). That is, assuming the drifts are a major driving force,

M(t + ∆t) ≈ M(t ) −
∆t

τ
((MG(t ) + NG tanh FG(t ))) (13)

together with ∆t ≤ τ can be used to approximately describe the influence on efferent firings from their
afferent inputs.

M(t + ∆t)∼ − NG tanh FG(t ) (14)

can be used as a first approximation.

An important side result is to drive most probable states, i.e., small L which is driven largely by
small FG, to regions where

vG
E AG

E ME ≈ |vG
I |AG

I MI . (15)

Since I−I efficacies typically are relatively quite small, the conditional probability density under the
centering mechanism is strongly peaked along the line

vE
EAE

EME ≈ |vE
I |AE

I MI . (16)

These numerical details are used to advantage to further develop SMNI to dipole scales.
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4.3. Applying the Centering Mechanism—“Inhibitory” State

A model of dominant inhibition describes how minicolumnar firings are suppressed by their
neighboring minicolumns. For example, the averaged effect is established by inhibitory mesocolumns
(IC) by setting AI

E = AE
I = 2AE

E = 0. 01N*/N. Since there appears to be relatively little I − I connectivity,
set AI

I = 0. 0001N*/N. The background synaptic noise is taken to be
BE

I = BI
E = 2BE

E = 10BI
I = 0. 002N*/N. As nonvisual minicolumns are observed to have ∼110 neurons and

as there appear to be a predominance of E over I neurons, here take NE = 80 and NI = 30. Use
N*/N = 103, JG = 0 (absence of long-ranged interactions), and VG, vG

G′, and φ G
G′ as estimated previously,

i.e., VG = 10 mV, |vG
G′| = 0. 1 mV, φ G

G′ = 0. 1 mV. The ‘‘threshold factors’’ FG
IC for this IC model are then

FE
IC =

0. 5M
I − 0. 25M

E + 3. 0

π 1/2(0. 1M
I + 0. 05M

E + 9. 80)1/2
,

FI
IC =

0. 005M
I − 0. 5M

E − 45. 8

π 1/2(0. 001M
I + 0. 1M

E + 11. 2)1/2
. (17)

FI
IC will cause efferent M

I
(t + ∆t) to fire for most afferent input firings, as it will be positive for most

values of M
G

(t ) in FI
IC, which is already weighted heavily with a term -45.8. Looking at FE

IC, it is seen that
the relatively high positive weights of afferent M

I
require at least moderate values of positive afferent M

E

to cause firings of efferent M
E
, diminishing the influence of M

E
.

Using the centering mechanism, B′EE = 1. 38 and B′II = 15. 3, and FG
IC is transformed to FG

IC′,

FE
IC′ =

0. 5M
I − 0. 25M

E

π 1/2(0. 1M
I + 0. 05M

E + 10. 4)1/2
,

FI
IC′ =

0. 005M
I − 0. 5M

E

π 1/2(0. 001M
I + 0. 1M

E + 20. 4)1/2
. (18)

4.4. Contours of “Inhibitory” State

In Fig. 8, contours of the Lagrangian illustrate ‘‘valleys’’ that trap firing-states of mesocolumns.
(τ L can be as large as 103.) I.e., valleys of the Lagrangian represent peaks in the conditional probability
density over the two MG firing variables, giving the most likely states of columnar firing. No interior
stable states are observed at scales of τ L ranging from 103 down to 10−2, until the “centering mechanism”
is turned on.

Figure 8

4.5. Applying the Centering Mechanism—“Excitatory” State

The other ‘‘extreme’’ of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (EC) by using the same parameters { BG

G′, vG
G′, φ G

G′, AI
I } as in the IC

model, but setting AE
E = 2AI

E = 2AE
I = 0. 01N*/N. This yields

FE
EC =

0. 25M
I − 0. 5M

E − 24. 5

π 1/2(0. 05M
I + 0. 10M

E + 12. 3)1/2
,

FI
EC =

0. 005M
I − 0. 25M

E − 25. 8

π 1/2(0. 001M
I + 0. 05M

E + 7. 24)1/2
. (19)

The negative constants in the numerators of FG
EC enhance efferent firings for both E and I afferent

inputs. However, the increased coefficient of M
E

in FE
EC (e.g., relative to its corresponding value in FE

IC),
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and the fact that M
E

can range up to NE = 80, readily enhance excitatory relative to inhibitory firings
throughout most of the range of M

E
. This is only a first approximation, and the full Lagrangian must be

used to determine the actual evolution.

Using the centering mechanism, B′EE = 10. 2 and B′II = 8. 62, and FG
EC is transformed to FG

EC′,

FE
EC′ =

0. 25M
I − 0. 5M

E

π 1/2(0. 05M
I + 0. 10M

E + 17. 2)1/2
,

FI
EC′ =

0. 005M
I − 0. 25M

E

π 1/2(0. 001M
I + 0. 05M

E + 12. 4)1/2
. (20)

4.6. Contours of “Excitatory” State

In Fig. 9, contours of the Lagrangian illustrate ‘‘valleys’’ that trap firing-states of mesocolumns.
(τ L can be as large as 103.) No interior stable states are observed at scales of τ L ranging from 103 down
to 10−2, until the “centering mechanism” is turned on.

Figure 9

4.7. Applying the Centering Mechanism—“Balanced” State

Now it is natural to examine a balanced case intermediate between IC and EC, labeled BC. This is
accomplished by changing AE

E = AI
E = AE

I = 0. 005N*/N. This yields

FE
BC =

0. 25M
I − 0. 25M

E − 4. 50

π 1/2(0. 050M
E + 0. 050M

I + 8. 30)1/2
,

FI
BC =

0. 005M
I − 0. 25M

E − 25. 8

π 1/2(0. 001M
I + 0. 050M

E + 7. 24)1/2
. (21)

Here the constant in the numerator of FE
BC, while still negative to promote E efferent firings, is much

greater than that in FE
EC, thereby decreasing the net excitatory activity to a more moderate level. A similar

argument applies in comparing FI
BC to FI

IC, permitting a moderate level of inhibitory firing.

Applying the centering mechanism to BC, B′EE = 0. 438 and B′II = 8. 62, and FG
BC is transformed to

FG
BC′,

FE
BC′ =

0. 25M
I − 0. 25M

E

π 1/2(0. 050M
I + 0. 050M

E + 7. 40)1/2
,

FI
BC′ =

0. 005M
I − 0. 5M

E

π 1/2(0. 001M
I + 0. 050M

E + 12. 4)1/2
. (22)

4.8. Contours of “Balanced” State

No interior stable states are observed at scales of τ L ranging from 103 down to 10−2, until the
“centering mechanism” is turned on, as illustrated in Fig. 10. In (a), Contours for values less than 0.04
are drawn for τ LBC. The M

E
axis increases to the right, from −NE = −80 to NE = 80. The M

I
axis

increases to the right, from −NI = −30 to NI = 30. In each cluster, the smaller values are closer to the
center. In (b), Contours for values less than 0.04 are drawn for τ LBC′.
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Figure 10

Thus, the BC′ model exhibits several stable states, which are calculated as minima of the
Lagrangian, or equivalently as peaks in the conditional probability distribution. These stable states are in
reasonable ranges of normal neocortex. This is not the case for the EC′ or IC′ models.

4.9. Modeling Visual Cortex STM

As illustrated in Fig. 11, when N = 220, modeling the number of neurons per minicolumn in visual
neocortex, then a maximum of only 5-6 minima are found within a given cluster, consistent with visual
STM. These minima are narrower, consistent with the sharpness required to store visual patterns.

