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A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving

aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical

properties of synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has

demonstrated its capability in describing large-scale properties of short-term memory and

electroencephalographic (EEG) systematics. The necessity of including nonlinear and stochastic

structures in this development has been stressed. Sets of EEG and evoked potential data were fit,

collected to investigate genetic predispositions to alcoholism and to extract brain “signatures” of short-

term memory. Adaptive Simulated Annealing (ASA), a global optimization algorithm, was used to

perform maximum likelihood fits of Lagrangians defined by path integrals of multivariate conditional

probabilities. Canonical momenta indicators (CMI) are thereby derived for individual’s EEG data. The

CMI give better signal recognition than the raw data, and can be used to advantage as correlates of

behavioral states. These results give strong quantitative support for an accurate intuitive picture,

portraying neocortical interactions as having common algebraic or physics mechanisms that scale across

quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among

neurons, columns of neurons, and regional masses of neurons.
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1. INTRODUCTION

A model of statistical mechanics of neocortical interactions (SMNI) has been developed [1-20],

describing large-scale neocortical activity on scales of mm to cm as measured by scalp EEG, with an

audit trail back to minicolumnar interactions among neurons. There are several aspects of this modeling

that should be further investigated: to explore the robustness of the model, the range of experimental

paradigms to which it is applicable, and further development that can increase its spatial resolution of

EEG.

The underlying mathematical physics used to develop SMNI gives rise to a natural coordinate system

faithful to nonlinear multivariate sets of potential data such as measured by multi-electrode EEG,

canonical momenta indicators (CMI) [20-22]. Recent papers in finance [21,22] and in EEG systems [20]

have demonstrated that CMI give enhanced signal resolutions over raw data.

The basic philosophy of SMNI is that good physical models of complex systems, often detailed by

variables not directly measurable in many experimental paradigms, should offer superior descriptions of

empirical data beyond that available from black-box statistical descriptions of such data. For example,

good nonlinear models often offer sound approaches to relatively deeper understandings of these systems

in terms of synergies of subsystems at finer spatial-temporal scales.

In this context, a generic mesoscopic neural network (MNN) has been developed for diffusion-type

systems using a confluence of techniques drawn from the SMNI, modern methods of functional stochastic

calculus defining nonlinear Lagrangians, adaptive simulated annealing (ASA) [23], and parallel-

processing computation, to develop a generic nonlinear stochastic mesoscopic neural network

(MNN) [14,19]. MNN increases the resolution of SMNI to minicolumnar interactions within and

between neocortical regions, a scale that overlaps with other studies of neural systems, e.g., artificial

neural networks (ANN).

In order to interface the algebra presented by SMNI with experimental data, several codes have been

developed. A key tool is adaptive simulated annealing (ASA), a global optimization C-language

code [23-27]. Over the years, this code has evolved to a high degree of robustness across many

disciplines. However, there are over 100 OPTIONS available for tuning this code; this is as expected for

any single global optimization code applicable to many classes of nonlinear systems, systems which
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typically are non-typical.

Section 2 gives the background used to develop SMNI and ASA for the present study. Appendix A gives

more detail on ASA relevant to this paper. Section 3 gives the mathematical development required for

this study. Section 4 describes the procedures used. Section 5 presents conclusions.

2. BACKGROUND

2.1. EEG

The SMNI approach develops mesoscopic scales of neuronal interactions at columnar levels of hundreds

of neurons from the statistical mechanics of relatively microscopic interactions at neuronal and synaptic

scales, poised to study relatively macroscopic dynamics at regional scales as measured by scalp

electroencephalography (EEG). Relevant experimental confirmation is discussed in the SMNI papers at

the mesoscopic scales as well as at macroscopic scales of scalp EEG. The derived firings of columnar

activity, considered as order parameters of the mesoscopic system, develop multiple attractors, which

illuminate attractors that may be present in the macroscopic regional dynamics of neocortex. SMNI

proposes that models to be fitted to data include models of activity under each electrode, e.g., due to

short-ranged neuronal fibers, as well as models of activity across electrodes, e.g., due to long-ranged

fibers. These influences can be disentangled by SMNI fits.

The SMNI approach is complementary to other methods of studying nonlinear neocortical dynamics at

macroscopic scales. For example, EEG and magnetoencephalography (MEG) data have been expanded in

a series of spatial principal components, a Karhunen-Loeve expansion. The coefficients in such

expansions are identified as order parameters that characterize phase changes in cognitive studies [28,29]

and epileptic seizures [30,31]. However, the SMNI CMI may be considered in a similar context, as

providing a natural coordinate system that can be sensitive to experimental data, without assuming

av erages over stochastic parts of the system that may contain important information.

Theoretical studies of the neocortical medium have inv olved local circuits with postsynaptic potential

delays [32-35], global studies in which finite velocity of action potential and periodic boundary conditions

are important [36-39], and nonlinear nonequilibrium SMNI. The local and the global theories combine
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naturally to form a single theory in which control parameters effect changes between more local and more

global dynamic behavior [39,40], in a manner somewhat analogous to localized and extended wav e-

function states in disordered solids.

Plausible connections between the multiple-scale statistical theory and the more phenomenological global

theory have been proposed [12]. Experimental studies of neocortical dynamics with EEG include maps of

magnitude distribution over the scalp [37,41], standard Fourier analyses of EEG time series [37], and

estimates of correlation dimension [42,43]. Other studies have emphasized that many EEG states are

accurately described by a few coherent spatial modes exhibiting complex temporal

behavior [28-31,37,39]. These modes are the order parameters at macroscopic scales that underpin the

phase changes associated with changes of physiological state.

For extracranial EEG, it is clear that spatial resolution, i.e., the ability to distinguish between two dipole

sources as their distance decreases, is different from dipole localization, i.e., the ability to locate a single

dipole [39]. The development of methods to improve the spatial resolution of EEG has made it more

practical to study spatial structure. For example, high resolution methods provide apparent spatial

resolution in the 2-3 cm range [44]. Dipole resolution may be as good as several mm [45]. Some

algorithms calculate the (generally non-unique) inverse-problem of determining cortical sources that are

weighted/filtered by volume conductivities of concentric spheres encompassing the brain, cerebrospinal

fluid, skull, and scalp. A straightforward approach is to calculate the surface Laplacian from spline fits to

the scalp potential distribution, yielding estimates similar to those obtained using concentric spheres

models of the head [44]. Other measuring techniques, e.g., MEG, can provide complementary

information. These methods have their strengths and weaknesses at various spatial-temporal frequencies.

These source localization methods typically do not include in their models the synergistic contributions

from short-ranged columnar firings of mm spatial extent and from long-ranged fibers spanning cm spatial

extent. The CMI study presented here models these synergistic short-ranged and long-ranged

interactions. This is elaborated on in the conclusion.