Figure 11

4.10. Primacy Versus Recency Rule

SMNI also presents an explanation, or at least an upper statistical constraint, on the primacy versus
recency rule observed in serial processing (Murdock, 1983). First-learned items are recalled most error-
free, and last-learned items are still more error-free than those in the middle. That is, the deepest minima
are more likely first accessed, while the more recent memories or newer patterns have synaptic parameters
most recently tuned or are more actively rehearsed.

Note that for visual cortex, presentation of 7±2 items would have memories distributed among
different clusters, and therefore the recency effect should not be observed. Instead the 4±2 rule should
dictate the number of presented items.

4.11. STM Stability and Duration

To be more rigorous, stationary states are located, and possible hysteresis and/or jumps between
local minima are explicitly calculated. Detailed calculations identify the inner valleys of the parabolic
trough with stable short-term-memory states having durations on the order of tenths of a second (Ingber,
1984; Ingber, 1985a).

Stability is investigated by

δ Ṁ
G≈ − N2L,GG′δ MG′ . (23)

Therefore, minima of the static Lagrangian L are minima of the dynamic transient system defined by L.
The time of first passage is calculated as (Agarwal and Shenoy, 1981)

tvp≈π N−2

|L,GG′(<< M >>p)| L,GG′(<< M >>v)




−1/2

× exp {CNτ [L(<< M >>p) − L(<< M >>v)]} . (24)

For τ L∼10−2, the only values found for all three cases of firing, the time of first passage tvp is found
to be several tenths of second for jumps among most minima, up to 9. There is hysteresis for deeper

valleys at 10th-11th minima of LFBC′ at the corners of the M
G

plane. The hysteresis occurs in about a few
minutes, which is too long to affect the 7 ± 2 rule. This result is exponentially sensitive to N in Φ/D, and
exponentially sensitive to (N*N)1/2 in FG, the ‘‘threshold factor.’’

Use is made in later development of EEG analyses of the discovered nature of the line of stable
minima lying in a deep parabolic trough, across a wide range of cases of extreme types of firings.

5. SMNI Applications—EEG
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5.1. EEG Phenomena—Euler-Lagrange Approximation

When dealing with tens of thousands to millions of neurons, it seems reasonable, as a first
approximation, to consider only most likely spatial-temporal states of neocortex, without including the
complications of statistical processes. Since a Lagrangian is developed by SMNI, this can be
quantitatively articulated.

The variational principle permits derivation of the Euler-Lagrange equations. These equations are
then linearized about a given local minima to investigate oscillatory behavior (Ingber, 1983; Ingber,
1985a). Here, long ranged constraints in the form of Lagrange multipliers JG were used to efficiently
search for minima, corresponding to roots of the Euler-Lagrange equations. This illustrates how
macroscopic constraints can be imposed on the mesoscopic and microscopic systems. About a given
minima, a Taylor expansion is made, and spatial-temporal Fourier transformations are made to derive a
“dispersion relation.”

0 = δ̂ LF = LF,Ġ:t − δ̂GLF

≈ − f |G|M̈
|G| + f1

GṀ
G¬

− g
|G|

∇2M|G| + b|G|M
|G| + b MG¬

,

G¬ ≠ G ,

MG = MG− << M
G

>> ,

MG = Re MG
osc exp[−i(ξ ⋅ r − ω t)] ,

MG
osc(r , t) = ∫ d2ξ dω M̂

G
osc(ξ , ω ) exp[i(ξ ⋅ r − ω t)] ,

ωτ = ±{ − 1. 86 + 2. 38(ξ ρ)2; −1. 25i + 1. 51i(ξ ρ)2} , ξ = |ξ | .  (25)

It is calculated that

ω ∼102 sec−1 , (26)

which is equivalent to

ν = ω /(2π ) 16 cps (Hz) . (27)

This is approximately within the experimentally observed ranges of the alpha and beta frequencies.

5.2. Nearest-Neighbor Contours

As illustrated in Fig. 12, a numerical calculation of the coefficients, g
G

, of nearest-neighbor
interactions, (∇MG)2, shows that SMNI can support/describe both spreading activation of firings as well
as local containment of firings. The g

G
terms are responsible for the spatial dependence of the EEG

dispersion relations.

Figure 12

5.3. Propagation of Information

The propagation velocity v is calculated from

v = dω /dξ ≈1 cm/sec , ξ ∼30ρ , (28)

which tests the NN interactions, including the spatial content of SMNI at this stage of development.
Thus, within 10−1 sec, short-ranged interactions over sev eral minicolumns of 10−1 cm may simultaneously
interact with long-ranged interactions over tens of cm, since the long-ranged interactions are speeded by
myelinated fibers and have velocities of 600−900 cm/sec. In other words, interaction among different
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neocortical modalities, e.g., visual, auditory, etc., may simultaneously interact within the same time
scales, as observed.

This propagation velocity is consistent with the observed movement of attention (Tsal, 1983) and
with the observed movement of hallucinations across the visual field (Cowan, 1982), which moves at ∼1/2
mm/sec, about 5 times as slow as v. (The observed movement is about 8 msec/°, and a macrocolumn of
extent a mm processes 180° of visual field.)

5.4. Local and Global EEG

The derived mesoscopic dispersion relations also are consistent with other global macroscopic
dispersion relations, described by long-range fibers interacting across regions (Ingber, 1985a; Nunez,
1981). Other investigators have detailed specific neuronal mechanisms for local generators of EEG
(Lopes da Silva, 1991).

This SMNI model yields oscillatory solutions consistent with the alpha rhythm, i.e., ω ≈ 102 sec−1,
equivalent to ν = ω /(2π ) ≈ 16 Hz. This suggests that these complementary local and global theories may
be confluent, considered as a joint set of dispersion relations evolving from the most likely trajectories of
a joint Lagrangian, referred to as the ‘‘equations of motion,’’ but linearly simplified in neighborhoods of
minima of the stationary Lagrangian.

These two approaches, i.e., local mesocolumnar versus global macrocolumnar, giv e rise to
important alternative conjectures:

(1) Is the EEG global resonance of primarily long-ranged cortical interactions? If so, can relatively
short-ranged local firing patterns effectively modulate this frequency and its harmonics, to enhance
their information processing across macroscopic regions?

(2) Or, does global circuitry imply boundary conditions on collective mesoscopic states of local firing
patterns, and is the EEG a manifestation of these collective local firings?

(3) Or, is the truth some combination of (1) and (2) above? For example, the possibility of generating
EEG rhythms from multiple mechanisms at multiple scales of interactions, e.g., as discussed above,
may account for weakly damped oscillatory behavior in a variety of physiological conditions.

This theory has allowed the local and global approaches to complement each other at a common
level of formal analysis, i.e., yielding the same dispersion relations derived from the ‘‘equations of
motion,’’ analogous to Σ(forces) = d(momentum) /dt describing mechanical systems.

6. Nonlinear Stochastic Fit of SMNI to EEG

6.1. Linearization Aids Probability Development

More recently, the nonlinear statistical description of SMNI was further developed up to the
regional scales described as “dipoles.” This permitted fitting of the full SMNI probability distribution to
EEG data (Ingber, 1991).

As illustrated in Figs. 8-10, previous STM studies have detailed that the predominant physics of
short-term memory and of (short-fiber contribution) to EEG phenomena takes place in a narrow
‘‘parabolic trough’’ in MG-space, roughly along a diagonal line. That is, τ LM can vary by as much as 105

from the highest peak to the lowest valley in MG-space. Therefore, it is reasonable to assume that a single
independent firing variable might offer a crude description of this physics. Furthermore, the scalp
potential Φ can be considered to be a function of this firing variable. In an abbreviated notation
subscripting the time-dependence,

Φt− << Φ >>= Φ(ME
t , MI

t) ≈ a(ME
t − << ME >>) + b(MI

t− << MI >>) ,  (29)

where a and b are constants of the same sign, and << Φ >> and << MG >> represent a minima in the trough.
This determines an SMNI approach to study EEG under conditions of selective attention.