2.2. Short-Term Memory (STM)

The development of SMNI in the context of short-term memory (STM) tasks leads naturally to the

identification of measured electric scalp potentials as arising from excitatory and inhibitory short-ranged
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and excitatory long-ranged fibers as they contribute to minicolumnar interactions [12,13]. Therefore, the

SMNI CMI are most appropriately calculated in the context of STM experimental paradigms. It has been

been demonstrated that EEG data from such paradigms can be fit using only physical synaptic and

neuronal parameters that lie within experimentally observed ranges [13,20].

The SMNI calculations are of minicolumnar interactions among hundreds of neurons, within a

macrocolumnar extent of hundreds of thousands of neurons. Such interactions take place on time scales

of severalτ , whereτ is on the order of 10 msec (of the order of time constants of cortical pyramidal

cells). This also is the observed time scale of the dynamics of STM. SMNI hypothesizes that columnar

interactions within and/or between regions containing many millions of neurons are responsible for these

phenomena at time scales of several seconds. That is, the nonlinear evolution at finer temporal scales

gives a base of support for the phenomena observed at the coarser temporal scales, e.g., by establishing

mesoscopic attractors at many macrocolumnar spatial locations to process patterns in larger regions.

SMNI has presented a model of STM, to the extent it offers stochastic bounds for this phenomena during

focused selective attention [4,6,15,46-48], transpiring on the order of tenths of a second to seconds,

limited to the retention of 7± 2 items [49]. These constraints exist even for apparently exceptional

memory performers who, while they may be capable of more efficient encoding and retrieval of STM, and

while they may be more efficient in ‘‘chunking’’ larger patterns of information into single items,

nevertheless are limited to a STM capacity of 7± 2 items [50]. Mechanisms for various STM phenomena

have been proposed across many spatial scales [51]. This “rule” is verified for acoustical STM, as well as

for visual or semantic STM, which typically require longer times for rehearsal in an hypothesized

articulatory loop of individual items, with a capacity that appears to be limited to 4± 2 [52]. SMNI has

detailed these constraints in models of auditory and visual cortex [4,6,15,16].

Another interesting phenomenon of STM capacity explained by SMNI is the primacy versus recency

effect in STM serial processing [6], wherein first-learned items are recalled most error-free, with last-

learned items still more error-free than those in the middle [53]. The basic assumption being made is that

a pattern of neuronal firing that persists for manyτ cycles is a candidate to store the ‘‘memory’’ of

activity that gav e rise to this pattern. If several firing patterns can simultaneously exist, then there is the

capability of storing several memories. The short-time probability distribution derived for the neocortex

is the primary tool to seek such firing patterns. The deepest minima are more likely accessed than the
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others of this probability distribution, and these valleys are sharper than the others. I.e., they are more

readily accessed and sustain their patterns against fluctuations more accurately than the others. The more

recent memories or newer patterns may be presumed to be those having synaptic parameters more

recently tuned and/or more actively rehearsed.

It has been noted that experimental data on velocities of propagation of long-ranged fibers [37,39] and

derived velocities of propagation of information across local minicolumnar interactions [2] yield

comparable times scales of interactions across minicolumns of tenths of a second. Therefore, such

phenomena as STM likely are inextricably dependent on interactions at local and global scales.

2.2.1. SMNI & ADP

A proposal has been advanced that STM is processed by information coded in approximately 40-Hz

(approximately 2.5 foldings ofτ ) bursts per stored memory, permitting up to seven such memories to be

processed serially within single wav es of lower frequencies on the order of 5 to 12 Hz [54]. To account

for the observed duration of STM, they propose that observed after-depolarization (ADP) at synaptic sites,

affected by the action of relatively long-time acting neuromodulators, e.g., acetylcholine and serotonin,

acts to regularly “refresh” the stored memories in subsequent oscillatory cycles. A recent study of the

action of neuromodulators in the neocortex supports the premise of their effects on broad spatial and

temporal scales [55], but the ADP model is much more specific in its proposed spatial and temporal

influences.

SMNI does not detail any specific synaptic or neuronal mechanisms that might refresh these most-likely

states to reinforce multiple short-term memories [18]. However, the calculated evolution of states is

consistent with the observation that an oscillatory subcycle of 40 Hz may be the bare minimal threshold of

self-sustaining minicolumnar firings before they begin to degrade [16].

The mechanism of ADP details a specific synaptic mechanism that, when coupled with additional

proposals of neuronal oscillatory cycles of 5−12 Hz and oscillatory subcycles of 40 Hz, can sustain these

memories for longer durations on the order of seconds. By itself, ADP does not provide a constraint such

as the 7±2 rule. The ADP approach does not address the observed random access phenomena of these

memories, the 4±2 rule, the primacy versus recency rule, or the influence of STM in observed EEG

patterns.
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SMNI and ADP models are complementary to the understanding of STM. MNN can be used to overlap

the spatial scales studied by the SMNI with the finer spatial scales typically studied by other relatively

more microscopic neural networks. At this scale, such models as ADP are candidates for providing an

extended duration of firing patterns within the microscopic networks.

2.2.2. PATHINT

A path-integral C-language code, PATHINT, calculates the long-time probability distribution from the

Lagrangian, e.g., as fit by the ASA code. A robust and accurate histogram-based (non-Monte Carlo) path-

integral algorithm to calculate the long-time probability distribution had been developed to handle

nonlinear Lagrangians [56-58], which was extended to two-dimensional problems [59]. PATHINT was

developed for use in arbitrary dimensions, with additional code to handle general Neumann and Dirichlet

conditions, as well as the possibility of including time-dependent potentials, drifts, and diffusions. The

results of using PATHINT to determine the evolution of the attractors of STM give overall results

consistent with previous calculations [15,16].

2.3. ASA

In order to maintain some audit trail from large-scale regional activity back to mesoscopic columnar

dynamics, desirable for both academic interest as well as practical signal enhancement, as few

approximations as possible are made by SMNI in developing synaptic interactions up to the level of

regional activity as measured by scalp EEG. This presents a formidable multivariate nonlinear

nonequilibrium distribution as a model of EEG dynamics, a concept considered to be quite tentative by

research panels as late as 1990, until it was demonstrated how fits to EEG data could be

implemented [13].

In order to fit such distributions to real data, ASA has been developed, a global optimization technique, a

superior variant of simulated annealing [24]. This was tested using EEG data in 1991 [13], using an early

and not as flexible version of ASA, very fast reannealing (VFSR) [24]. Here, this is tested on more

refined EEG using more sensitive CMI to portray results of the fits [20].

ASA [23] fits short-time probability distributions to observed data, using a maximum likelihood technique

on the Lagrangian. This algorithm has been developed to fit observed data to a theoretical cost function
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over aD-dimensional parameter space [24], adapting for varying sensitivities of parameters during the fit.

Appendix A contains details of ASA relevant to its use in this paper.

2.4. Complementary Research

2.4.1. Chaos

Given the context of studies in complex nonlinear systems [60], the question can be asked: What if EEG

has chaotic mechanisms that overshadow the above stochastic considerations? The real issue is whether

the scatter in data can be distinguished between being due to noise or chaos [61]. In this regard, several

studies have been proposed with regard to comparing chaos to simple filtered (colored) noise [60,62].