Laplacian techniques help to better localize sources of activity, and thereby present data more
suitable for modeling. Then Φ is more directly related to columnar firings, instead of representing the
electric potential produced by such activity.
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6.2. EEG Macrocolumnar Lagrangian

Again, aggregation is performed,

PΦ[Φt+∆t|Φt] = ∫ dME
t+∆tdMI

t+∆tdME
t dMI

tPM[ME
t+∆t, MI

t+∆t|M
E
t , MI

t]

δ [Φt+∆t − Φ(ME
t+∆t, MI

t+∆t)]δ [Φt − Φ(ME
t , MI

t)] . (30)

Under conditions of selective attention, within the parabolic trough along a line in M
G

space, the
parabolic shapes of the multiple minima, ascertained by the stability analysis, justifies a form

PΦ = (2π σ 2dt )−1/2 exp[−(dt /2σ 2) ∫ dxLΦ] ,

LΦ =
1

2
|∂Φ/∂t|2 −

1

2
c2|∂Φ/∂x|2 −

1

2
ω 2

0 |Φ|2 − F(Φ) ,  (31)

where F(Φ) contains nonlinearities away from the trough, and where σ 2 is on the order of 1/N, given the
derivation of LM above.

6.3. EEG Variational Equation

Previous calculations of EEG phenomena showed that the short-fiber contribution to the alpha
frequency and the movement of attention across the visual field are consistent with the assumption that
the EEG physics is derived from an average over the fluctuations σ of the system. This is described by
the Euler-Lagrange equations derived from the variational principle possessed by LΦ, more properly by
the ‘‘midpoint-discretized’’ LΦ, with its Riemannian terms, discussed below. Hence,

0 =
∂
∂t

∂LΦ

∂(∂Φ/∂t)
+

∂
∂x

∂LΦ

∂(∂Φ/∂x)
−

∂LΦ

∂Φ
. (32)

When expressed in the firing state variables, this leads to the same results published earlier (Ingber, 1983).

The result for the Φ equation is:

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ ω 2
0Φ +

∂F

∂Φ
= 0 .  (33)

If the identification

∂F

∂Φ
= Φf(Φ) (34)

is made, then

∂2Φ
∂t2

− c2 ∂2Φ
∂x2

+ [ω 2
0 + f(Φ)]Φ = 0 (35)

is recovered, i.e., the dipole-like string equation, eqn. (1).

The previous application of the variational principle was at the scale of minicolumns and, with the
aid of nearest-neighbor interactions, the spatial-temporal Euler-Lagrange equation gav e rise to dispersion
relations consistent with STM experimental observations. Here, the scale of interactions is at the
macrocolumnar level, and spatial interactions must be developed taking into account specific regional
circuitries.

6.4. Macroscopic Coarse-Graining

Now the issue posed previously, how to mathematically justify the intuitive coarse-graining of Φ to
get Φ†, can be approached.

In LΦ above, consider terms of the form

∫ Φ2dx = ∫ dx
∞

n
Σ

∞

m
Σ GnGm sin knx sin kmx
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=
n
Σ

m
Σ GnGm ∫ dx sin knx sin kmx

= (2π /R)
n
Σ G2

n . (36)

By similarly considering all terms in LΦ, a short-time probability distribution for the change in node n is
defined,

pn[Gn(t + ∆t)|Gn(t )] . (37)

Note that in general the F(Φ) term in LΦ will require coupling between Gn and Gm, n ≠ m. This defines

PΦ = p1p2
. . . p∞ . (38)

Now a coarse-graining can be defined that satisfies physical and mathematical rigor:

PΦ† = ∫ dkM+1dkM+2
. . . dk∞ p1p2

. . . pMpM+1pM+2
. . . p∞ . (39)

Since SMNI is developed in terms of bona fide probability distributions, variables which are not observed
can be integrated out. The integration over the fine-grained wav e-numbers tends to smooth out the
influence of the kn’s for n > M, effectively ‘‘renormalizing’’

Gn → G†
n ,

Φ → Φ† ,

LΦ → L†
Φ . (40)

This development shows how this probability approach to EEG specifically addresses experimental
issues at the scale of the more phenomenological dipole model.

6.5. Development of Macrocolumnar EEG Distribution

Advantage can be taken of the prepoint discretization, where the postpoint MG(t + ∆t) moments are
given by

m ≡< Φν − φ >= a < ME > +b < MI >= agE + bgI ,

σ 2 ≡< (Φν − φ )2 > − < Φν − φ >2= a2gEE + b2gII . (41)

Note that the macroscopic drifts and diffusions of the Φ’s are simply linearly related to the mesoscopic
drifts and diffusions of the MG’s. For the prepoint MG(t ) firings, the same linear relationship in terms of
{ φ , a, b } is assumed.

The data being fit are consistent with invoking the “centering” mechanism. Therefore, for the
prepoint ME(t ) firings, the nature of the parabolic trough derived for the STM Lagrangian is taken
advantage of, and

MI(t ) = cME(t ) , (42)

where the slope c is determined for each electrode site. This permits a complete transformation from MG

variables to Φ variables.

Similarly, as appearing in the modified threshold factor FG, each regional influence from electrode
site µ acting at electrode site ν , giv en by afferent firings M‡E, is taken as

M‡E
µ→ν = dν ME

µ (t − Tµ→ν ) ,  (43)

where dν are constants to be fitted at each electrode site, and Tµ→ν is the delay time estimated for inter-
electrode signal propagation, typically on the order of one to several multiples of τ = 5 msec. In future
fits, some experimentation will be performed, taking the T’s as parameters.
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This defines the conditional probability distribution for the measured scalp potential Φν ,

Pν [Φν (t + ∆t)|Φν (t )] =
1

(2π σ 2∆t)1/2
exp(−Lν ∆t) ,

Lν =
1

2σ 2
(Φ̇ν − m)2 . (44)

The probability distribution for all electrodes is taken to be the product of all these distributions:

P =
ν
Π Pν ,

L =
ν
Σ Lν . (45)

6.6. Development of EEG Dipole Distribution

The model derived for P[MG(t + ∆t)|MG(t )] is for a macrocolumnar-averaged minicolumn. Hence,
it is expected to be a reasonable approximation to represent a macrocolumn, scaled to its contribution to
Φν . Hence L is used to represent this macroscopic regional Lagrangian, scaled from its mesoscopic
mesocolumnar counterpart L.

However, the expression for Pν is extended to include the dipole assumption, to also use this
expression to represent several to many macrocolumns present in a region under an electrode: A
macrocolumn has a spatial extent of about a millimeter. Often most data represents a resolution more on
the order of up to several centimeters, many macrocolumns.

A scaling is tentatively assumed, to use the expression for the macrocolumnar distribution for the
electrode distribution, then checked to see if the fits are consistent with this scaling. One argument in
favor of this procedure is that it is generally acknowledged that only a small fraction of firings, those that
fire coherently, are responsible for the observed activity being recorded.

The results obtained here seem to confirm that this approximation is in fact quite reasonable. For
example, for the nonvisual neocortex, taking the extreme of permitting only unit changes in MG firings, it
seems reasonable to always be able to map the observed electric potential values Φ from a given electrode
onto a mesh a fraction of 4NENI ≈ 104.

It is expected that the use of MNN will make this scaling approximation unnecessary, because these
multiple scales can now be explicitly calculated and their interactions explicitly included.

6.7. Key Indicators of EEG Correlates to Brain States

The SMNI probability distribution can be used directly to model EEG data, instead of using just the
variational equations. Some important features not previously considered in this field were (Ingber,
1991):

• Intra-Electrode Coherency is determined by the standard deviations of excitatory and inhibitory
firings under a given electrode as calculated using SMNI. Once the SMNI parameters are fit, then
these firings are calculated as transformations on the EEG data, as described in terms of the SMNI
derived probability distributions. This is primarily a measure of coherent columnar activity.

• Inter-Electrode Circuitry is determined by the fraction of available long-ranged fibers under one
electrode which actively contribute to activity under another electrode, within the resolution of time
given in the data (which is typically greater than or equal to the relative refractory time of most
neurons, about 5−10 msec). This is primarily a measure of inter-regional activity/circuitry.
Realistic delays can be modeled and fit to data.

The electrical potential of each electrode, labeled by G, is represented by its dipole-like nature,
MG(t ), which is influenced by its underlying columnar activity as well as its interactions with other
electrodes, MG′, G ≠ G′. This can be expressed as:

Ṁ
G = gG + ĝG

i η i ,
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gG = −τ −1(MG + NG tanh FG) ,

ĝG
i = (NG/τ )1/2sechFG ,

FG =
(VG − a

|G|
G′ v

|G|
G′ N

G′ −
1

2
A

|G|
G′ v

|G|
G′ M

G′ − a‡E
E′ vE

E′N
‡E′ −

1

2
A‡E

E′ vE
E′M

‡E′)

((π [(v
|G|
G′ )

2 + (φ |G|
G′ )

2](a
|G|
G′ N

G′ +
1

2
A

|G|
G′ M

G′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
. (46)

The equivalent Lagrangian is used for the actual fits.

6.8. Pilot Study—EEG Correlates to Behavioral States

A pilot study (Ingber, 1991) used sets of EEG data, given to the author by Henri Begleiter,
Neurodynamics Laboratory at the State University of New York Health Center at Brooklyn, which were
obtained from subjects while they were reacting to pattern-matching “odd-ball”-type tasks requiring
varying states of selective attention taxing their short-term memory (Porjesz and Begleiter, 1990). Based
on psychiatric and family-history evaluations, 49 subjects were classified into two groups, 25 possibly
having high-risk and 24 possibly having low-risk genetic propensities to alcoholism.

After each subject’s data set, representing averages over 190 points of EEG data, was fitted to its
probability distribution, the data were again filtered through the fitted Lagrangian, and the mean and
mean-square values of MG were recorded as they were calculated from Φ. Then, the group’s averages and
standard deviations were calculated, the latter simply from {[< (MG)2 > − < MG >2]n/ (n − 1)}1/2, where
n = 49. This procedure gives the means and standard deviations of the effective firings, MG, aggregated
from all subjects under each electrode, as well as the weights d of the time-delayed inter-electrode inputs
M∗E.

Although MG were permitted to roam throughout their physical ranges of ±NE = ±80 and
±NI = ±30 (in the nonvisual neocortex, true for all these regions), their observed effective regional-
av eraged firing states were observed to obey the centering mechanism. That is, this numerical result is
consistent with the assumption that the most likely firing states are centered about the region
MG ≈ 0 ≈ M∗E in FG.

Fitted parameters were used to calculate equivalent columnar firing states and time delays between
regions. No statistical differences were observed between the total group, the high-risk group, and the
low-risk group. It now is generally understood that a genetic predisposition for alcoholism, if it exists, is
a multi-factor phenomena requiring a very large study group.

6.9. Sample Results — Total Group

As detailed in Table II, means and standard deviations of averages over EEG recordings from 49
subjects, representing 190 points of data per subject, are consistent with the centering mechanism during
selective attention tasks. Under each electrode the means and standard deviations of MG are given. Also
given for each electrode are the means and standard deviations of the individual-subject standard
deviations, here labeled as σ , aggregated from each subject. The physical bounds for all ME under these
nonvisual regions are ±NE = ±80. Also given are the weights d of the regional time-delayed contributions
dM∗E. The physical bounds for all ME and M∗E under these nonvisual regions are ±NE = ±N∗E = ±80; the
physical bounds for all MI are ±NI = ±30.

Table II

6.10. Future Sources of Data

Laplacian techniques help to better localize sources of activity, and thereby become more suitable
for the MNN modeling. By virtue of Poisson’s equation,

∇ ⋅ σ (r̃)∇φ (r̃, t) = s(r̃, t) ,  (47)
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where σ (r̃) is the tissue conductivity, s(r̃, t) is the macrocolumnar-averaged microsource typically ≈ 0.1−1
µA / mm3, and φ (r̃, t) is the micropotential. Thus, the Laplacian of the EEG potential, directly related to φ ,
presents an EEG variable directly related to columnar firings. Φ, instead of representing the EEG electric
potential, then is a direct measure of current flows described by temporal changes in firings MG.

There is at least one problem associated with the use of Laplacian filtering, a second-order
differentiation process. Differentiation generally tends to emphasize the noise contributions owing to
their typically sharper curvatures. As in similar modeling projects in combat analyses (Ingber, 1993a;
Ingber, Fujio, and Wehner, 1991; Ingber and Sworder, 1991) and finance (Ingber, 1990; Ingber, Wehner et
al, 1991), this can be alleviated by using the path-integral Lagrangian to determine the proper meshes.
Then, this resolution of data must be available for further modeling.

Future work will fit single-sweep data to the SMNI model, not averaged evoked potential (AEP)
data over 100’s of trials as in the previous study. As the SMNI model suggests, EEG “noise” likely
possesses non-constant structure developed from the statistical mechanics of neocortical interactions, and
the model should be fit directly to the single-sweep data to be able to extract the maximum signal.

6.11. Precursor Information of Epileptic Seizures

As an example of how SMNI might be applied in a clinical setting, its spatial and temporal aspects
can be become decision aids for treatment of epilepsy.

Improve Temporal Prediction of Seizures

If these SMNI techniques can find patterns of such upcoming activity some time before the trained
eye of the clinician, then the costs of time and pain in preparation for surgery can be reduced. This
project will determine inter-electrode and intra-electrode activities prior to spike activity to determine
likely electrode circuitries highly correlated to the onset of seizures. This can only do better than simple
av eraging or filtering of such activity, as typically used as input to determine dipole locations of activity
prior to the onset of seizures.

Improve Spatial Resolution

If a subset of electrode circuitries are determined to be highly correlated to the onset of seizures,
then their associated regions of activity can be used as a first approximate of underlying dipole sources of
brain activity affecting seizures. This first approximate may be better than using a spherical head model
to deduce such a first guess. Such first approximates can then be used for more realistic dipole source
modeling, including the actual shape of the brain surface to determine likely localized areas of diseased
tissue.

7. Relevant Mathematical/Numerical Aspects

7.1. Adaptive Simulated Annealing (ASA)

Optimal fitting of nonlinear/stochastic models to EEG data (Ingber, 1991) requires a very powerful
optimization algorithm. Adaptive simulated annealing (ASA) (Ingber, 1989; Ingber, 1993b; Ingber,
1993c), an enhanced algorithm derived from very fast simulated annealing (VFSR) (Ingber, 1989), was
developed for such applications.