Since the existence of multiplicative noise in neocortical interactions has been derived, then the previous

references must be generalized, and further investigation is required to decide whether EEG scatter can be

distinguished from multiplicative noise.

A recent study with realistic EEG wav e equations strongly suggests that if chaos exists in a deterministic

limit, it does not survive in macroscopic stochastic neocortex [63]. I.e., it is important to include

stochastic aspects, as arise from the statistics of synaptic and columnar interactions, in any realistic

description of macroscopic neocortex.

2.4.2. Other Systems

Experience using ASA on such multivariate nonlinear stochastic systems has been gained by similar

applications of the approach used for SMNI.

From 1986-1989, these methods of mathematical physics were utilized by a team of scientists and officers

to develop mathematical comparisons of Janus computer combat simulations with exercise data from the

National Training Center (NTC), developing a testable theory of combat successfully baselined to

empirical data [59,64-68].

This methodology has been applied to financial markets [21,69-71], developing specific trading rules for

S&P 500 to demonstrate the robustness of these mathematical and numerical algorithms.
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3. MATHEMATICAL DEVELOPMENT

Fitting a multivariate nonlinear stochastic model to data is a necessary, but not sufficient procedure in

developing new diagnostic software. Even an accurate model fit well to real data may not be immediately

useful to clinicians and experimental researchers. To fill this void, the powerful intuitive basis of the

mathematical physics used to develop SMNI has been utilized to describe the model in terms of rigorous

CMI that provide an immediate intuitive portrait of the EEG data, faithfully describing the neocortical

system being measured. The CMI give an enhanced signal over the raw data, and give some insights into

the underlying columnar interactions.

3.1. CMI, Information, Energy

In the first SMNI papers, it was noted that this approach permitted the calculation of a true nonlinear

nonequilibrium “information” entity at columnar scales. With reference to a steady stateP(M̃) for a

short-time Gaussian-Markovian conditional probability distributionP of variablesM̃ , when it exists, an

analytic definition of the information gain̂ϒ in stateP̃(M̃) over the entire neocortical volume is defined

by [72,73]

ϒ̂[ P̃] = ∫ . . . ∫ DM̃ P̃ ln(P̃/P) , DM = (2π ĝ2
0∆t)−1/2

u

s=1
Π (2π ĝ2

s∆t)−1/2dMs , (1)

where a path integral is defined such that all intermediate-time values ofM̃ appearing in the folded short-

time distributionsP̃ are integrated over. This is quite general for any system that can be described as

Gaussian-Markovian [74], even if only in the short-time limit, e.g., the SMNI theory.

As time evolves, the distribution likely no longer behaves in a Gaussian manner, and the apparent

simplicity of the short-time distribution must be supplanted by numerical calculations. The Feynman

Lagrangian is written in the midpoint discretization, for a specific macrocolumn corresponding to

M(ts) =
1

2
[M(ts+1) + M(ts)] . (2)

This discretization defines a covariant LagrangianLF that possesses a variational principle for arbitrary

noise, and that explicitly portrays the underlying Riemannian geometry induced by the metric tensorgGG′,

calculated to be the inverse of the covariance matrixgGG′. Using the Einstein summation convention,
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P = ∫ . . . ∫ DM exp

−

u

s=0
Σ ∆t LFs




,

DM = g1/2
0+ (2π∆t)−Θ/2

u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

∫ dMG
s →

NG

ι =1
Σ ∆MG

ι s , MG
0 = MG

t0 , MG
u+1 = MG

t ,

LF =
1

2
(dMG /dt − hG)gGG′(dMG′/dt − hG′) +

1

2
hG

;G + R/6− V ,

(. . .),G =
∂(. . .)

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(ts), ts] = det(gGG′)s , gs+ = gs[MG
s+1, ts] ,

hG
;G = hG

,G + Γ
F
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK ) + gMN (ΓM

FKΓN
JL − ΓM

FLΓN
JK ) ,  (3)

whereR is the Riemannian curvature, and the discretization is explicitly denoted in the mesh ofMG
ι s by ι.

If M is a field, e.g., also dependent on a spatial variablex discretized byν , then the variablesMG
s is

increased toMGν
s , e.g., as prescribed for the macroscopic neocortex. The termR/6 in LF includes a
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contribution ofR/12 from the WKB approximation to the same order of (∆t)3/2 [75].

A prepoint discretization for the same probability distributionP gives a much simpler algebraic form,

M(ts) = M(ts) ,

L =
1

2
(dMG /dt − gG)gGG′(dMG′/dt − gG′) − V , (4)

but the LagrangianL so specified does not satisfy a variational principle useful for moderate to large

noise; its associated variational principle only provides information useful in the weak-noise limit [76].

The neocortex presents a system of moderate noise. Still, this prepoint-discretized form has been quite

useful in all systems examined thus far, simply requiring a somewhat finer numerical mesh. Note that

although integrations are indicated over a huge number of independent variables, i.e., as denoted by

dMGν
s , the physical interpretation afforded by statistical mechanics makes these systems mathematically

and physically manageable.

It must be emphasized that the output need not be confined to complex algebraic forms or tables of

numbers. BecauseLF possesses a variational principle, sets of contour graphs, at different long-time

epochs of the path-integral ofP, integrated over all its variables at all intermediate times, give a visually

intuitive and accurate decision aid to view the dynamic evolution of the scenario. For example, as given

in Table 1, this Lagrangian approach permits a quantitative assessment of concepts usually only loosely

defined. These physical entities provide another form of intuitive, but quantitatively precise, presentation

of these analyses [68,77]. In this study, the above canonical momenta are referred to canonical momenta

indicators (CMI).

In a prepoint discretization, where the Riemannian geometry is not explicit (but calculated in the first

SMNI papers), the distributions of neuronal activitiespσ i
is developed into distributions for activity under

an electrode siteP in terms of a LagrangianL and threshold functionsFG ,

P =
G
Π PG [MG(r; t + τ )|MG(r′; t)] =

σ j
Σδ



 jE
Σσ j − M E (r; t + τ )




δ


 jI
Σσ j − M I (r; t + τ )





N

j
Π pσ j

≈
G
Π (2πτ gGG)−1/2 exp(−Nτ LG) = (2πτ )−1/2g1/2 exp(−Nτ L) ,
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Concept Lagrangian equivalent

Momentum ΠG =
∂LF

∂(∂MG /∂t)

Mass gGG′ =
∂LF

∂(∂MG /∂t)∂(∂MG′/∂t)

Force
∂LF

∂MG

F = ma δ LF = 0 =
∂LF

∂MG
−
∂
∂t

∂LF

∂(∂MG /∂t)

TABLE 1. Descriptive concepts and their mathematical equivalents in a Lagrangian repre-

sentation.

L = T − V , T = (2N )−1(ṀG − gG)gGG′(ṀG′ − gG′) ,

gG = −τ −1(MG + N G tanhFG) , gGG′ = (gGG′)
−1 = δ G′

G τ
−1N Gsech2FG , g = det(gGG′) ,

FG =
V G − v|G|

G′T
|G|
G′

((π [(v|G|
G′ )

2 + (φ |G|
G′ )

2]T |G|
G′ ))

1/2 ,

T |G|
G′ = a|G|

G′ N
G′ +

1

2
A|G|

G′ M
G′ + a†|G|

G′ N†G′ +
1

2
A†|G|

G′ M†G′ + a‡|G|
G′ N‡G′ +

1

2
A‡|G|

G′ M‡G′ ,

a†G
G′ =

1

2
A†G

G′ + B†G
G′ , A‡I

E = A‡E
I = A‡I

I = B‡I
E = B‡E

I = B‡I
I = 0 , a‡E

E =
1

2
A‡E

E + B‡E
E , (5)

where no sum is taken over repeated |G|, AG
G′ andBG

G′ are macrocolumnar-averaged interneuronal synaptic

efficacies, vG
G′ and φG

G′ are averaged means and variances of contributions to neuronal electric

polarizations,N G are the numbers of excitatory and inhibitory neurons per minicolumn, and the variables

associated withMG , M†G and M‡G relate to multiple scales of activities from minicolumns, between

minicolumns within regions, and across regions, resp.The nearest-neighbor interactionsV can be

modeled in greater detail by a stochastic mesoscopic neural network [14]. The SMNI papers give more
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detail on this derivation.

In terms of the above variables, an energy or Hamiltonian densityH can be defined,

H = T + V , (6)

in terms of theMG andΠG variables, and the path integral is now defined over all the DMG as well as

over the DΠG variables.

3.2. Nonlinear String Model

A mechanical-analog model the string model, is derived explicitly for neocortical interactions using

SMNI [12]. In addition to providing overlap with current EEG paradigms, this defines a probability

distribution of firing activity, which can be used to further investigate the existence of other nonlinear

phenomena, e.g., bifurcations or chaotic behavior, in brain states.

Previous SMNI studies have detailed that maximal numbers of attractors lie within the physical firing

space ofMG , consistent with experimentally observed capacities of auditory and visual STM, when a

“centering” mechanism is enforced by shifting background conductivities of synaptic interactions,

consistent with experimental observations under conditions of selective attention [4,6,15,16,78]. This

leads to an effect of having all attractors of the short-time distribution lie along a diagonal line inMG

space, effectively defining a narrow parabolic trough containing these most likely firing states. This

essentially collapses the 2 dimensionalMG space down to a 1 dimensional space of most importance.

Thus, the predominant physics of short-term memory and of (short-fiber contribution to) EEG phenomena

takes place in a narrow ‘‘parabolic trough’’ inMG space, roughly along a diagonal line [4]. Here,G

representsE or I , M E represents contributions to columnar firing from excitatory neurons, andM I

represents contributions to columnar firing from inhibitory neurons. The object of interest within a short

refractory time,τ , approximately 5 to 10 msec, is the LagrangianL for a mesocolumn, detailed above.

τ L can vary by as much as a factor of 105 from the highest peak to the lowest valley inMG space.

Therefore, it is reasonable to assume that a single independent firing variable might offer a crude

description of this physics. Furthermore, the scalp potentialΦ can be considered to be a function of this

firing variable. (Here, ‘‘potential’’ refers to the electric potential, not the potential term in the Lagrangian

above.) In an abbreviated notation subscripting the time-dependence,
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Φt− << Φ >>= Φ(M E
t , M I

t ) ≈ a(M E
t − << M E >>) + b(M I

t − << M I >>) ,  (7)

wherea and b are constants, and <<Φ >> and <<MG >> represent typical minima in the trough. In the

context of fitting data to the dynamic variables, there are three effective constants,{ a, b,φ } ,

Φt − φ = aM E
t + bM I

t . (8)

The mesoscopic probability distributions,P, are scaled and aggregated over this columnar firing space to

obtain the macroscopic probability distribution over the scalp-potential space:

PΦ[Φ] = ∫ dM E dM I P[M E , M I ]δ [Φ − Φ′(M E , M I )] . (9)

In the prepoint discretization, the postpointMG(t + ∆t) moments are given by

m ≡< Φν − φ >= a < M E > +b < M I >= agE + bgI ,

σ 2 ≡< (Φν − φ )2 > − < Φν − φ >2= a2gEE + b2gII , (10)

where theMG-space driftsgG , and diffusionsgGG′, are given above. Note that the macroscopic drifts and

diffusions of theΦ’s are simply linearly related to the mesoscopic drifts and diffusions of theMG ’s. For

the prepointMG(t) firings, the same linear relationship in terms of{ φ , a, b } is assumed.

For the prepointM E (t) firings, advantage is taken of the parabolic trough derived for the STM

Lagrangian, and

M I (t) = cM E (t) ,  (11)

where the slopec is set to the close approximate value determined by a detailed calculation of the

centering mechanism [15],

AE
E M E − AE

I M I ≈ 0 .  (12)

This permits a complete transformation fromMG variables toΦ variables.

Similarly, as appearing in the modified threshold factorFG , each regional influence from electrode siteµ

acting at electrode siteν , giv en by afferent firingsM‡E , is taken as
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M‡E
µ→ν = dν M E

µ (t − Tµ→ν ) ,  (13)

wheredν are constants to be fitted at each electrode site, andTµ→ν are the delay times estimated above

for inter-electrode signal propagation, based on anatomical knowledge of the neocortex and of velocities

of propagation of action potentials of long-ranged fibers, typically on the order of one to several multiples

of τ= 5 msec. Some terms in whichd directly affects the shifts of synaptic parametersBG
G′ when

calculating the centering mechanism also contain long-ranged efficacies (inverse conductivities)B∗E
E′ .

Therefore, the latter were kept fixed with the other electrical-chemical synaptic parameters during these

fits. Future fits will experiment taking theT ’s as parameters.

This defines the conditional probability distribution for the measured scalp potentialΦν ,

Pν [Φν (t + ∆t)|Φν (t)] =
1

(2πσ 2∆t)1/2
exp(−Lν ∆t) ,

Lν =
1

2σ 2
(Φ̇ν − m)2 . (14)

The probability distribution for all electrodes is taken to be the product of all these distributions:

P =
ν
Π Pν , L =

ν
Σ Lν . (15)

Note that the belief in the dipole or nonlinear-string model is being invoked. The model SMNI, derived

for P[MG(t + ∆t)|MG(t)], is for a macrocolumnar-averaged minicolumn; hence it is expected to be a

reasonable approximation to represent a macrocolumn, scaled to its contribution toΦν . Hence,L is used

to represent this macroscopic regional Lagrangian, scaled from its mesoscopic mesocolumnar counterpart

L. Howev er, the above expression forPν uses the dipole assumption to also use this expression to

represent several to many macrocolumns present in a region under an electrode: A macrocolumn has a

spatial extent of about a mm. It is often argued that typically several macrocolumns firing coherently

account for the electric potentials measured by one scalp electrode [79]. Then, this model is being tested

to see if the potential will scale to a representative macrocolumn. The results presented here seem to

confirm that this approximation is in fact quite reasonable.
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The parabolic trough described above justifies a form

PΦ = (2πσ 2∆t)−1/2 exp(−
∆t

2σ 2 ∫ dx LΦ) ,

LΦ =
α
2

|∂Φ/∂t|2 +
β
2

|∂Φ/∂x|2 +
γ
2

|Φ|2 + F(Φ) ,  (16)

whereF(Φ) contains nonlinearities away from the trough,σ 2 is on the order ofN given the derivation of

L above, and the integral overx is taken over the spatial region of interest. In general, there also will be

terms linear in∂Φ/∂t and in∂Φ/∂x. (This corrects a typo that appears in several papers [12,13,17,19],

incorrectly giving the order ofσ 2 as 1/N . The orderN was first derived [13] fromσ 2 being expressed as

a sum over theE andI diffusions given above.)