This algorithm fits empirical data to a theoretical cost function over a D-dimensional parameter
space, adapting for varying sensitivities of parameters during the fit. Heuristic arguments have been
developed to demonstrate that this algorithm is faster than the fast Cauchy annealing, Ti = T0/k , and much
faster than Boltzmann annealing, Ti = T0/ ln k.

For parameters

α i
k ∈[Ai, Bi] ,  (48)

sampling with the random variable xi,

xi ∈[−1, 1] ,

α i
k+1 = α i

k + xi(Bi − Ai) ,  (49)
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define the generating function

gT(x) =
D

i=1
Π 1

2 ln(1 + 1/Ti)(|xi| + Ti)
≡

D

i=1
Π gi

T(xi) ,

in terms of parameter “temperatures”

Ti = Ti0 exp(−cik
1/D) .  (50)

The cost-functions L under consideration are of the form

h(M; α ) = exp(−L/T) ,

L = L∆t +
1

2
ln(2π ∆tg2

t ) ,  (51)

where L is a Lagrangian with dynamic variables M(t), and parameter-coefficients α to be fit to data. gt is
the determinant of the metric, and T is the cost “temperature.”

For sev eral test problems, ASA has been shown to be orders of magnitude more efficient than other
similar techniques, e.g., genetic algorithms. ASA has been applied to many complex systems, including
specific problems in neuroscience, finance (Ingber, 1990; Ingber, Wehner et al, 1991) and combat systems
(Ingber, 1993a; Ingber, Fujio, and Wehner, 1991; Ingber and Sworder, 1991).

7.2. Path Integral of Nonlinear Nonequilibrium Processes

7.2.1. Representations of Path Integral

There are three mathematically equivalent representations of multivariate multiplicative Gaussian-
Markovian systems. Their equivalence for quite arbitrarily nonlinear systems was established in the late
1970’s by mathematical physicists. SMNI was the first physical system to take advantage of the path-
integral representation, deriving it from neuronal interactions. All three representations have been useful
in the SMNI development.

The Langevin Rate-Equation exhibits a stochastic equation, wherein drifts can be arbitrarily
nonlinear functions, and multiplicative noise is added.

M(t + ∆t) − M(t )∼∆t f[M(t )] ,

Ṁ =
dM

dt
∼f ,

Ṁ = f + ĝη ,

< η(t ) >η= 0 , < η(t )η(t′) >η= δ (t − t′) .  (52)

The Diffusion Equation is another equivalent representation of Langevin equations. The first
moment ‘‘drift’’ is identified as f, and the second moment ‘‘diffusion,’’ the variance, is identified as ĝ2.

∂P

∂t
=

∂(−fP)

∂M
+

1

2

∂2(ĝ2P)

∂M2
. (53)

The Path-Integral Lagrangian represents yet another equivalent representation of Langevin
equations. It has been demonstrated that the drift and diffusion, in addition to possibly being quite
general nonlinear functions of the independent variables and of time explicitly, may also be explicit
functions of the distribution P itself (Wehner and Wolfer, 1987).

P[Mt+∆t|Mt] = (2π ĝ2∆t)−1/2 exp(−∆tL) ,

L = (Ṁ − f)2/(2ĝ2) ,
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P[Mt|Mt0] = ∫ . . . ∫ dMt−∆tdMt−2∆t
. . . dMt0+∆t

×P[Mt|Mt−∆t]P[Mt−∆t|Mt−2∆t] . . . P[Mt0+∆t|Mt0] ,

P[Mt|Mt0] = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLs) ,

DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s ∆t)−1/2dMs ,

∫ dMs →
N

α =1
Σ ∆Mα s , M0 = Mt0 , Mu+1 = Mt . (54)

This representation is useful for fitting stochastic data to parameters in L.

7.2.2. Calculation of Path Integral

Given a form for L, we use the path-integral to calculate the long-time distribution of variables.
This is impossible in general to calculate in closed form, and we therefore must use numerical methods.
Techniques and codes have been developed for calculating highly nonlinear multivariate Lagrangians. A
code has been developed to perform a detailed non-Monte Carlo path integral (Ingber, 1994), to calculate
the long-time probability distribution of rather arbitrarily nonlinear Lagrangians, based on a histogram
approach (Ingber, Fujio, and Wehner, 1991; Wehner and Wolfer, 1983a; Wehner and Wolfer, 1983b;
Wehner and Wolfer, 1987).

The path-integral calculation of the long-time distribution, in addition to being a predictor of
upcoming information, provides an internal check that the system can be well represented as a nonlinear
Gaussian-Markovian system. This calculation also serves to more sensitively distinguish among
alternative Lagrangians which may approximately equally fit the sparse data. The use of the path integral
to compare different models is akin to comparing long-time correlations. Complex boundary conditions
can be cleanly incorporated into this representation, using a variant of ‘‘boundary element’’ techniques.

The histogram procedure recognizes that the distribution can be numerically approximated to a high
degree of accuracy as sum of rectangles at points Mi of height Pi and width ∆Mi. For convenience, just
consider a one-dimensional system. The above path-integral representation can be rewritten, for each of
its intermediate integrals, as

P(M; t + ∆t) = ∫ dM′[g1/2
s (2π ∆t)−1/2 exp(−Ls∆t)]P(M′; t)

= ∫ dM′G(M, M′; ∆t)P(M′; t) ,

P(M; t) =
N

i=1
Σ π (M − Mi)Pi(t ) ,

π (M − Mi) =







1 ,  (Mi −
1

2
∆Mi−1) ≤ M ≤ (Mi +

1

2
∆Mi) ,

0 ,  otherwise ,
(55)

which yields

Pi(t + ∆t) = Tij(∆t)Pj(t ) ,

Tij(∆t) =
2

∆Mi−1 + ∆Mi
∫ Mi+∆Mi/2

Mi−∆Mi−1/2
dM ∫ Mj+∆Mj/2

Mj−∆Mj−1/2
dM′G(M, M′; ∆t) . (56)
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7.2.3. PATHINT Path-Integral Evolution of Fitted EEG

The author has generalized the Wehner-Wolfer algorithm to arbitrary dimensions. The utility of
this code extends to many sciences in addition to physics and chemistry, e.g., to simulations analyses
(Ingber, Fujio, and Wehner, 1991) and finance (Ingber, 1990; Ingber, 1995b; Ingber, Wehner et al, 1991).
PATHINT has been used to rigorously evolve STM constraints (Ingber, 1994), previously approximately
analysed using asymptotic limits of the SMNI mesocolumnar probability distribution (Ingber, 1984;
Ingber, 1985b).

This PATHINT code is an important partner to the ASA code previously developed. ASA has made
it possible to perform fits of complex nonlinear probability distributions to EEG data. Now, using ASA,
the parameters of the fitted SMNI distribution can be used to determine a distribution of firings in a short
initial time epoch of EEG. Then, PATHINT can be used to predict the evolution of the system, possibly to
predict oncoming states, e.g., epileptic seizures of patients baselined to a fitted distribution.

As an example of a recent application of PATHINT to STM, Fig. 13 is the evolution of model BC′
at τ , after 100 foldings of the path integral (Ingber and Nunez, 1995).

Figure 13

In agreement with previous studies (Ingber, 1984; Ingber, 1985b), models BC′ and BC′_VIS
support multiple stable states in the interior physical firing MG-space for time scales of a few tenths of a
second. Models EC′ and IC′ do not possess these attributes.

Fig. 14 examines the interior of MG-space of model BC′_VIS at time τ (Ingber and Nunez, 1995).

Figure 14

7.3. Invariants

7.3.1. Induced Riemannian Geometry

A Riemannian geometry is derived as a consequence of nonlinear noise, reflecting that the
probability distribution is invariant under general nonlinear transformations of these variables (Langouche
et al, 1982).