Previous calculations of EEG phenomena [5], show that the short-fiber contribution to theα frequency

and the movement of attention across the visual field are consistent with the assumption that the EEG

physics is derived from an average over the fluctuations of the system, e.g., represented byσ in the above

equation. I.e., this is described by the Euler-Lagrange equations derived from the variational principle

possessed byLΦ (essentially the counterpart to force equals mass times acceleration), more properly by

the ‘‘midpoint-discretized’’ FeynmanLΦ, with its Riemannian terms [2,3,11].

3.3. CMI Sensitivity

In the SMNI approach, “information” is a concept well defined in terms of the probability eigenfunctions

of electrical-chemical activity of this Lagrangian. The path-integral formulation presents an accurate

intuitive picture of an initial probability distribution of patterns of firings being filtered by the

(exponential of the) Lagrangian, resulting in a final probability distribution of patterns of firing.

The utility of a measure of information has been noted by other investigators. For example, there have

been attempts to use information as an index of EEG activity [80,81]. These attempts have focused on the

concept of “mutual information” to find correlations of EEG activity under different electrodes. Other

investigators have looked at simulation models of neurons to extract information as a measure of

complexity of information processing [82]. Some other investigators have examined the utility of the

energy density as a viable measure of information processing STM paradigms [83].
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The SMNI approach at the outset recognizes that, for most brain states of late latency, at least a subset of

regions being measured by several electrodes is indeed to be considered as one system, and their

interactions are to be explicated by mathematical or physical modeling of the underlying neuronal

processes. Then, it is not relevant to compare joint distributions over a  set of electrodes with marginal

distributions over individual electrodes.

In the context of the present SMNI study, the CMI transform covariantly under Riemannian

transformations, but are more sensitive measures of neocortical activity than other invariants such as the

energy density, effectively the square of the CMI, or the information which also effectively is in terms of

the square of the CMI (essentially path integrals over quantities proportional to the energy times a factor

of an exponential including the energy as an argument). Neither the energy or the information give details

of the components as do the CMI. EEG is measuring a quite oscillatory system and the relative signs of

such activity are quite important. The information and energy densities are calculated and printed out

after ASA fits along with the CMI.

4. SMNI APPLICATIONS TO INDIVIDUAL EEG

4.1. Data

EEG spontaneous and evoked potential (EP) data from a multi-electrode array under a variety of

conditions was collected at several centers in the United States, sponsored by the National Institute on

Alcohol Abuse and Alcoholism (NIAAA) project. The earlier 1991 study used only averaged EP

data [84]. These experiments, performed on carefully selected sets of subjects, suggest a genetic

predisposition to alcoholism that is strongly correlated to EEG AEP responses to patterned targets.

It is clear that the author is not an expert in the clinical aspects of these alcoholism studies. It suffices for

this study that the data used is clean raw EEG data, and that these SMNI, CMI, and ASA techniques can

and should be used and tested on other sources of EEG data as well.

Each set of results is presented with 6 figures, labeled as [{alcoholic | control}, {stimulus 1 | match | no-

match}, subject,{potential | momenta}], abbreviated to{a | c}_{1 | m | n}_subject.{pot | mom} where

match or no-match was performed for stimulus 2 after 3.2 sec of a presentation of stimulus 1 [84]. Data
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includes 10 trials of 69 epochs each between 150 and 400 msec after presentation. For each subject run,

after fitting 28 parameters with ASA, epoch by epoch averages are developed of the raw data and of the

multivariate SMNI CMI. It was noted that much poorer fits were achieved when the “centering”

mechanism [4,6], driving multiple attractors into the physical firing regions bounded byMG ≤ ± N G , was

turned off and the denominators inFG were set to constants, confirming the importance of using the full

SMNI model. All stimuli were presented for 300 msec. For example, c_m_co2c0000337.pot is a figure.

Note that the subject number also includes the{alcoholic | control} tag, but this tag was added just to aid

sorting of files (as there are contribution from co2 and co3 subjects). Each figure contains graphs

superimposed for 6 electrode sites (out of 64 in the data) which have been modeled by SMNI using a

circuitry given in Table 2 of frontal sites (F3 and F4) feeding temporal (sides of head T7 and T8) and

parietal (top of head P7 and P8) sites, where odd-numbered (even-numbered) sites refer to the left (right)

brain.

4.2. ASA Tuning

A three-stage optimization was performed for each of 60 data sets in{a_n, a_m, a_n, c_1, c_m, c_n} of

10 subjects. As described previously, each of these data sets had 3-5 parameters for each SMNI

electrode-site model in{F3, F4, T7, T8, P7, P8}, i.e., 28 parameters for each of the optimization runs, to

be fit to over 400 pieces of potential data.

For each state generated in the fit, prior to calculating the Lagrangian, tests were performed to ensure that

all short-ranged and long-ranged firings lay in their physical boundaries. When this test failed, the

generated state was simply excluded from the parameter space for further consideration. This is a

standard simulated-annealing technique to handle complex constraints.

4.2.1. First-Stage Optimization

The first-stage optimization used ASA, version 13.1, tuned to give reasonable performance by examining

intermediate results of several sample runs in detail. Table 3 gives those OPTIONS changed from their

defaults. (See Appendix A for a discussion of ASA OPTIONS.)

The ranges of the parameters were decided as follows. The ranges of the strength of the long-range

connectivitiesdν were from 0 to 1. The ranges of the{a, b, c} parameters were decided by using
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Site Contributions From Time Delays (3.906 msec)

F3 − −

F4 − −

T7 F3 1

T7 T8 1

T8 F4 1

T8 T7 1

P7 T7 1

P7 P8 1

P7 F3 2

P8 T8 1

P8 P7 1

P8 F4 2

TABLE 2. Circuitry of long-ranged fibers across most relevant electrode sites and their

assumed time-delays in units of 3.906 msec.

minimum and maximum values ofMG and M‡G firings to keep the potential variable within the

minimum and maximum values of the experimentally measured potential at each electrode site.

Using the above ASA OPTIONS and ranges of parameters, it was found that typically within several

thousand generated states, the global minimum was approached within at least one or two significant

figures of the effective Lagrangian (including the prefactor). This estimate was based on final fits

achieved with hundreds of thousands of generated states. Runs were permitted to continue for 50,000

generated states. This very rapid convergence in these 30-dimensional spaces was partially due to the

invocation of the centering mechanism.

Some tests with SMNI parameters off the diagonal inMG-space, as established by the centering

mechanism, confirmed that ASA converged back to this diagonal, but requiring many more generated

states. Of course, an examination of the Lagrangian shows this trivially, as noted in previous papers [3,4],
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OPTIONS Default Stage 1 Use

Limit_Acceptances 10000 25000

Limit_Generated 99999 50000

Cost_Precision 1.0E-18 1.0E-9

Number_Cost_Samples 5 3

Cost_Parameter_Scale_Ratio 1.0 0.2

Acceptance_Frequency_Modulus 100 25

Generated_Frequency_Modulus 10000 10

Reanneal_Cost 1 4

Reanneal_Parameters 1 0

SMALL_FLOAT 1.0E-18 1.0E-30

ASA_LIB FALSE TRUE

QUENCH_COST FALSE TRUE

QUENCH_PARAMETERS FALSE TRUE

COST_FILE TRUE FALSE

NO_PARAM_TEMP_TEST FALSE TRUE

NO_COST_TEMP_TEST FALSE TRUE

TIME_CALC FALSE TRUE

ASA_PRINT_MORE FALSE TRUE

TABLE 3. ASA OPTIONS changes from their defaults used in stage one optimization.

wherein the Lagrangian values were on the order of 105 τ −1, compared to 10−2−10−3 τ −1 along the

diagonal established by the centering mechanism.

4.2.2. Second-Stage Optimization

The second-stage optimization was invoked to minimize the number of generated states that would have

been required if only the first-stage optimization were performed. Table 4 gives the changes made in the
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OPTIONS from stage one for stage two.

OPTIONS Stage 2 Changes

Limit_Acceptances 5000

Limit_Generated 10000

User_Initial_Parameters TRUE

User_Quench_Param_Scale[.] 30

TABLE 4. ASA OPTIONS changes from their use in stage one for stage two optimization.

The final stage-one parameters were used as the initial starting parameters for stage two. (At high

annealing/quenching temperatures at the start of an SA run, it typically is not important as to what the

initial values of the the parameters are, provided of course that they satisfy all constraints, etc.) The

second-stage minimum of each parameter was chosen to be the maximum lower bound of the first-stage

minimum and a 20% increase of that minimum. The second-stage maximum of each parameter was

chosen to be the minimum upper bound of the first-stage maximum and a 20% decrease of that maximum.

Extreme quenching was turned on for the parameters (not for the cost temperature), at values of the

parameter dimension of 30, increased from 1 (for rigorous annealing). This worked very well, typically

achieving the global minimum with 1000 generated states. Runs were permitted to continue for 10000

generated states.

4.2.3. Third-Stage Optimization

The third-stage optimization used a quasi-local code, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [85], to gain an extra 2 or 3 figures of precision in the global minimum. This typically took

several hundred states, and runs were permitted to continue for 500 generated states. Constraints were

enforced by the method of penalties added to the cost function outside the constraints.

The BFGS code typically got stuck in a local minimum quite early if invoked just after the first-stage

optimization. (There never was a reasonable chance of getting close to the global minimum using the



Statistical Mechanics of Neocortical ... -22- Lester Ingber

BFGS code as a first-stage optimizer.) These fits were much more efficient than those in a previous 1991

study [13], where VFSR, the precursor code to ASA, was used for a long stage-one optimization which

was then turned over to BFGS.

4.3. Results

Figs. 1-3 compares the CMI to raw data for an alcoholic subject for the a_1, a_m and a_n paradigms.

Figs. 4-6 gives similar comparisons for a control subject for the c_1, c_m and c_n paradigms. The SMNI

CMI give better signal to noise resolution than the raw data, especially comparing the significant

matching tasks between the control and the alcoholic groups, e.g., the c_m and a_m paradigms. The CMI

can be processed further as is the raw data, and also used to calculate “energy” and “information/entropy”

densities.
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FIG. 1. For the initial-stimulus a_1 paradigm for alcoholic subject co2a0000364, plots are

given of activities under 6 electrodes of the CMI in the upper figure, and of the electric

potential in the lower figure.
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FIG. 2. For the match second-stimulus a_m paradigm for alcoholic subject co2a0000364,

plots are given of activities under 6 electrodes of the CMI in the upper figure, and of the

electric potential in the lower figure.
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FIG. 3. For the no-match second-stimulus a_n paradigm for alcoholic subject co2a0000364,

plots are given of activities under 6 electrodes of the CMI in the upper figure, and of the

electric potential in the lower figure.
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FIG. 4. For the initial-stimulus c_1 paradigm for control subject co2c0000337, plots are

given of activities under 6 electrodes of the CMI in the upper figure, and of the electric

potential in the lower figure.



Statistical Mechanics of Neocortical ... -27- Lester Ingber

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
time (sec)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

m
om

en
ta

 (
1/

uV
)

F3
F4
P7
P8
T7
T8

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
time (sec)

-20.0

-18.0

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

po
te

nt
ia

ls
 (

uV
)

F3
F4
P7
P8
T7
T8

FIG. 5. For the match second-stimulus c_m paradigm for control subject co2c0000337, plots

are given of activities under 6 electrodes of the CMI in the upper figure, and of the electric

potential in the lower figure.
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FIG. 6. For the no-match second-stimulus c_n paradigm for control subject co2c0000337,

plots are given of activities under 6 electrodes of the CMI in the upper figure, and of the

electric potential in the lower figure.
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Similar results are seen for other subjects. A compressed tarfile for 10 control and 10 alcoholic subjects,

a total of 120 PostScript figures, can be retrieved via WWW from

http://www.ingber.com/MISC.DIR/smni97_eeg_cmi.tar.Z, or as file smni97_eeg_cmi.tar.Z via FTP from

ftp.ingber.com in the MISC.DIR directory.

5. CONCLUSIONS

5.1. CMI and Linear Models

It is clear that the CMI follow the measured potential variables closely. In large part, this is due to the

prominent attractors near the firing statesMG being close to their origins, resulting in moderate threshold

functionsFG in these regions. This keeps the term in the drifts proportional to tanhFG near its lowest

values, yielding values of the drifts on the order of the time derivatives of the potentials. The diffusions,

proportional to sechFG , also do not fluctuate to very large values.

However, when the feedback among potentials under electrode sites are strong, leading to enhanced

(nonlinear) changes in the drifts and diffusions, then these do cause relatively largest signals in the CMI

relative to those appearing in the raw potentials. Thus, these effects are strongest in the c_m sets of data,

where the control (normal) subjects demonstrate more intense circuitry interactions among electrode sites

during the matching paradigm.

These results also support independent studies of primarily long-ranged EEG activity, that have concluded

that EEG many times appears to demonstrate quasi-linear interactions [39,86]. However, it must be noted

that this is only true within the confines of an attractor of highly nonlinear short-ranged columnar

interactions. It requires some effort, e.g., global optimization of a robust multivariate stochastic nonlinear

system to achieve finding this attractor. Theoretically, using the SMNI model, this is performed using the

ASA code. Presumably, the neocortical system utilizes neuromodular controls to achieve this attractor

state [55,78], as suggested in early SMNI studies [3,4].