This becomes explicit under a transformation to the midpoint discretization, in which the standard
rules of differential calculus hold for the same distribution:

MG(ts) =
1

2
(MG

s+1 + MG
s ) , Ṁ

G
(ts) = (MG

s+1 − MG
s )/θ ,

P̃ =
ν
Π P , P = ∫ . . . ∫ DM exp(−

u

s=0
Σ ∆tLFs) ,

DM = g1/2
0+

(2π ∆t)−1/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π ∆t)−1/2dMG

s ,

∫ dMG
s →

NG

α =1
Σ ∆MG

α s , MG
0 = MG

t0
, MG

u+1 = MG
t ,

LF =
1

2
(Ṁ

G − hG)gGG′(Ṁ
G′ − hG′) +

1

2
hG

;G + R/ 6 − V ,

[. . .],G =
∂[. . .]

∂MG
,
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hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[M
G(ts), ts] = det(gGG′)s , gs+

= gs[M
G
s+1, ts] ,

hG
;G = hG

,G + ΓF
GFhG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF[JK , L] = gLF(gJL,K + gKL,J − gJK ,L) ,

R = gJLRJL = gJLgJKRFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK) + gMN(ΓM

FKΓN
JL − ΓM

FLΓN
JK) .  (57)

This geometry presents us with possible invariants of the system. This can function like a “fuzzy” pattern
matcher, to extract full invariant patterns when only a smaller signal can be extracted from noise.

7.3.2. Calculation of Information

Information is well defined in terms of a path integral:

I = ∫ DM̃ P̃ ln(P̃/P) (58)

with respect to a reference distribution P (Graham, 1978; Haken, 1983). Like the probability distribution
P̃ which defines it, information also is an invariant under general nonlinear transformations.

Some investigators have tried to directly fit statistical white-noise models of mutual information
under different electrodes (Gersch, 1987; Mars and Lopes da Silva, 1987). SMNI first fits observables
(electric potentials or current flows) to probability distributions, describing inter-electrode interactions via
long-ranged fibers and intra-electrode interactions via short-ranged fibers, before calculating the
information.

For example, sensory cortex may transmit information to motor cortex, although they hav e
somewhat different neuronal structures or neuronal languages. This information flow can be relatively
independent of information flows that take place at finer resolutions, e.g., across a subset of synaptic gaps
or individual neurons.

7.4. Mesoscopic Neural Networks (MNN)

7.4.1. Generic Mesoscopic Neural Networks

The SMNI methodology also defines an algorithm to construct a mesoscopic neural network
(MNN), based on realistic neocortical processes and parameters, to record patterns of brain activity and to
compute the evolution of this system (Ingber, 1992). MNN makes it possible to add a finer minicolumnar
scale to the explicit SMNI development at the mesoscopic and regional scales. MNN permits an overlap
in scales being investigated by SMNI and ANN.

Furthermore, this new algorithm is quite generic, and can be used to similarly process information
in other systems, especially, but not limited to, those amenable to modeling by mathematical physics
techniques alternatively described by path-integral Lagrangians, Fokker-Planck equations, or Langevin
rate equations. This methodology is made possible and practical by a confluence of techniques drawn
from SMNI itself, modern methods of functional stochastic calculus defining nonlinear Lagrangians
(Langouche et al, 1982), ASA, and parallel-processing computation.

• SMNI describes reasonable mechanism for information processing in neocortex at columnar scales.

• Modern stochastic calculus permits development of alternative descriptions of path-integral
Lagrangians, Fokker-Planck equations, and Langevin rate equations. The induced Riemannian
geometry affords invariance of probability distribution under general nonlinear transformations.
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• ASA presents a powerful global optimization that has been tested in a variety of problems defined
by nonlinear Lagrangians.

• Parallel-processing computations can be applied to ASA as well as to a neural-network architecture,
as illustrated by the MNN algorithm (Ingber, 1992).

7.4.2. Further Development of SMNI for MNN

While the development of nearest-neighbor interactions into a potential term V′ was useful to
explore local EEG dispersion relations, for present purposes this is not necessary. As permitted in the
development of SMNI, minicolumnar interactions with firings M†G are simply incorporated into FG:

FG =
VG − v

|G|
G′ T

|G|
G′

((π [(v
|G|
G′ )

2 + (φ |G|
G′ )

2]T
|G|
G′ ))

1/2
,

T
|G|
G′ = a

|G|
G′ N

G′ +
1

2
A

|G|
G′ M

G′

+a
†|G|
G′ N†G′ +

1

2
A

†|G|
G′ M†G′

+a
‡|G|
G′ N‡G′ +

1

2
A

‡|G|
G′ M‡G′ ,

a†G
G′ =

1

2
A†G

G′ + B†G
G′ ,

A‡I
E = A‡E

I = A‡I
I = B‡I

E = B‡E
I = B‡I

I = 0 ,

a‡E
E =

1

2
A‡E

E + B‡E
E . (59)

MG represent firings internal to a given minicolumn. M†G represent firings among minicolumns within a
macrocolumn. M‡E represent firings among minicolumns in macrocolumns under different electrodes
(only G = E firings exist).

7.4.3. SMNI MNN Representation

SMNI can be further developed using MNN as a set of nodes, each described by a short-time
probability distribution interacting with the other nodes, on at least two scales.

If each node represents a macrocolumn, or a “macro-node,” a set of 100 such macro-nodes could
represent a dipole source at the scale recorded by EEG. Even a 10 macro-node representation would tone
down the order of magnitude scaling of macrocolumnar probability distributions to represent dipole
sources. This should give a more accurate representation of inter-electrode circuitry, possibly even of
intra-electrode coherencies.

If a “meso-node” represents a minicolumn, a set of 1000 such meso-nodes represents a
macrocolumn. If at least two foldings of temporal interactions are permitted to develop interactions
during time epochs typically measured in EEG recordings, then at least one “hidden” layer of meso-nodes
should be included. This would make unnecessary the use of nearest-neighbor interactions to represent
local spatial interactions across minicolumns. While the inclusion of this meso-node structure might not
seem essential to model EEG, this enhancement of SMNI is at least important to clarify other neocortical
mechanisms involved in STM, and this could give a more accurate representation of intra-electrode
coherencies.

A circuitry among patches of macrocolumns, “regional-nodes,” represents a typical circuit of
activity correlated to specific behavioral states as recorded by EEG under specific experimental
conditions.
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It is clear that the addition of “micro-nodes,”, with 100 neuronal micro-nodes representing a
minicolumn, would quickly overwhelm computer resources if applications to model macroscopic
phenomena such as EEG are required. Statistical mechanics plays an important role in making
neocortical modeling not only accessible to numerical computation, but also to human conceptual
understanding of processes that operate at different scales, a worthy goal of any modeling effort that
elevates science from empiricism (Jammer, 1974). The human brain, as well as other complex systems,
develops mechanisms at mesoscopic scales to more efficiently process information.

7.4.4. Minicolumnar Interactions

As illustrated in Fig. 15, minicolumnar interactions are represented across three scales: intra-
macrocolumnar within a given macrocolumn, intra-regional and inter-macrocolumnar within a given
region and between macrocolumns, and inter-regional between regions. The large solid circles represent
regions, the intermediate long-dashed circles represent macrocolumns, and the small short-dashed circles
represent minicolumns.

Figure 15

7.4.5. Generic MNN

This SMNI MNN can be generalized to model other large-scale nonlinear stochastic multivariate
systems, by considering general drifts and diffusions to model such systems, now letting G represent an
arbitrary number of variables. Ideally, these systems inherently will be of the Fokker-Planck type,

∂P

∂t
=

∂(−gGP)

∂MG
+

1

2

∂2(gGG′P)

∂MG∂MG′ . (60)

The topology, geometry, and connectivity of the MNN can of course be generalized. There need
not be any restriction to nearest-neighbor interactions, although this is simpler to implement especially on
parallel processors. Also, “hidden layers” can be included to increase the complexity of the MNN,
although the inclusion of nonlinear structure in the drifts gG and diffusions gGG′ may make this
unnecessary for many systems.

This addresses some concerns in the neural network community relating to the ability of neural
networks to be trusted to generalize to new contexts: If the nodes can be described by mechanisms
inherently consistent with system, then more confidence can be justified for generalization. This is more
desirable and likely more robust, than using additional “hidden layers” to model such nonlinear structures.

7.4.6. MNN Learning

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
“firings,” or multivariate MG “spins.” The “weights,” or coefficients of functions of MG appearing in the
drifts and diffusions, are fit to incoming data, considering the joint “effective” Lagrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function.

The cost function is a sum of effective Lagrangians from each node and over each time epoch of
data. This program of fitting coefficients in Lagrangian uses methods of adaptive simulated annealing
(ASA). This maximum likelihood procedure (statistically) avoids problems of trapping in local minima,
as experienced by other types of gradient and regression techniques.

7.4.7. MNN Prediction

“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equations. The Itô (prepoint-discretized) Langevin
equation is analyzed in terms of the Wiener process dWi, which is rewritten in terms of Gaussian noise
η i = dWi/dt in the limit:

MG(t + ∆t) − MG(t ) = dMG = gGdt + ĝG
i dWi ,
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dMG

dt
= Ṁ

G = gG + ĝG
i η i ,

M = { MG; G = 1, . . . , Λ } , η = { η i; i = 1, . . . , N } ,

< η j(t ) >η= 0 , < η j(t ), η j′(t′) >η= δ jj′δ (t − t′) .  (61)

Moments of an arbitrary function F(η) over this stochastic space are defined by a path integral over η i.
The Lagrangian diffusions are calculated as

gGG′ =
N

i=1
Σ ĝG

i ĝG′
i . (62)

The calculation of the evolution of Langevin systems has been implemented in the above-
mentioned systems using ASA. It has been used as an aid to debug the ASA fitting codes, by first
generating data from coupled Langevin equations, relaxing the coefficients, and then fitting this data with
the effective Lagrangian cost-function algorithm to recapture the original coefficients within the diffusions
defined by gGG′.

7.4.8. MNN Parallel Processing

The use of parallel processors can make this algorithm even more efficient, as ASA lends itself well
to parallelization.

• During “learning,” blocks of random numbers are generated in parallel, and then sequentially
checked to find a generating point satisfying all boundary conditions.

• Advantage is taken of the low ratio of acceptance to generated points typical in ASA, to generate
blocks of cost functions, and then sequentially checked to find the next best current minimum.

• Additionally, when fitting dynamic systems, e.g., the three physical systems examined to date,
parallelization is attained by independently calculating each time epoch’s contribution to the cost
function.

• Similarly, during “prediction,” blocks of random numbers are generated to support the Langevin-
equation calculations, and each node is processed in parallel.

7.5. Nonlinear Dynamics — Chaos?

What if EEG has chaotic mechanisms that overshadow the above stochastic considerations? The
real issue is whether the scatter in data can be distinguished between being due to noise or chaos (Pool,
1989). In this regard, we note that several studies have been proposed with regard to comparing chaos to
simple filtered (colored) noise (Grassberger, 1986; Pool, 1989). Since we have previously derived the
existence of multiplicative noise in neocortical interactions, then the previous references must be
generalized, such that we must investigate whether EEG scatter can be distinguished from multiplicative
noise.

Similar to serious work undertaken in several fields (Brock, 1986; Grassberger, 1986), the impulse
to identify ‘‘chaos’’ in a complex system often has been premature. It is not supported by the facts,
tentative as they are because of sparse data. Similar caution should be exercised regarding neocortical
interactions.

A more purposeful project is to compare stochastic with deterministic models of data. Today much
attention is turning to the use of deterministic chaotic models for short-time predictions of systems. For
example, if only short-time predictions are required, and if a deterministic chaotic model could well
describe stochastic data within these epochs, then this model might be more computationally efficient
instead of a more ‘‘correct’’ stochastic model, which would be necessary for long-time predictions. The
scales of time involved are of course system dependent, and the deterministic chaotic modeling of data is
still in its infancy (Abarbanel et al, 1990).

Similarly, the above SMNI-derived distributions can be used to help determine if chaos is a viable
mechanism in EEG. The probability distribution itself is a mathematical measure to which tests can be
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applied to determine the existence of other nonlinear mechanisms. The path integral has been used to
compare long-time correlations in data to predictions of models, while calculating their sensitivity, e.g., of
second moments, to initial conditions (Ingber, Fujio, and Wehner, 1991). This also helps to compare
alternative models, previously having their short-time probability distributions fit to data, with respect to
their predictive power over long time scales.

While these studies are concerned with neocortical interactions, it is of interest to note a series of
experimental and theoretical studies of nonlinear dynamics of the olfactory bulb in small mammals, in
which distinctive EEG patterns on the bulb surface are shown to be associated with specific odors (Baird,
1986; Freeman, 1987; Freeman and Skarda, 1985). These studies demonstrating chaos are very much
model dependent, and as such it is only fair to present the models as possessing chaos, not necessarily the
actual physical system.

For example, it has been widely noted that the correlation dimension of data is difficult to calculate;
perhaps it is often not even a well-founded concept, e.g., since the EEG of event-related potentials is
likely nonstationary and very much context and subject dependent (Rapp et al, 1989). Its calculation,
e.g., using the popular Grassberger-Procaccia algorithm (Grassberger and Procaccia, 1983), even when
supplemented with finer statistical tests (Brock et al, 1996) and noise reduction techniques (Broomhead
and King, 1986), may prove fruitful, but likely only as a sensitivity index relative to shifting contexts and
complementary to other models of EEG data.

8. Conclusion

8.1. Scaling Paradigm

These results, in addition to their importance in reasonably modeling EEG with SMNI, also have a
deeper theoretical importance with respect to the scaling of neocortical mechanisms of interaction across
disparate spatial scales and behavioral phenomena.

Summarizing some of the above equations, the derivation of the mesoscopic probability
distribution, yields similar algebraic structures of the threshold factors at the neuronal scale,

Fj =
Vj −

k
Σ ajkvjk

((π
k′
Σ ajk′(v

2
jk′ + φ 2

jk′)))
1
2

, (63)

to be compared with the mesoscopic threshold factor,
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(VG − a
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, (64)

which contribute to the drifts gG and diffusions gGG,

gG = −τ −1(MG + NG tanh FG) ,

gGG′ = (gGG′)
−1 = δ G′

G τ −1NGsech2FG . (65)

The common algebraic factors in the Fj and FG factors illustrate the similar mechanisms of threshold
activity at their appropriate scales of neurons and columns of neurons, respectively.

The macroscopic regional probability distribution has the same functional form as the mesoscopic
distribution, where the macroscopic drifts and diffusions of the potentials described by the Φ’s are simply
linearly related to the (nonlinear) mesoscopic drifts and diffusions of the columnar firing states given by
the MG’s.

m ≡< Φν − φ >= a < ME > +b < MI >= agE + bgI ,

σ 2 ≡< (Φν − φ )2 > − < Φν − φ >2= a2gEE + b2gII . (66)
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It was possible to scale the macrocolumnar distribution to describe electrode recording areas of
several cm2, and have the fitted parameters lie within their experimentally observed ranges.