5.2. CMI Features

Essential features of the SMNI CMI approach are: (a) A realistic SMNI model, clearly capable of

modeling EEG phenomena, is used, including both long-ranged columnar interactions across electrode
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sites and short-ranged columnar interactions under each electrode site. (b) The data is used raw for the

nonlinear model, and only after the fits are moments (averages and variances) taken of the derived CMI

indicators; this is unlike other studies that most often start with averaged potential data. (c) A novel and

sensitive measure, CMI, is used, which has been shown to be successful in enhancing resolution of signals

in another stochastic multivariate time series system, financial markets [21,22]. As was performed in

those studies, future SMNI projects can similarly use recursive ASA optimization, with an inner-shell

fitting CMI of subjects’ EEG, embedded in an outer-shell of parameterized customized clinician’s AI-type

rules acting on the CMI, to create supplemental decision aids.

Canonical momenta offers an intuitive yet detailed coordinate system of some complex systems amenable

to modeling by methods of nonlinear nonequilibrium multivariate statistical mechanics. These can be

used as reasonable indicators of new and/or strong trends of behavior, upon which reasonable decisions

and actions can be based, and therefore can be be considered as important supplemental aids to other

clinical indicators.

5.3. CMI and Source Localization

Global ASA optimization, fitting the nonlinearities inherent in the synergistic contributions from short-

ranged columnar firings and from long-ranged fibers, makes it possible to disentangle their contributions

to some specific electrode circuitries among columnar firings under regions separated by cm, at least to

the degree that the CMI clearly offer superior signal to noise than the raw data. Thus this paper at least

establishes the utility of the CMI for EEG analyses, which can be used to complement other EEG

modeling techniques. In this paper, a plausible circuitry was first hypothesized (by a group of experts),

and it remains to be seen just how many more electrodes can be added to such studies with the goal being

to have ASA fits determine the optimal circuitry.

It is clear that future SMNI projects should integrate current modeling technologies together with the

CMI. For example, one approach for adding CMI to this set of tools would be to use source-localization

techniques to generate simulated macrocolumnar cortical potentials (effectively a best fit of source-

generated potentials to raw scalp data) to determine the CMI. The CMI then can provide further

disentanglement of short-ranged and long-ranged interactions to determine most likely circuit dynamics.

Since source localization often is a non-unique process, this may provide an iterative approach to aid finer
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source localization. That is, SMNI is a nonlinear stochastic model based on realistic neuronal

interactions, and it is reasonable to assume that the derived CMI add much additional information to these

localization analyses.

5.4. SMNI Features

Sets of EEG data taken during selective attention tasks have been fit using parameters either set to

experimentally observed values, or have been fit within experimentally observed values. The ranges of

columnar firings are consistent with a centering mechanism derived for STM in earlier papers.

These results, in addition to their importance in reasonably modeling EEG with SMNI, also have a deeper

theoretical importance with respect to the scaling of neocortical mechanisms of interaction across

disparate spatial scales and behavioral phenomena: As has been pointed out previously, SMNI has given

experimental support to the derivation of the mesoscopic probability distribution, illustrating common

forms of interactions between their entities, i.e., neurons and columns of neurons, respectively. The

nonlinear threshold factors are defined in terms of electrical-chemical synaptic and neuronal parameters

all lying within their experimentally observed ranges. It also was noted that the most likely trajectories of

the mesoscopic probability distribution, representing averages over columnar domains, give a description

of the systematics of macroscopic EEG in accordance with experimental observations. It has been

demonstrated that the macroscopic regional probability distribution can be derived to hav e same

functional form as the mesoscopic distribution, where the macroscopic drifts and diffusions of the

potentials described by theΦ’s are simply linearly related to the (nonlinear) mesoscopic drifts and

diffusions of the columnar firing states given by theMG ’s. Then, this macroscopic probability

distribution gives a reasonable description of experimentally observed EEG.

The theoretical and experimental importance of specific scaling of interactions in the neocortex has been

quantitatively demonstrated on individual brains. The explicit algebraic form of the probability

distribution for mesoscopic columnar interactions is driven by a nonlinear threshold factor of the same

form taken to describe microscopic neuronal interactions, in terms of electrical-chemical synaptic and

neuronal parameters all lying within their experimentally observed ranges; these threshold factors largely

determine the nature of the drifts and diffusions of the system. This mesoscopic probability distribution

has successfully described STM phenomena and, when used as a basis to derive the most likely
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trajectories using the Euler-Lagrange variational equations, it also has described the systematics of EEG

phenomena. In this paper, the mesoscopic form of the full probability distribution has been taken more

seriously for macroscopic interactions, deriving macroscopic drifts and diffusions linearly related to sums

of their (nonlinear) mesoscopic counterparts, scaling its variables to describe interactions among regional

interactions correlated with observed electrical activities measured by electrode recordings of scalp EEG,

with apparent success. These results give strong quantitative support for an accurate intuitive picture,

portraying neocortical interactions as having common algebraic or physics mechanisms that scale across

quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among

neurons, columns of neurons, and regional masses of neurons.

5.5. Summary

SMNI is a reasonable approach to extract more ‘‘signal’’ out of the ‘‘noise’’ in EEG data, in terms of

physical dynamical variables, than by merely performing regression statistical analyses on collateral

variables. To learn more about complex systems, inevitably functional models must be formed to

represent huge sets of data. Indeed, modeling phenomena is as much a cornerstone of 20th century

science as is collection of empirical data [87].

It seems reasonable to speculate on the evolutionary desirability of developing Gaussian-Markovian

statistics at the mesoscopic columnar scale from microscopic neuronal interactions, and maintaining this

type of system up to the macroscopic regional scale. I.e., this permits maximal processing of

information [73]. There is much work to be done, but modern methods of statistical mechanics have

helped to point the way to promising approaches.

APPENDIX A: ADAPTIVE SIMULATED ANNEALING (ASA)

1. General Description

Simulated annealing (SA) was developed in 1983 to deal with highly nonlinear problems [88], as an

extension of a Monte-Carlo importance-sampling technique developed in 1953 for chemical physics

problems. It helps to visualize the problems presented by such complex systems as a geographical terrain.

For example, consider a mountain range, with two “parameters,” e.g., along the North−South and
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East−West directions, with the goal to find the lowest valley in this terrain. SA approaches this problem

similar to using a bouncing ball that can bounce over mountains from valley to valley. Start at a high

“temperature,” where the temperature is an SA parameter that mimics the effect of a fast moving particle

in a hot object like a hot molten metal, thereby permitting the ball to make very high bounces and being

able to bounce over any mountain to access any valley, giv en enough bounces. As the temperature is

made relatively colder, the ball cannot bounce so high, and it also can settle to become trapped in

relatively smaller ranges of valleys.

Imagine that a mountain range is aptly described by a “cost function.” Define probability distributions of

the two directional parameters, called generating distributions since they generate possible valleys or

states to explore. Define another distribution, called the acceptance distribution, which depends on the

difference of cost functions of the present generated valley to be explored and the last saved lowest valley.