8.2. Addressing Phenomena at Multiple Scales

Analyzing, understanding, and attempting to predict neocortical phenomena at the spatial scales
encountered in EEG scalp recordings involves measuring firings from millions of neurons; in intracortical
measurements at least tens of thousands of neurons are involved. SMNI approaches such scales as new
systems with emergent phenomena. Just as the physics and chemistry of many large-scale systems, such
as encountered in fluid and plasma states, could not have progressed this century if all theoretical and
experimental research were inappropriately constrained to be understood at the level of quantum
mechanics (or quarks or strings), so neuroscience must soon accept that all brain phenomena is not best
understood or perhaps understood at all at the level of simple neuron-neuron interactions (or membrane
dynamics or macromolecular interactions). Different scales present new complex systems that must be
approached as such and often with different approaches.

8.3. SMNI Features for Further Application and Testing

The following features of SMNI are also a set of guidelines to implement and test in future studies
of EEG data.

Logical and Testable Development Across Multiple Scales

In the course of a logical, nonlinear, stochastic development of aggregating neuronal and synaptic
interactions to larger and larger scales, opportunities are taken to use techniques of mathematical physics
to overcome several technical hurdles. Paradigms and metaphors from other disciplines do not substitute
for logical SMNI development.

Validity Across Multiple Scales

The SMNI theoretical model has independent validity in describing EEG dispersion relations,
systematics of short-term memory, velocities of propagation of information across neocortical fields,
recency versus primacy effects, etc. Fits of such models to data should do better in extracting signal from
noise than ad hoc phenomenological models.

Use of ASA and PATHINT on Nonlinear Stochastic Systems

ASA enables the fitting of quite arbitrary nonlinear stochastic models to such data as presented by
EEG systems. This means that functional dependences in the noise itself (the diffusion matrix) as well as
the functional dependences in the driving terms (the drift vector) can be fit directly. Once fitted,
PATHINT can evolve the system, testing long-time correlations between the model(s) and the data, as
well as serving to predict events.

Inclusion of Short-Range and Long-Range Interactions

SMNI proposes that models to be fitted to data include models of activity under each electrode, e.g.,
due to short-ranged neuronal fibers, as well as models of activity across electrodes, e.g., due to long-
ranged fibers. These influences can be disentangled by SMNI fits.

Riemannian Invariants

Yet to explore are the ramifications of using the derived (not hypothesized) Riemannian metric
induced by multivariate Fokker-Plank-type systems. This seems to form a natural invariant measure of
information, that could/should be used to explore flows of information between neocortical regions.

Renormalization of Attenuated Frequencies

The SMNI approach shows how to “renormalize” the spatial activity to get a model that more
closely matches the experimental situation, wherein there is attenuation of ranges of wav e numbers. This
program must be carried out.

MNN Real-Time Processing and Audit Trail to Finer Scales

The MNN parallel algorithm may offer real-time processing of nonlinear modeling and fitting of
EEG data for clinical use. Regional EEG data can be interpreted as mechanisms occurring at the
minicolumnar scales. This algorithm will be implemented in the future.
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8.4. Utility, Parsimony, & Beauty

SMNI presents a computational algorithm faithful to a model of neocortical interactions that has
been baselined to experimental observations across multiple scales. This project is constructing a tool to
be used for real-time study and diagnoses of brain function.

Similar to the neocortex, in many complex systems, as spatial-temporal scales of observation are
increased, new phenomena arise by virtue of synergistic interactions among smaller-scale entities—
perhaps more properly labeled ‘‘quasientities’’—which serve to explain much observed data in a
parsimonious, usually mathematically aesthetic, fashion (Gardiner, 1983; Haken, 1983; Kubo et al, 1973;
Nicolis and Prigogine, 1973; van Kampen, 1981). Many complex systems are in nonequilibrium, being
driven by nonlinear and stochastic interactions of many external and internal degrees of freedom. For
these systems, classical thermodynamical approaches typically do not apply (Ma, 1985). Such systems
are best treated by respecting some intermediate mesoscale as “fundamental” to drive larger macroscopic
processes.

The use of ASA and PATHINT permit the processing of quite general nonlinear, stochastic, and
multivariate descriptions of systems, without being limited to equilibrium energy-type functions.
Phenomena specific to given scales of interaction must be modeled and studied, as well as the flow of
information across these scales. The stochastic nonlinear SMNI paradigm permits this development.
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Table Captions

TABLE I.
Comparison of ANN and SMNI approaches to EEG scales.

TABLE II.
SMNI fits to EEG data of all 49 subjects in the experiment described in the text, expressed in terms of
intra-electrode firing states and inter-electrode connectivity. EEG data courtesy of Henri Begleiter.
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Figure Captions

Fig. 1. Standard EEG electrode map.

Fig. 2. Sample EEG power spectra. The upper left figure is mu rhythm at 8.0 Hz. The lower right figure
is alpha rhythm at 9.5 Hz. Figure courtesy of Paul Nunez.

Fig. 3. Illustration of scales underlying dipole approximation. Figure courtesy of Paul Nunez.

Fig. 4. Mechanical string analogy to spatial-temporal EEG.

Fig. 5. Multiple scales of neocortical interactions.

Fig. 6. Representation of nearest-neighbor mesocolumnar interactions.

Fig. 7. Example of minima structure of Lagrangian.

Fig. 8. Contours of inhibitory-state Lagrangian.

Fig. 9. Contours of excitatory-state Lagrangian.

Fig. 10. Contours of balanced-state Lagrangian.

Fig. 11. Contours of balanced-state Lagrangian for visual neocortex.

Fig. 12. Contours of nearest-neighbor contributions to Lagrangian.

Fig. 13. Path-integral evolution of minicolumnar Lagrangian at 50τ , approximately 0.5 sec for model
BC′.
Fig. 14. Path-integral evolution of minicolumnar Lagrangian at 50τ , approximately 0.5 sec, for model
BC′_VIS, using denser minicolumns appropriate to visual neocortex. Probability densities are cut off for
values higher than 0.0001 to expose the clustering effect.

Fig. 15. Illustration of interactions between regions, macrocolumns and minicolumns.
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Feature SMNI ANN

spatial unit minicolumn neuron

spatial scale 105 − 106 neurons 102 − 103 neurons

large sets of neurons pre-analysis post-analysis

neuronal features statistical constraints neuronal mechanisms

columnar features columnar interactions columnar formation

scalp EEG applications yes probably not

intra-cortical EEG yes yes

spike EEG no yes
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Electrode Mean ME S.D. ME Mean σ (ME) S.D. σ (ME)

Fz 1.13661 3.8754 6.09339 5.30891
Cz -0.533493 4.83208 6.31146 5.59003
Pz -0.3158 3.87471 5.44242 5.50453
P3 -0.121703 10.1069 8.152 7.08701
P4 -0.0208276 7.47837 11.0526 7.04522

Electrode Mean MI S.D. MI Mean σ (MI) S.D. σ (MI)

Fz 1.83249 7.11368 11.4131 2.71679
Cz 0.229446 5.89307 11.5578 2.68969
Pz -0.255393 6.37452 12.4699 2.86198
P3 -0.0234756 7.39736 10.5579 3.2693
P4 -0.0271411 6.25121 12.0525 2.52846

Electrode Mean d S.D. d

Fz → Cz 0.389722 0.291677
Cz → Pz 0.377305 0.266958
Pz → P3 0.536313 0.288519
Pz → P4 0.485525 0.294742
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