The acceptance distribution decides probabilistically whether to stay in a new lower valley or to bounce

out of it. All the generating and acceptance distributions depend on temperatures.

In 1984 [89], it was established that SA possessed a proof that, by carefully controlling the rates of

cooling of temperatures, it could statistically find the best minimum, e.g., the lowest valley of our

example above. This was good news for people trying to solve hard problems which could not be solved

by other algorithms. The bad news was that the guarantee was only good if they were willing to run SA

forever. In 1987, a method of fast annealing (FA) was developed [90], which permitted lowering the

temperature exponentially faster, thereby statistically guaranteeing that the minimum could be found in

some finite time. However, that time still could be quite long. Shortly thereafter, Very Fast Simulated

Reannealing (VFSR) was developed [24], now called Adaptive Simulated Annealing (ASA), which is

exponentially faster than FA.

ASA has been applied to many problems by many people in many disciplines [26,27,91]. The feedback

of many users regularly scrutinizing the source code ensures its soundness as it becomes more flexible

and powerful. The code is available via the world-wide web (WWW) as http://www.ingber.com/ which

also can be accessed anonymous FTP from ftp.ingber.com.
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2. Mathematical Outline

ASA considers a parameterα i
k in dimensioni generated at annealing-timek with the range

α i
k∈[ Ai, Bi] ,  (A.1)

calculated with the random variableyi,

α i
k+1 = α

i
k + yi(Bi − Ai) ,

yi∈[−1, 1] . (A.2)

The generating functiongT (y) is defined,

gT (y) =
D

i=1
Π 1

2(|yi|+ Ti) ln(1+ 1/Ti)
≡

D

i=1
Π gi

T (yi) ,  (A.3)

where the subscripti on Ti specifies the parameter index, and thek-dependence inTi(k) for the annealing

schedule has been dropped for brevity. Its cumulative probability distribution is

GT (y) =
y1

−1
∫ . . .

yD

−1
∫ dy′1 . . .dy′D gT (y′) ≡

D

i=1
ΠGi

T (yi) ,

Gi
T (yi) =

1

2
+

sgn (yi)

2

ln(1+ |yi|/Ti)

ln(1+ 1/Ti)
. (A.4)

yi is generated from aui from the uniform distribution

ui∈U [0, 1] ,

yi = sgn (ui −
1

2
)Ti[(1 + 1/Ti)

|2ui−1| − 1] . (A.5)

It is straightforward to calculate that for an annealing schedule forTi

Ti(k) = T0i exp(−ci k
1/D) ,  (A.6)
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a global minima statistically can be obtained. I.e.,

∞

k0

Σ gk ≈
∞

k0

Σ [
D

i=1
Π 1

2|yi|ci
]

1

k
= ∞ . (A.7)

Control can be taken overci, such that

T fi = T0i exp(−mi) whenk f = expni ,

ci = mi exp(−ni/D) ,  (A.8)

wheremi andni can be considered “free” parameters to help tune ASA for specific problems.

3. ASA OPTIONS

ASA has over 100 OPTIONS available for tuning. A few are most relevant to this project.

3.1. Reannealing

Whenever doing a multi-dimensional search in the course of a complex nonlinear physical problem,

inevitably one must deal with different changing sensitivities of theα i in the search. At any giv en

annealing-time, the range over which the relatively insensitive parameters are being searched can be

“stretched out” relative to the ranges of the more sensitive parameters. This can be accomplished by

periodically rescaling the annealing-timek, essentially reannealing, every hundred or so acceptance-

ev ents (or at some user-defined modulus of the number of accepted or generated states), in terms of the

sensitivitiessi calculated at the most current minimum value of the cost function,C,

si = ∂C/∂α i . (A.9)

In terms of the largestsi = smax, a default rescaling is performed for eachki of each parameter dimension,

whereby a new indexk′i is calculated from eachki,

ki → k′i ,

T ′ik′ = Tik(smax/si) ,
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k′i = ((ln(Ti0/Tik′)/ci))
D . (A.10)

Ti0 is set to unity to begin the search, which is ample to span each parameter dimension.

3.2. Quenching

Another adaptive feature of ASA is its ability to perform quenching in a methodical fashion. This is

applied by noting that the temperature schedule above can be redefined as

Ti(ki) = T0i exp(−ci k
Qi/D
i ) ,

ci = mi exp(−niQi/D) ,  (A.11)

in terms of the “quenching factor”Qi. The sampling proof fails ifQi > 1 as

k
Σ

D

Π 1/kQi/D =
k
Σ 1/kQi <∞ . (A.12)

This simple calculation shows how the “curse of dimensionality” arises, and also gives a possible way of

living with this disease. In ASA, the influence of large dimensions becomes clearly focussed on the

exponential of the power ofk being 1/D, as the annealing required to properly sample the space becomes

prohibitively slow. So, if resources cannot be committed to properly sample the space, then for some

systems perhaps the next best procedure may be to turn on quenching, wherebyQi can become on the

order of the size of number of dimensions.

The scale of the power of 1/D temperature schedule used for the acceptance function can be altered in a

similar fashion. However, this does not affect the annealing proof of ASA, and so this may used without

damaging the sampling property.

3.3. Self Optimization

If not much information is known about a particular system, if the ASA defaults do not seem to work very

well, and if after a bit of experimentation it still is not clear how to select values for some of the ASA

OPTIONS, then the SELF_OPTIMIZE OPTIONS can be very useful. This sets up a top level search on
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the ASA OPTIONS themselves, using criteria of the system as its own cost function, e.g., the best

attained optimal value of the system’s cost function (the cost function for the actual problem to be solved)

for each given set of top level OPTIONS, or the number of generated states required to reach a given

value of the system’s cost function, etc. Since this can consume a lot of CPU resources, it is

recommended that only a few ASA OPTIONS and a scaled down system cost function or system data be

selected for this OPTIONS.

Even if good results are being attained by ASA, SELF_OPTIMIZE can be used to find a more efficient set

of ASA OPTIONS. Self optimization of such parameters can be very useful for production runs of

complex systems.

3.4. Parallel Code

It is quite difficult to directly parallelize an SA algorithm [26], e.g., without incurring very restrictive

constraints on temperature schedules [92], or violating an associated sampling proof [93]. However, the

fat tail of ASA permits parallelization of developing generated states prior to subjecting them to the

acceptance test [14]. The ASA_PARALLEL OPTIONS provide parameters to easily parallelize the code,

using various implementations, e.g., PVM, shared memory, etc.

The scale of parallelization afforded by ASA, without violating its sampling proof, is given by a typical

ratio of the number of generated to accepted states. Several experts in parallelization suggest that massive

parallelization e.g., on the order of the human brain, may take place quite far into the future, that this

might be somewhat less useful for many applications than previously thought, and that most useful scales

of parallelization might be on scales of order 10 to 1000. Depending on the specific problem, such scales

are common in ASA optimization, and the ASA code can implement such parallelization.
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